
Dynamic programming.

Curs 2018

Fibonacci Recurrence.

n-th Fibonacci Term
INPUT: n ∈ nat
QUESTION: Compute
Fn = Fn−1 + Fn−2

Recursive Fibonacci (n)
if n = 0 then

return 0
else if n = 1 then

return 1
else

(Fibonacci(n − 1)+
+Fibonacci(n − 2))

end if

Computing F7.

As Fn+1/Fn ∼ (1 +
√

5)/2 ∼ 1.61803 then Fn > 1.6n, and to
compute Fn we need 1.6n recursive calls.

F(0)

F(7)

F(6)

F(5)

F(4)

F(3)

F(2)

F(1)

F(1)

F(2)

F(1)

F(3)

F(2) F(1)

F(4)

F(5)

F(4)
F(3)

F(0)

F(0)
F(0)

F(0)

A DP algorithm.

To avoid repeating multiple computations of subproblems, carry
the computation bottom-up and store the partial results in a table

DP-Fibonacci (n) {Construct table}
F0 = 0
F1 = 1
for i = 1 to n do
Fi = Fi−1 + Fi−2

end for

13

F[0]

F[1]

F[2]

F[3]

F[4]

F[5]

F[6]

F[7]

0

1

1

2

3

5

8

To get Fn need O(n) time and O(n) space.

F(1)

F(7)

F(6)

F(5)

F(4)

F(3)

F(2)

F(1)

F(0)

F(1)

F(2)

F(0)F(1)

F(3)

F(2) F(1)

F(4)

F(5)

F(4)
F(3)

F(0)

I Recursive (top-down) approach very slow

I Too many identical sub-problems and lots of repeated work.

I Therefore, bottom-up + storing in a table.

I This allows us to look up for solutions of sub-problems,
instead of recomputing. Which is more efficient.

Dynamic Programming.

Richard Bellman: An introduction to the
theory of dynamic programming RAND, 1953
Today it would be denoted Dynamic Planning

Dynamic programming is a powerful technique for efficiently
computing recurrences by storing partial results and re-using them
when needed.

Explore the space of all possible solutions by decomposing things
into subproblems, and then building up correct solutions to larger
problems.

Therefore, the number of subproblems can be exponential, but if
the number of different problems is polynomial, we can get a
polynomial solution by avoiding to repeat the computation of the
same subproblem.

Properties of Dynamic Programming

Dynamic Programming works when:

I Optimal sub-structure: An optimal solution to a problem
contains optimal solutions to subproblems.

I Overlapping subproblems: A recursive solution contains a
small number of distinct subproblems, repeated many times.

Difference with greedy

I Greedy problems have the greedy choice property: locally
optimal choices lead to globally optimal solution.

I For some DP problems greedy choice is not possible globally
optimal solution requires back-tracking through many choices.

I I.e. In DP we generate all possible feasible solutions, while in
greedy we are bound for the initial choice

Guideline to implement Dynamic Programming

1. Characterize the structure of an optimal solution: make sure
space of subproblems is not exponential. Define variables.

2. Define recursively the value of an optimal solution: Find the
correct recurrence, with solution to larger problem as a
function of solutions of sub-problems.

3. Compute, bottom-up, the cost of a solution: using the
recursive formula, tabulate solutions to smaller problems, until
arriving to the value for the whole problem.

4. Construct an optimal solution: Trace-back from optimal value.

Implementtion of Dynamic Programming

Memoization: technique consisting in storing the results of
subproblems and returning the result when the same sub-problem
occur again. Technique used to speed up computer programs.

I In implementing the DP recurrence using recursion could be
very inefficient because solves many times the same
sub-problems.

I But if we could manage to solve and store the solution to
sub-problems without repeating the computation, that could
be a clever way to use recursion + memoization.

I To implement memoization use any dictionary data structure,
usually tables or hashing.

Implementation of Dynamic Programming

I The other way to implement DP is using iterative algorithms.

I DP is a trade-off between time speed vs. storage space.

I In general, although recursive algorithms ha exactly the same
running time than the iterative version, the constant factor in
the O is quite more larger because the overhead of recursion.
On the other hand, in general the memoization version is
easier to program, more concise and more elegant.

Top-down: Recursive and Bottom-up: Iterative

Weighted Activity Selection Problem

Weighted Activity Selection Problem
INPUT: a set S = {1, 2, . . . , n} of activities to be processed by a
single resource. Each activity i has a start time si and a finish time
fi , with fi > si , and a weight wi .
QUESTION: Find the set of mutually compatible such that it
maximizes

∑
i∈S wi

Recall: Greedy strategy not always solved this problem.

6

1 5

10

6

10

Notation for the weighted activity selection problem

We have {1, 2, . . . , n} activities with f1 ≤ f2 ≤ · · · ≤ fn and
weights {wi}.
Therefore, we may need a O(n lg n) pre-processing sorting step.

Define p(j) to be the largest integer i < j such that i and j are
disjoints (p(j) = 0 if no disjoint i < j exists).

