Divide-and-conquer: Order Statistics

Curs: 2018

The divide-and-conquer strategy.

1. Break the problem into smaller
subproblems,

2. recursively solve each problem,

3. appropriately combine their
answers.

Known Examples:
» Binary search
» Merge-sort
» Quicksort

» Strassen matrix multiplication

N |

«

Julius Caesar (I-BC)
"Divide et impera”

L sl |
)
(B
.

J. von Neumann
(1903-57)
Merge sort

Recurrences Divide and Conquer

T(n) =3T(n/2) + O(n)

The algorithm under analysis divides input of size n into 3
subproblems, each of size n/2, at a cost (of dividing and joining
the solutions) of O(n)

T(n)=3T(n/2)+ O(n).

[size n j k=0
n
n/2
27/8n
@ @ @ k=lgn

3lgn

T(n)=3T(n/2)+O(n)

At depth k of the tree there are 3% subproblems, each of size n/2k.

For each of those problems we need O(n/2%) (splitting time +
combination time).
Therefore the cost at depth k is:

k
K (Y = (3
3K (2k) - (2) % O(n).
with max. depth k = Ign.

(1434 G2+ P+ () o)

Therefore T(n) = Ikgzno O(n)(

NIw
~—
x

Ign

From T(n) = O(n) Z(g)k ,
k=0
(%)

We have a geometric series of ratio 3/2, starting at 1 and ending
nl.58

at ((3)e7) = fa) = 7

As the series is increasing, T(n) is dominated by the last term:

nlg3

T(n) = O(n) x () = O(n*58).

n

T(n)= T(n/4)+ T(n/2) + n?

Series of costs (+((%)2 B2+ (E)2+)2+)n?
=1+ 16 + 256 + e)n?
Decreasing geometric series dominated by 1st. term, n.

General setting: Basic Theorem

where n: size of the problem,
n/b: size of the subproblems
f(n): cost of divide the problem and combine the solutions

Theorem
Leta>1,b>1,d >0 be constants. The recurrence
T(n) = aT(n/b) + O(n?) has asymptotic solution:

1. T(n) = O(n9), ifd > log, a,
2. T(n) = O(n?Ign) if d = log, a,
3. T(n) = O(n'°&?), if d < log, a.

Cost

f(n)

- (a/b) f(n)

~ (a/b)’ f(n)

- O(1)

Selection and order statistics

Problem: Given a list A of n of unordered distinct keys, and a
i€ 7,1 <i<n,select the i-smallest element x € A that is larger
than exactly i/ — 1 other elements in A.
Notice if:
1. i=1= MINIMUM element
2. i = n = MAXIMUM element
3. i=[21] = the MEDIAN
4. i = 0.9 n| = order statistics

Sort A (O(nlgn)) and search for Alk]. M

Can we do it in linear time?
Yes, Selection is easier than Sorting

Deterministic linear selection

Generate deterministically a good split element x.
Divide the n elements in |n/5] groups, each with 5 elements (+
possible one group with < 5 elements).

Deterministic linear selection.

Sort each set to find its median, say x;. (Each sorting needs 5
comparisons, i.e. ©(1)) Total: |n/5]

Deterministic linear selection.

e Use recursively Select to find the median x of the medians
{x}1< i< [n/5].

e Use deterministic Partition (quick sort) to re-arrange the groups
corresponding to medians {x;} around x, in linear time on the
number of medians.

Deterministic linear selection.

Al least 3(3|n/5]) = [3n/10] of the elements are < x.

Deterministic linear selection.

Al least 3(3|n/5]) = [3n/10] of the elements are > x.

The deterministic algorithm

Select (A,)
1.- Divide the n elements into |n/5] groups of 5 O(n)
plus a possible extra group with < 5 elements
2.- Find the median by insertion sort, and take
the middle element
3.- Use Select recursively to find the median x of the [n/5]

medians
4 - Use Partition to place x and its group. Let k=rank of x
5.-if i = k then
return x

else if i < k then

use Select to find the i-th smallest in the left
else

use Select to find the i — k-th smallest in the right
end if

Example: Find the median

Get the median ([(n+ 1)/2]) on the following input:

13 1 6
4 2 8
s 110 11
9 112 14
13 15 17

To get the 7th element (mean)
call SELECT on this instance

The deterministic algorithm

Select (A,)
1.- Divide the n elements into |n/5] groups of 5 O(n)
plus a possible extra group with < 5 elements
2.- Find the median by insertion sort, and take
the middle element O(n)
3.- Use Select recursively to find the median x of the [n/5]
medians T (n/5)
4.- Use Partition to place x and its group. O(n)
Let k = rank of x
5.- if i = k then
return x
else if i/ < k then
use Select to find the i-th smallest in the left
else
use Select to find the i — k-th smallest in the right
end if

Worst case Analysis.

» As at least > %’ of the elements are > x.

> At least %’ elements are < x.

> In the worst case, step 5 calls Select recursively
<n-— % = 7n/10. So step 5 takes time < T(7n/10).

Therefore, we have

() = o(1) if n < 50,
~\ T(n/5) + T(7n/10) + ©(n) if n > 50.

Solving we get T(n) = ©(n)

Notice: If we make groups of 7, the number of elements > x is 27”
which yield T(n) < T(n/7) + T(5n/7) + O(n) with solution

T(n) = O(n).

However, if we make groups of 3, then

T(n) < T(n/3) + T(2n/3) 4+ O(n), which has a solution

T(n) = O(nlnn).

