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The divide-and-conquer strategy.

1. Break the problem into smaller
subproblems,

2. recursively solve each problem,

3. appropriately combine their
answers. Julius Caesar (I-BC)

”Divide et impera”

Known Examples:

I Binary search

I Merge-sort

I Quicksort

I Strassen matrix multiplication

J. von Neumann
(1903-57)
Merge sort



Recurrences Divide and Conquer

T (n) = 3T (n/2) + O(n)
The algorithm under analysis divides input of size n into 3
subproblems, each of size n/2, at a cost (of dividing and joining
the solutions) of O(n)
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T (n) = 3T (n/2) + O(n).
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At depth k of the tree there are 3k subproblems, each of size n/2k .

For each of those problems we need O(n/2k) (splitting time +
combination time).
Therefore the cost at depth k is:
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Therefore T (n) =
∑lg n

k=0O(n)(32)k .



From T (n) = O(n)
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We have a geometric series of ratio 3/2, starting at 1 and ending

at
(
(32)lg n

)
= nlg 3

nlg 2 ) = n1.58

n .

As the series is increasing, T (n) is dominated by the last term:

T (n) = O(n)×
(
nlg 3

n

)
= O(n1.58).



T (n) = T (n/4) + T (n/2) + n2

Series of costs: (1 + ((14)2 + (12)2) + (( 1
16)2 + (18)2) + · · · )n2

= (1 + 5
16 + 25

256 + · · · )n2
Decreasing geometric series dominated by 1st. term, n2.

T (n) = O(n2)



General setting: Basic Theorem

T (n) = aT (
n

b
) + f (n),

where n: size of the problem,
n/b: size of the subproblems
f (n): cost of divide the problem and combine the solutions

Theorem
Let a ≥ 1, b > 1, d ≥ 0 be constants. The recurrence
T (n) = aT (n/b) + O(nd) has asymptotic solution:

1. T (n) = O(nd), if d > logb a,

2. T (n) = O(nd lg n) if d = logb a,

3. T (n) = O(nlogb a), if d < logb a.
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Selection and order statistics

Problem: Given a list A of n of unordered distinct keys, and a
i ∈ Z, 1 ≤ i ≤ n, select the i-smallest element x ∈ A that is larger
than exactly i − 1 other elements in A.

Notice if:

1. i = 1 ⇒ MINIMUM element

2. i = n ⇒ MAXIMUM element

3. i = bn+1
2 c ⇒ the MEDIAN

4. i = b0.9 · nc ⇒ order statistics

Sort A (O(n lg n)) and search for A[k].

Can we do it in linear time?
Yes, Selection is easier than Sorting



Deterministic linear selection

Generate deterministically a good split element x .
Divide the n elements in bn/5c groups, each with 5 elements (+
possible one group with < 5 elements).



Deterministic linear selection.

Sort each set to find its median, say xi . (Each sorting needs 5
comparisons, i.e. Θ(1)) Total: bn/5c



Deterministic linear selection.

• Use recursively Select to find the median x of the medians
{xi}, 1 ≤ i ≤ dn/5e.
• Use deterministic Partition (quick sort) to re-arrange the groups
corresponding to medians {xi} around x , in linear time on the
number of medians.

x



Deterministic linear selection.

Al least 3(12bn/5c) = b3n/10c of the elements are ≤ x .

x



Deterministic linear selection.

Al least 3(12bn/5c) = b3n/10c of the elements are ≥ x .

x



The deterministic algorithm

Select (A, i)
1.- Divide the n elements into bn/5c groups of 5 O(n)

plus a possible extra group with < 5 elements
2.- Find the median by insertion sort, and take

the middle element
3.- Use Select recursively to find the median x of the bn/5c

medians
4.- Use Partition to place x and its group. Let k=rank of x
5.- if i = k then

return x
else if i < k then

use Select to find the i-th smallest in the left
else

use Select to find the i − k-th smallest in the right
end if



Example: Find the median

Get the median (b(n + 1)/2c) on the following input:

3    13    9    4    5    1    15    12    10    2    6    14    8    11   17
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PARTITION around 10:

13   12   15   11   14   17103   4   5   9    1   2   6   8

To get the 7th element (mean)

call SELECT on this instance



The deterministic algorithm

Select (A, i)
1.- Divide the n elements into bn/5c groups of 5 O(n)

plus a possible extra group with < 5 elements
2.- Find the median by insertion sort, and take

the middle element O(n)
3.- Use Select recursively to find the median x of the bn/5c

medians T (n/5)
4.- Use Partition to place x and its group. O(n)

Let k = rank of x
5.- if i = k then

return x
else if i < k then

use Select to find the i-th smallest in the left
else

use Select to find the i − k-th smallest in the right
end if



Worst case Analysis.

I As at least ≥ 3n
10 of the elements are ≥ x .

I At least 3n
10 elements are < x .

I In the worst case, step 5 calls Select recursively
≤ n − 3n

10 = 7n/10. So step 5 takes time ≤ T (7n/10).

Therefore, we have

T (n) =

{
Θ(1) if n ≤ 50,

T (n/5) + T (7n/10) + Θ(n) if n > 50.

Solving we get T (n) = Θ(n)



Notice: If we make groups of 7, the number of elements ≥ x is 2n
7 ,

which yield T (n) ≤ T (n/7) + T (5n/7) + O(n) with solution
T (n) = O(n).
However, if we make groups of 3, then
T (n) ≤ T (n/3) + T (2n/3) + O(n), which has a solution
T (n) = O(n ln n).