Let Opt(j) be the value of the optimal solution to the problem
consisting of activities in the range 1 to j . Let Oj be the set of
jobs in optimal solution for {1, . . . , j}.

13

1

2

3
4
5
6

p(1)=0

p(2)=0
p(3)=1
p(4)=0
p(5)=3

p(6)=3

1

2

2
3

1

2

0 1 2 3 4 5 6 7 8 9 10 11 12

Recurrence

Consider sub-problem {1, . . . , j}. We have two cases:
1.- j ∈ Oj :

I wj is part of the solution,

I no jobs {p(j) + 1, . . . , j − 1} are in Oj ,

I if Op(n) is the optimal solution for {1, . . . , p(n)} then
Oj = Op(n) ∪ {j} (optimal substructure)

2.- j 6∈ Oj : then Oj = Oj−1

Opt(j) =

{
0 if j = 0

max{(Opt(p(j)) + wj),Opt(j − 1)} if j ≥ 1

Recursive algorithm

Considering the set of activities S , we start by a pre-processing
phase: sorting the activities by increasing {fi}ni=1 and computing
and tabulating P[1, . . . , n] = {p[j]}.
The cost of the pre-computing phase is: O(n lg n + n)

Therefore we assume S is sorted and all p(j) are computed and
tabulated in P[1 · · · n]

To compute Opt(j):

R-Opt (j)
if j = 0 then

return 0
else

return max(wj + R-Opt(p(j)),R-Opt(j − 1))
end if

Recursive algorithm

Opt(2)

Opt(3)

Opt(1)

Opt(1)

Opt(2)

Opt(6)

Opt(5)

Opt(4)
Opt(3)

Opt(3)

Opt(1)

Opt(1) Opt(1)

Opt(1)

What is the worst running time of this algorithm?: O(2n)

Iterative algorithm

Assuming we have as input the set S of n activities sorted by
increasing f , each i with si ,wi and the values of p(j), we define
through the process a 1× (n + 1) table M[0, 1 . . . , n], where M[i]
contains the value to the best partial solution from 1 to i .

Opt-Val (n)
Define table M[]
M[0] = 0
for j = 1 to n do

M[j] = max(M[P[j]] + wj ,M[j − 1])
end for
return M[n]

Notice: this algorithm gives only the numerical max. weight

Time complexity: O(n) (not counting the pre-process)

Iterative algorithm: Example

13

1

2

3
4
5
6

p(1)=0

p(2)=0
p(3)=1
p(4)=0
p(5)=3

p(6)=3

1

2

2
3

1

2

0 1 2 3 4 5 6 7 8 9 10 11 12

i si fi wi P

1 1 5 1 0
2 0 8 2 0
3 7 9 2 1
4 1 11 3 0
5 9 12 1 3
6 10 13 2 3

p(3)

0 1 2 3 4 5 6

3320 1 4 5

Sol.: Max weight=5

W

p(6)

The DP algorithm

To get also the list of selected activities:

Find-Opt (j)
if j = 0 then

return 0
else if M[P[j]] + wj > M[j − 1] then

return j together with Find-Opt(P[j])
else

return Find-Opt(j − 1)
end if

Time complexity: O(n)

0-1 Knapsack

0-1 Knapsack
INPUT:a set I = {i}n1 of items that can NOT be fractioned, each i
with weight wi and value vi . A maximum weight W permissible
QUESTION: select the items S ⊆ I to maximize the profit.

Recall that we can NOT take fractions of items.

Characterize structure of optimal solution and define
recurrence

As part of the input, we need two variables i (the item) and w (the
cumulative weight up to item i).
Let v be a variable indicating the optimal value we have obtained
so far.

Let us first compute the optimal value v [n,W], and later we
compute the set S of objets that yield that value.

Let v [i ,w] be the maximum value (optimum) we can get from
objects {1, 2, . . . , i} within total weight ≤ w .

We wish to compute v [n,W].

Recurrence

To compute v [i ,w] we have two possibilities:

I That the i-th element is not part of the solution, then we go
to compute v [i − 1,w],

I or that the i-th element is part of the solution. we add vi
substract wi to the remaining weight and call v [i − 1,w − wi .

This gives the recurrence,

v [i ,w] =


0 if i = 0 or w = 0

v [i − 1,w − wi] + vi if i is part of the solution

v [i − 1,w] otherwise

i.e. v [i ,w] = max{v [i − 1,w − wi] + vi , v [i − 1,w]}

DP algorithm

Define a table M = v [0 . . . n, 0 . . .W],

Knapsack(i ,w)
for i = 1 to n − 1 do

v [i , 0] := 0
end for
for i = 1 to n do

for w = 0 to W do
if wi > w then
v [i ,w] := v [i − 1,w]

else
v [i ,w] := max{v [i − 1,w], v [i − 1,w − wi] + vi}

end if
end for

end for
return v [n,W]

The number of steps is O(nW).

