Divide-and-conquer: Order Statistics

Curs: 2018

The divide-and-conquer strategy.

- 1. Break the problem into smaller subproblems,
- 2. recursively solve each problem,
- 3. appropriately combine their answers.

Known Examples:

- Binary search
- Merge-sort
- Quicksort
- Strassen matrix multiplication

Julius Caesar (I-BC) "Divide et impera"

J. von Neumann (1903-57) Merge sort

Recurrences Divide and Conquer

T(n) = 3T(n/2) + O(n)

The algorithm under analysis divides input of size n into 3 subproblems, each of size n/2, at a cost (of dividing and joining the solutions) of O(n)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

T(n) = 3T(n/2) + O(n).

T(n)=3T(n/2)+O(n)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

At depth k of the tree there are 3^k subproblems, each of size $n/2^k$.

For each of those problems we need $O(n/2^k)$ (splitting time + combination time).

Therefore the cost at depth k is:

$$3^k \times \left(\frac{n}{2^k}\right) = \left(\frac{3}{2}\right)^k \times O(n).$$

with max. depth $k = \lg n$.

$$\left(1+\frac{3}{2}+(\frac{3}{2})^2+(\frac{3}{2})^3+\cdots+(\frac{3}{2})^{\lg n}\right)\Theta(n)$$

Therefore $T(n) = \sum_{k=0}^{\lg n} O(n)(\frac{3}{2})^k$.

From
$$T(n) = O(n) \left(\underbrace{\sum_{k=0}^{\lg n} (\frac{3}{2})^k}_{(*)} \right)$$
,

We have a geometric series of ratio 3/2, starting at 1 and ending at $\left(\left(\frac{3}{2}\right)^{\lg n}\right) = \frac{n^{\lg 3}}{n^{\lg 2}} = \frac{n^{1.58}}{n}$.

As the series is increasing, T(n) is dominated by the last term:

$$T(n) = O(n) \times \left(\frac{n^{\lg 3}}{n}\right) = O(n^{1.58}).$$

(日) (日) (日) (日) (日) (日) (日) (日)

$T(n) = T(n/4) + T(n/2) + n^2$

Series of costs:
$$(1 + ((\frac{1}{4})^2 + (\frac{1}{2})^2) + ((\frac{1}{16})^2 + (\frac{1}{8})^2) + \cdots)n^2$$

= $(1 + \frac{5}{16} + \frac{25}{256} + \cdots)n^2$
Decreasing geometric series dominated by 1st. term, n^2 .

$$T(n)=O(n^2)$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

General setting: Basic Theorem

$$T(n) = aT(\frac{n}{b}) + f(n),$$

where *n*: size of the problem, n/b: size of the subproblems f(n): cost of divide the problem and combine the solutions

Theorem

Let $a \ge 1, b > 1, d \ge 0$ be constants. The recurrence $T(n) = aT(n/b) + O(n^d)$ has asymptotic solution:

1.
$$T(n) = O(n^d)$$
, if $d > \log_b a$,

2.
$$T(n) = O(n^d \lg n)$$
 if $d = \log_b a$,

3.
$$T(n) = O(n^{\log_b a})$$
, if $d < \log_b a$.

Cost

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Selection and order statistics

Problem: Given a list A of n of unordered distinct keys, and a $i \in \mathbb{Z}, 1 \le i \le n$, select the *i*-smallest element $x \in A$ that is larger than exactly i - 1 other elements in A.

Notice if:

1. $i = 1 \Rightarrow MINIMUM$ element

2.
$$i = n \Rightarrow MAXIMUM$$
 element

3.
$$i = \lfloor \frac{n+1}{2} \rfloor \Rightarrow$$
 the MEDIAN

4.
$$i = \lfloor 0.9 \cdot n \rfloor \Rightarrow order \ statistics$$

Sort $A(O(n \lg n))$ and search for A[k].

Can we do it in linear time? Yes, Selection is easier than Sorting

Generate deterministically a good split element x. Divide the *n* elements in $\lfloor n/5 \rfloor$ groups, each with 5 elements (+ possible one group with < 5 elements).

Sort each set to find its median, say x_i . (Each sorting needs 5 comparisons, i.e. $\Theta(1)$) Total: |n/5|

• Use recursively **Select** to find the median x of the medians $\{x_i\}, 1 \le i \le \lceil n/5 \rceil$.

• Use deterministic **Partition** (quick sort) to re-arrange the groups corresponding to medians $\{x_i\}$ around x, in linear time on the number of medians.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Al least $3(\frac{1}{2}\lfloor n/5 \rfloor) = \lfloor 3n/10 \rfloor$ of the elements are $\leq x$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Al least $3(\frac{1}{2}\lfloor n/5 \rfloor) = \lfloor 3n/10 \rfloor$ of the elements are $\geq x$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The deterministic algorithm

Select (A, i)

- 1.- Divide the *n* elements into $\lfloor n/5 \rfloor$ groups of 5 O(n) plus a possible extra group with < 5 elements
- 2.- Find the median by insertion sort, and take the middle element
- 3.- Use **Select** recursively to find the median x of the $\lfloor n/5 \rfloor$ medians
- 4.- Use **Partition** to place x and its group. Let k=rank of x
- 5.- **if** i = k **then**

return x

else if i < k then

use Select to find the *i*-th smallest in the left

else

use **Select** to find the i - k-th smallest in the right end if

Example: Find the median

Get the median $(\lfloor (n+1)/2 \rfloor)$ on the following input:

The deterministic algorithm

Select (A, i)

- 1.- Divide the *n* elements into $\lfloor n/5 \rfloor$ groups of 5 O(n) plus a possible extra group with < 5 elements
- 2.- Find the median by insertion sort, and take the middle element O(n)
- 3.- Use **Select** recursively to find the median x of the $\lfloor n/5 \rfloor$ medians T(n/5)
- 4.- Use **Partition** to place x and its group. O(n)Let k = rank of x
- 5.- if i = k then

return x

else if i < k then

use Select to find the *i*-th smallest in the left

else

use **Select** to find the i - k-th smallest in the right end if

Worst case Analysis.

• As at least $\geq \frac{3n}{10}$ of the elements are $\geq x$.

• At least
$$\frac{3n}{10}$$
 elements are $< x$.

▶ In the worst case, step 5 calls **Select** recursively $\leq n - \frac{3n}{10} = 7n/10$. So step 5 takes time $\leq T(7n/10)$.

Therefore, we have

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le 50, \\ T(n/5) + T(7n/10) + \Theta(n) & \text{if } n > 50. \end{cases}$$

Solving we get $T(n) = \Theta(n)$

Notice: If we make groups of 7, the number of elements $\geq x$ is $\frac{2n}{7}$, which yield $T(n) \leq T(n/7) + T(5n/7) + O(n)$ with solution T(n) = O(n). However, if we make groups of 3, then $T(n) \leq T(n/3) + T(2n/3) + O(n)$, which has a solution $T(n) = O(n \ln n)$.