Example.

i 1 2 3 4 5

wi 1 2 5 6 7

vi 1 6 18 22 28
W = 11.

w
0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 1 1 1 1 1 1
2 0 1 6 7 7 7 7 7 7 7 7 7

I 3 0 1 6 7 7 18 19 24 25 25 25 25
4 0 1 6 7 7 18 22 23 28 29 29 40
5 0 1 6 7 7 18 22 28 29 34 35 40

For instance,
v [4, 10] = max{v [3, 10], v [3, 11−7] + 22} = max{25, 7 + 22} = 29.
v [5, 11] = max{v [4, 11], v [4, 11−7] + 22} = max{40, 7 + 28} = 40.

Recovering the solution

To compute the actual subset
S ⊆ I that is the solution, we
compute with every position
M(i ,w) a Boolean bit K (i ,w),
which is 1 iff i ∈ S , otherwise
K (i ,w) = 0.

X = W , S = ∅
for i = n downto 1 do

if K [i ,X] = 1 then
S = S ∪ {i}
X = X − wi

end if
end for
Output S

Complexity: O(nW)

0 1 2 3 4 5 6 7 8 9 10 11
0 0
1 0 0 1
2 0 0 1 0 6 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1
3 0 0 1 0 6 0 7 0 7 0 18 1 19 1 24 1 25 1 25 1 25 1 25 1
4 0 0 1 0 6 0 7 0 7 0 18 1 22 1 23 1 28 1 29 1 29 1 40 1
5 0 0 1 0 6 0 7 0 7 0 18 0 22 0 28 1 29 1 34 1 35 1 40 0

K [5, 11]→ K [4, 11]→ K [3, 5]→ K [2, 0]. So S = {4, 3}

Hidden structure in a DP algorithm

Every DP algorithm works because there is an underlying DAG
structure, where each node represents a subproblem, and each
edge is a precedence constrain on the order in which the
subproblems could be solved. Edges could have weights, depending
on the problem.

Having nodes a1, a2, . . . , an point to b means that b can be solved
only when a1, a2, . . . , an are solved.

Could you come with the DAG associated to the DP solution of
the Knapsack?

Multiplying a Sequence of Matrices

Multiplication of n matrices
INPUT: A sequence of n matrices (A1 × A2 × · · · × An)
QUESTION: Minimize the number of operation in the
computation A1 × A2 × · · · × An

Recall that Given matrices A1,A2 with dim(A1) = p0 × p1 and
dim(A2) = p1 × p2, the basic algorithm to A1 × A2 takes time
p0p1p2 Example:

2 3
3 4
4 5

× [2 3 4
3 4 5

]
=

13 18 23
18 25 32
23 32 41



Recall that matrix multiplication is NOT commutative, so we can
not permute the order of the matrices without changing the result,
but it is associative, so we can put parenthesis as we wish.
In fact, the problem of given A1, . . . ,An with dim (Ai) = pi−1× pi ,
how to multiply them to minimize the number of operations is
equivalent to the problem of how to parenthesize the sequence
A1, . . .An.
Example Consider A1 × A2 × A3, where dim (A1) = 10× 100
dim (A2) = 100× 5 and dim (A3) = 5× 50.
((A1A2)A3) = (10× 100× 5) + (10× 5× 50) = 7500 operations,
(A1(A2A3)) = (100×5×50) + (10×100×50) =75000 operations.
The order makes a big difference in real computation’s time.

How many ways to parenthesize A1, . . .An?
A1 × A2 × A3 × A4:
(A1(A2(A3A4))), ((A1A2)(A3A4)), (((A1(A2A3))A4),
(A1((A2A3)A4))), (((A1A2)A3)A4))
Let P(n) be the number of ways to paranthesize A1, . . .An. Then,

P(n) =

{
1 if n = 1∑n−1

k=1 P(k)P(n − k) si n ≥ 2

with solution P(n) = 1
n+1

(2n
n

)
= Ω(4n/n3/2)

The Catalan numbers. Brute force will take too long!

1.- Structure of an optimal solution and recursive solution.

Let Ai−j = (AiAi+1 · · ·Aj).
The parenthesization of the subchain (A1 · · ·Ak) within the
optimal parenthesization of A1 · · ·An must be an optimal
paranthesization of Ak+1 · · ·An.

Notice,
∀k , 1 ≤ k ≤ n, cost(A1−n) = cost(A1−k) + cost(Ak+1−n) + p0pkpn.

Let m[i , j] the minimum cost of Ai × . . .× Aj . Then, m[i , j] will be
given by choosing the k , i ≤ k ≤ j s.t. minimizes
m[i , k] + m[k + 1, j] + cost (A1−k × Ak+1−n).
That is,

m[i , j] =

{
0 if i = j

mini≤k≤j{m[i , k] + m[k + 1, j] + pi−1pkpj} otherwise

2.- Computing the optimal costs

Straightforward implementation of the previous recurrence:
As dim(Ai) = pi−1pi , the imput is given by P =< p0, p1, . . . , pn >,

MCR (P, i , j)
if i = j then

return 0
end if
m[i , j] :=∞
for k = i to j − 1 do

q := MCR(P, i , k) + MCR(P, k + 1, j) + pi−1pkpj
if q < m[i , j] then
m[i , j] := q

end if
end for
return m[i , j].

The time complexity if the previous is given by
T (n) ≥ 2

∑n−1
i=1 T (i) + n ∼ Ω(2n).

Dynamic programming approach.
Use two auxiliary tables: m[1 . . . n, 1 . . . n] and s[1 . . . n, 1 . . . n].

MCP (P)
for i = 1 to n do

m[i , i] := 0
end for
for l = 2 to n do

for i = 1 to n − l + 1 do
j := i + l − 1
m[i , j] :=∞
for k = i to j − 1 do

q := m[i , k] + m[k + 1, j] + pi−1pkpj
if q < m[i , j] then

m[i , j] := q, s[i , j] := k
end if

end for
end for

end for
return m, s.

T (n) = Θ(n3), and space = Θ(n2).

Example.

We wish to compute A1,A2,A3,A4 with P =< 3, 5, 3, 2, 4 >
m[1, 1] = m[2, 2] = m[3, 3] = m[4, 4] = 0

i \ j 1 2 3 4

1 0

2 0

3 0

4 0

l = 2, i = 1, j = 2,
k = 1 : q = m[1, 2] = m[1, 1] + m[2, 2] + 3.5.3 = 45 (A1A2)
s[i , 2] = 1
l = 2, i = 2, j = 3,
k = 2 : q = m[2, 3] = m[2, 2] + m[3, 3] + 5.3.2 = 30 (A2A3)
s[2, 3] = 2
l = 2, i = 3, j = 4,
k = 3 : q = m[3, 4] = m[3, 3] + m[4, 4] + 3.2.4 = 24 (A3A4)
s[3, 4] = 3

i \ j 1 2 3 4

1 0 45

2 1 0 30

3 2 0 24

4 3 0

l = 3, i = 1, j = 3 :

m[1, 3] = min

{
(k = 1)m[1, 1] + m[2, 3] + 3.5.2 = 60 A1(A2A3)

(k = 2)m[1, 2] + m[3, 3] + 3.3.2 = 63 (A1A2)A3

s[1, 3] = 1, l = 3, i = 2, j = 4 :

m[2, 4] = min

{
(k = 2)m[2, 2] + m[3, 4] + 5.3.4 = 84 A2(A3A4),

(k = 3)m[2, 3] + m[4, 4] + 5.2.4 = 70 (A2A3)A4.

s[2, 4] = 3

i \ j 1 2 3 4

1 0 45 60

2 1 0 30 70

3 1 2 0 24

4 3 3 0

l = 4, i = 1, j = 4 :

m[1, 4] = min


(k = 1)m[1, 1] + m[2, 4] + 3.5.4 = 130 A1(A2A3A4),

(k = 2)m[1, 2] + m[3, 4] + 3.3.4 = 105 (A1A2)(A3A4),

(k = 3)m[1, 3] + m[4, 4] + 3.2.4 = 84 (A1A2A3)A4.

i \ j 1 2 3 4

1 0 45 60 84

2 1 0 30 70

3 1 2 0 24

4 3 3 3 0

3.- Constructing an optimal solution
We need to construct an optimal solution from the information in
s[1, . . . , n, 1, . . . , n]. In the table, s[i , j] contains k such that the
optimal way to multiply:

Ai × · · · × Aj = (Ai × · · · × Ak)(Ak+1 × · · · × Aj).

Moreover, s[i , s[i , j]] determines the k to get Ai−s[i ,j] and
s[s[i , j] + 1, j] determines the k to get As[i ,j]+1−j . Therefore,
A1−n = A1−s[1,n]As[1,n]+1−n.

Multiplication(A, s, i , j)
if j > 1 then

X :=Multiplication (A, s, i , s[i , j])
Y :=Multiplication (A, s, s[i , j] + 1, j)
return X × Y

else
return Ai

end if

Therefore (A1(A2A3))A4.

DNA: The book of life

I DNA, is the hereditary material in almost all living organisms.
They can reproduce by themselves.

I Its function is like a program unique to each individual
organism that rules the working and evolution of the organism.

I El DNA is a string of 3× 109 characters over {A,T ,G ,C}∗.

DNA: Chromosomes and genes

I The nucleus of each cell contains the DNA molecule, packaged into
thread-like structures called chromosomes. In humans, each cell normally
contains 23 pairs of chromosomes, for a total of 46.

I A gene is the basic unit of heredity, which are made up of DNA, and act
as instructions to make proteins. Humans, have between 20,000 and
25,000 genes.

I Every person has 2 copies of each gene, one i from each parent. Most
genes are the same in all humans, but 0.1% of genes are slightly different
between people. Alleles are forms of the same gene with small differences
in their sequence of DNA. These small differences contribute to each
person’s unique traits.

Computational genomics: Some questions

I When a new gene is discovered, one way to gain insight into its working,
is to find well known genes (not necessarily in the same species) which
match it closely. Biologists suggest a generalization of edit distance as a
definition of approximately match.

I GenBank (https://www.ncbi.nlm.nih.gov/genbank/) has a collection
of > 1010 well studied genes, BLAST is a software to do fast searching for
similarities between a genes a DB of genes.

I Sequencing DNA: consists in the determination of the order of DNA
bases, in a short sequence of 500-700 characters of DNA. To get the
global picture of the whole DNA chain, we generate a large amount of
DNA sequences and try to assembled them into a coherent DNA
sequence. This last part is usually a difficult one, as the position of each
sequence is the global DNA chain is not know before hand.

Evolution DNA

Insertion

CT A A G T A C G

CT A A T A C G

CT A G A C G

A A C G

C

T C A G A C G

GACT

Mutation

Delete

Sequence alignment problem

?

CT A A G T A C G

A A C GGACT

Formalizing the problem

Longest common substring: Substring = chain of characters
without gaps.

A

T C A GT T A G A

C T A T C A G

Longest common subsequence: Subsequence = ordered chain of
characters with gaps.

A

T C A GT T A G A

C T A T C A G

Edit distance: Convert one string into another one using a given
set of operations.

?

CT A A G T A C G

A A C GGACT

String similarity problem: The Longest Common
Subsequence

LCS
INPUT: sequences X =< x1 · · · xm > and Y =< y1 · · · yn >
QUESTION: Compute the longest common subsequence.

A sequence Z =< z1 · · · zk > is a subsequence of X if there is a
subsequence of integers 1 ≤ i1 < i2 < . . . < ik ≤ m such that
zj = xij . If Z is a subsequence of X and Y , the Z is a common
subsequence of X and Y .

Given X = ATATAT , then TTT is a subsequence of X

Greedy approach

LCS: Given sequences X =< x1 · · · xm > and Y =< y1 · · · yn >.
Compute the longest common subsequence.

Greedy X ,Y
S := ∅
for i = 1 to m do

for j = i to n do
if xi = yj then

S := S ∪ {xi}
end if
let yl such that l = min{a > j |xi = ya}
let xk such that k = min{a > i |xi = ya}
if ∃i , l < k then

do S := S ∪ {xi}, i := i + 1;
j := l + 1
S := S ∪ {xk}, i := k + 1; j := j + 1

else if not such yl , xk then
do i := i + 1 and j := j + 1.

end if
end for

end for

Greedy approach does not
work
For X =A T C A C and
Y =C G C A C A C A C T
the result of greedy is A T but
the solution is A C A C.

Greedy approach

LCS: Given sequences X =< x1 · · · xm > and Y =< y1 · · · yn >.
Compute the longest common subsequence.

Greedy X ,Y
S := ∅
for i = 1 to m do

for j = i to n do
if xi = yj then

S := S ∪ {xi}
end if
let yl such that l = min{a > j |xi = ya}
let xk such that k = min{a > i |xi = ya}
if ∃i , l < k then

do S := S ∪ {xi}, i := i + 1;
j := l + 1
S := S ∪ {xk}, i := k + 1; j := j + 1

else if not such yl , xk then
do i := i + 1 and j := j + 1.

end if
end for

end for

Greedy approach does not
work
For X =A T C A C and
Y =C G C A C A C A C T
the result of greedy is A T but
the solution is A C A C.

DP approach: Characterization of optimal solution

Let X =< x1 · · · xn > and Y =< y1 · · · ym >.
Let X [i] =< x1 · · · xi > and Y [i] =< y1 · · · yj >.

Define c[i , j] = length de la LCS of X [i] and Y [j].

Want c[n,m] i.e. solution LCS X and Y .

What is a subproblem?
Subproblem = something that goes part of the way in converting
one string into other.

Characterization of optimal solution and recurrence

I If X =C G A T C and Y =A T A C c[5, 4] = c[4, 3] + 1
I If X =C G A T and Y =A T A to find c[4, 3]:

I either LCS of C G A T and A T
I or LCS of C G A and A T A

c[4, 3] = max(c[3, 3], c[4, 2])

Therefore, given X and Y

c[i , j] =

{
c[i − 1, j − 1] + 1 if xi = yj

max(c[i , j − 1], c[i − 1, j]) otherwise

Recursion tree

c[i , j] =

{
c[i − 1, j − 1] + 1 if xi = yj

max(c[i , j − 1], c[i − 1, j]) otherwise

c[0,1]

c[3,2]

c[3,1] c[2,2] c[2,1]

c[3,0] c[2,1] c[2,0] c[2,1] c[1,2] c[1,1]

c[2,0] c[1,1] c[1,0]

c[1,0] c[0,1] c[0,0]

c[1,1] c[0,2]

The direct top-down implementation of the recurrence

LCS (X ,Y)
if m = 0 or n = 0 then

return 0
else if xm = yn then

return 1+LCS (x1 · · · xm−1, y1 · · · yn−1)
else

return max{LCS (x1 · · · xm−1, y1 · · · yn)
end if
LCS (x1 · · · xm, y1 · · · yn−1)}

The algorithm explores a tree of depth Θ(n + m), therefore the
time complexity is T (n) = 3Θ(n+m).

Bottom-up solution

Avoid the exponential running time, by tabulating the subproblems
and not repeating their computation.
To memoize the values c[i , j] we use a table c[0 · · · n, 0 · · ·m]

Starting from c[0, j] = 0 for 0 ≤ j ≤ m and from c[i , 0] = 0 from
0 ≤ i ≤ n go filling row-by-row, left-to-right, all c[i , j]

j−1

c[i,j]

c[i−1,j−1]

c[i,j−1]

c[i−1,j]i−1

i

j

Use a field d [i , j] inside c[i , j] to indicate from where we use the
solution.

Bottom-up solution

LCS (X ,Y)
for i = 1 to n do

c[i , 0] := 0
end for
for j = 1 to m do

c[0, j] := 0
end for
for i = 1 to n do

for j = 1 to m do
if xi = yj then

c[i , j] := c[i − 1, j − 1] + 1, b[i .j] :=↖
else if c[i − 1, j] ≥ c[i , j − 1] then

c[i , j] := c[i − 1, j], b[i , j] :=←
else

c[i , j] := c[i , j − 1], b[i , j] :=↑.
end if

end for
end for

Time and space complexity T = O(nm).

Example.

X=(ATCTGAT); Y=(TGCATA). Therefore, m = 6, n = 7

0 1 2 3 4 5 6
T G C A T A

0 0 0 0 0 0 0 0

1 A 0 ↑0 ↑0 ↑0 ↖1 ←1 ↖1

2 T 0 ↖1 ←1 ←1 ↑1 ↖2 ←2

3 C 0 ↑1 ↑1 ↖2 ←2 ↑2 ↑2
4 T 0 ↖1 ↑1 ↑2 ↑2 ↖3 ←3

5 G 0 ↑1 ↖2 ↑2 ↑2 ↑3 ↑3
6 A 0 ↑1 ↑2 ↑2 ↖3 ↑3 ↖4

7 T 0 ↖1 ↑2 ↑2 ↑3 4 ↑4

Construct the solution

Uses as input the table c[n,m].
The first call to the algorithm is con-LCS (c, n,m)

con-LCS (c , i , j)
if i = 0 or j = 0 then

STOP.
else if b[i , j] =↖ then

con-LCS (c , i − 1, j − 1)
return xi

else if b[i , j] =↑ then
con-LCS (c , i − 1, j)

else
con-LCS (c , i , j − 1)

end if

The algorithm has time complexity O(n + m).

LCS: Underlying DAG

Assign weights 0 at edges (i − 1, j − 1)→ (i , j) and 1 to remaining
edges in the DAG

Find the minimum path between (0, 0)→ (n,W)

1
(i−2,j−2) (i−2,j−1)

(i−1,j−1)

(i,j)(i,j−1)

(i+1,j) (i+1,j+1)

(i−1,j−2) (i−1,j)

0

0

0

0

11

1 1
1

1

1

1
1

1

1

1

1

1

1

1
1

1
1

Edit Distance.

The edit distance between strings X = x1 · · · xn and Y = y1 · · · ym
is defined to be the minimum number of edit operations needed to
transform X into Y .

Edit Distance: Levenshtein distance

The most relevant set of operations used are given by the
Levenshtein distance:

I insert(X , i , a)= x1 · · · xiaxi+1 · · · xn.

I delete(X , i)= x1 · · · xi−1xi+1 · · · xn
I modify(X , i , a)= x1 · · · xi−1axi+1 · · · xn.

The cost of each operation is 1.

Main applications of the Levenshtein distance:

I Computational genomics: similarity between strings on
{A,T ,G ,C ,−}.

I Natural Language Processing: distance, between strings on
the alphabet.

Exemple-1

x = aabab and y = babb
aabab = X
X ′ =insert(X , 0, b) baabab
X ′′ =delete(X ′, 2) babab
Y =delete(X ′′, 4) babb
X = aabab → Y = babb

A shortest edit distance

aabab = X
X ′ =modify(X , 1, b) babab
Y =delete(X ′, 4) babb

Use dynamic programming.

Exemple-1

x = aabab and y = babb
aabab = X
X ′ =insert(X , 0, b) baabab
X ′′ =delete(X ′, 2) babab
Y =delete(X ′′, 4) babb
X = aabab → Y = babb

A shortest edit distance

aabab = X
X ′ =modify(X , 1, b) babab
Y =delete(X ′, 4) babb

Use dynamic programming.

Exemple-2
Let E [n,m] be the minimum Levenshtein distance between chains
with length n and m respectively,

gat]

E[ga t ge l] E[3,3]=2

g a t

g e l
E[1,1]=0

g

g

t

le

a g

g e

t

l

e
E[2,2]=1 E[3,3]=2

gel
gel

E[gat pagat]

gat

pagat

E[3,3]=2 +
pagat

pagat
E[3,5]=4 BUT

pagat

gatpa
E[3,5]=2

How?

g

pagat

at gat

pagat

gat

pagat

pagat

pagat

NOTICE: E[gat pagat] equivalent to E[pagat

1.- Characterize the structure of an optimal solution and
set the recurrence.

Assume want to find the edit distance from X = TATGCAAGTA
to Y = CAGTAGTC .
Let E [10, 8] be the min. distance between X and Y .
Consider the prefixes TATGCA and CAGT
Let E [6, 4] = edit distance between TATGCA and CAGT
• Distance between TATGCA and CAGT is E [5, 4] + 1
(delete A in X D)
• Distance between TATGCAT and CAGT is E [6, 3] + 1
(insert T in X I)
• Distance between TATGCA and CAGT is E [5, 3] + 1
(modify A in X to a T (M))

Consider the prefixes TATGCA and CAGTA
• Distance between TATGCA and CAGTA is E [5, 4] (keep last A
and compare TATGC and CAGT).

To compute the edit distance from X = x1 · · · xn to Y = y1 · · · ym

Let X [i] = x1 · · · xi and Y [j] = y1 · · · yj
let E [i , j] = edit distance from X [i] to Y [j]
If xi 6= yj the last step from X [i]→ Y [j] must be one of:

1. I put yj at the end x : x → x1 · · · xiyj , and then transform x1 · · · xi into
y1 · · · yj−1.

E [i , j] = E [i , j − 1] + 1

2. D delete xi : x → x1 · · · xi−1, and then transform x1 · · · xi−1 into y1 · · · yj .

E [i , j] = E [i − 1, j] + 1

3. M change xi into yj : x → x1 · · · xi−1yj , and then transform x1 · · · xi−1 into
y1 · · · yj−1

E [i , j] = E [i − 1, j − 1] + 1

4. if xi = yj :
E [i , j] = E [i − 1, j − 1] + 0

Recurrence

Therefore, we have the recurrence

E [i , j] =



i if j = 0 (converting λ→ y [j])

j if i = 0 (converting X [i]→ λ)

min


E [i − 1, j] + 1 if D

E [i , j − 1] + 1, if I

E [i − 1, j − 1] + d(xi , yj) otherwise

where

d(xi , yj) =

{
0 if xi = yj

1 otherwise

2.- Computing the optimal costs.

Edit X = {x1, . . . , xn}, Y = {y1, . . . , yn}
for i = 0 to n do

E [i, 0] := i
end for
for j = 0 to m do

E [0, j] := j
end for
for i = 1 to n do

for j = 1 to m do
if xi = yj then

d(xi , yj) = 0
else

d(xi , yj) = 1
end if
E [i, j] := E [i, j − 1] + 1
if E [i − 1, j − 1] + d(xi , yj) < E [i, j]
then

E [i, j] := E [i − 1, j − 1] + d(xi , yj),
b[i, j] :=↖

else if E [i − 1, j] + 1 < E [i, j] then
E [i, j] := E [i − 1, j] + 1, b[i, j] :=↑

else
b[i, j] :=←

end if
end for

end for

Time and space complexity T = O(nm).

Example:
X=aabab; Y=babb. Therefore,
n = 5,m = 4

0 1 2 3 4
λ b a b b

0 λ 0 1 2 3 4
1 a 1 ↖ 1 ↖ 1 ← 2 ← 3
2 a 2 ↖ 2 ↖ 1 ↖ 2 ↖ 3
3 b 3 ↖ 2 ↑ 2 ↖ 1 ↖ 2
4 a 4 ↑ 3 ↖ 2 ↑ 2 ↖ 2
5 b 5 ↖ 4 ↑ 3 ↑ 2 ↖ 2

3.- Construct the solution.

Uses as input the table E [n,m].
The first call to the algorithm is con-Edit (E , n,m)

con-Edit (E , i , j)
if i = 0 or j = 0 then

STOP.
else if b[i , j] =↖ and xi = yj then

change(X , i , yj)
con-Edit (E , i − 1, j − 1)

else if b[i , j] =↑ then
delete(X , i) , con-Edit (c , i − 1, j)

else
insert(X , i , yj), con-Edit (c , i , j − 1)

end if

This algorithm has time complexity O(nm).

Sequence Alignment.

Finding similarities between sequences is important in
Bioinformatics
For example,
• Locate similar subsequences in DNA
• Locate DNA which may overlap.
Similar sequences evolved from common ancestor
Evolution modified sequences by mutations
• Replacement.
• Deletions.
• Insertions.

Sequence Alignment.

Given two sequences over same alphabet
G C G C A T G G A T T G A G C G A
T G C G C C A T T G A T G A C C A
An alignment
- GCGC- ATGGATTGAGCGA
TGCGCCATTGAT -GACC- A

Alignments consist of:
• Perfect matchings.
• Mismatches.
• Insertion and deletions.
There are many alignments
of two sequences.
Which is better?

PD for sequence alignment

When a new gene is discovered, a standard approach to
understanding its function is to look through a database of known
genes and find close matches.
The closeness of two genes is measured by the extent to which
they are aligned.

For example, consider two genes X =ATGC and Y =TACGCA.
An alignment of x and y is a way of matching up these two strings
by writing them in columns:

− A T G C −
T A C G C A

The score of an alignment is given by a matrix δ of size
(|Σ|+ 1)× (|Σ|+ 1).

PD for sequence alignment

For instance the previous alignment has score:

δ(−,T) + δ(A,A) + δ(T ,C) + δ(G ,G) + δ(C ,C) + δ(−,A),

and we could have chosen the score matrix

A T C G −


+1 −1 −1 −1 0 A
−1 +1 −1 −1 0 T
−1 −1 +1 −1 0 C
−1 −1 −1 +1 0 G
0 0 0 0 −

So for this δ the proposed alignment has a score = 2.

PD for sequence alignment

An simple extension of the previous PD to solve the Edit distance
can be used to solve the problem:

Given as input sequences x and y of DNA and an score matrix δ,
output the alignment of x and y with maximum score.,

In this case, the recurrence is given by:

E [i , j] = max{E [i−1, j]+δ(xi ,−),E [i−1, j−1]+δ(xi , yj),E [i , j−1]+δ(−, yj),

with initial conditions ∀i , j > 0,

E [0, 0] = 0;E [i , 0] = E [i − 1, 0] + δ(xi ,−); and

E [0, j] = E [0, j − 1] + δ(−, yj).

Complexity: O(nm).

Dynamic Programming in Trees

Trees are nice graphs to bound the number of subproblems.
Given T = (V ,A) with |V | = n, recall that there are n subtrees in
T .

Therefore, when considering problems defined on trees, it is easy to
bound the number of subproblems

This allows to use Dynamic Programming to give polynomial
solutions to ”difficult” graph problems when the input is a tree.

The Maximum Weight Independent Set (MWIS)

INPUT: G = (V ,E), together with a weight w : V → R
QUESTION: Find the largest S ⊆ V such that no two vertices in S
are connected in G .

For general G , the problem is difficult, as
the case with all weights =1 is already
NP-complete.

2

5

1

2

1

2

6

MWIS on Trees

Given a tree T = (V ,E) choose a r ∈ V and root it from r

INSTANCE: Given a rooted tree
Tr = (V ,E) and a set of weights
w : V → R,
QUESTION: Find the independent
set of nodes with maximal weight.

j

6

4 8 8

79

2

3

8

25 6

5 4 6

a

b dc

e f g h i k

l m n o

Notation:

I Given Tr , where r is the root, then ∀v ∈ V , let Tv denote
subtree rooted at v .

I Given v ∈ Tr let F (v) be the set of children of v , and N(v)
be the set of grandchildren of v .

I For any Tv , let Sv be the set of the MWIS in Tv , and let
M(v) =

∑
x∈Sv w(x). We want to max M(r).

Characterization of the optimal solution
Key observation: An MWIS optima set Sr in Tr can’t contain
vertices which are father-son.

I If r ∈ Sr : then F (r) 6⊆ Sr . So Sr − {r} contains an optimum
solution for each Tv , with v ∈ N(r).

I If r 6∈ Sr : Sr contains an optimum solution for each Tu, with
u ∈ F (r).

Recursive definition of the optimal solution

M(v) =

{
w(v) if v is a leaf,

max{
∑

u∈F (v) M(u),w(v) +
∑

u∈N(v) M(u)} otherwise.

j

6

4 8 8

79

2

3

8

25 6

5 4 6

a

b dc

e f g h i k

l m n o

For v ∈ T , define:
M ′(v) =

∑
u∈N(v) M(u)

M(v) = max{
∑

u∈F (v) M(u),w(v) +M ′(v)}

Recall:Post-order traversal of a rooted tree

e f b g l m n h i c o j k d a

6

4 8 8

79

2

3

8

25 6

5 4 6

a

b dc

e f g h i k

l m n o

j

Post−Order

DP Algorithm to find Mr

Let v1, . . . , vn = r be the post-order traversal of Tr

Define a 2× n table A to store the values of M and M ′.

WIS Tr

Let v1, . . . , vn = r the post-order traversal of Tr

for i = 1 to n do
if vi a leaf then

M(vi) = w(vi),M
′(vi) = 0

else
M ′(vi) =

∑
u∈N(vi)

M(u)

M(vi) = max{
∑

u∈F (vi)
M(u),w(vi) + M ′(vi)}

end if
store M(vi) and M ′(vi) in A[2i − 1] and A[2i]

end for

Complexity: space = O(n), time = O(n)

Bottom-up
M(l) = 5,M(m) = 4,M(n) = 6,M(e) = 5
M(f) = 6,M(o) = 2,M(k) = 7
M(b) = 4, M ′(b) = 11
M(h) = 8, M ′(h) = 15
M(j) = 9, M ′(j) = 2
M(d) = 10, M ′(d) = 16
M(c) = 23, M ′(c) = 20
M(a) = 6 + M ′(b) + M ′(c) + M ′(d) = 53
M ′(a) = 6 + M ′(b) + M(c) + M ′(d) = 50

j

6

4 8 8

79

2

3

8

25 6

5 4 6

a

b dc

e f g h i k

l m n o

e f b g l m n h i c o j k d a

M 5 6 11 2 5 4 6 15 3 23 2 9 7 16 53

M’ 0 0 0 0 0 0 0 0 0 15 0 0 0 2 50

How can we recover the set Sr??

