
Greedy Algorithms and Data Compression.

Curs 2018

Greedy Algorithms

A greedy algorithm, is a technique that always makes a locally
optimal choice in the myopic hope that this choice will lead to a
globally optimal solution.

Greedy algorithms are mainly applied to optimization problems:
Given as input a set S of elements, and a function f : S → R,
called the objective function, S we have to choose a of subset of
compatible elements in S such that it maximizes (o minimizes) f .

Example: S = G (V ,E),w : E → Z, for any u, v ∈ V , f (u, v),
distance between u and v . The problem consists in given specific
v , u ∈ V , find the minimum graph distance between u and v . S
paths of edges in G , with f = sum of weights of edges between u
and v .

Greedy Algorithms

Greedy algorithms are very easy to design, for most optimization
problems, but they do not always yield optimal solutions.
Sometimes the greedy techniques yield heuristics, not algorithms.

I At each step we choose the best (myopic) choice at the
moment and then solve the subproblem that arise later.

I The choice may depend on previous choices, but not on future
choices.

I At each choice, the algorithm reduces the problem into a
smaller one.

I A greedy algorithm never backtracks.

Greedy Algorithms

For the greedy strategy to work correctly, it is necessary that the
problem under consideration has two characteristics:

I Greedy choice property: We can arrive to the global optimum
by selecting a local optimums.

I Optimal substructure: An optimal solution to the problem
contains the optimal solutions to subproblems.

Fractional knapsack problem

Fractional Knapsack
INPUT:a set I = {i}n1 of items that can be fractioned, each i with
weight wi and value vi . A maximum weight W permissible
QUESTION: select a set of items or fractions of item, to maximize
the profit, within allowed weight W

Example.
Item I : 1 2 3
Value V : 60 100 120
Weight w : 10 20 30

W = 28

Fractional knapsack

Greedy for fractional knapsack (I ,V ,W)
Sort I in decreasing value of vi/wi

Take the maximum amount of the first item
while Total weight taken ≤W do

Take the maximum amount of the next item
end while

If n is the number of items, The algorithm has a cost of
T (n) = O(n + n log n).

Example.
Item I : 1 2 3
Value V : 60 100 120
Weight w : 10 20 30
v/w : 6 5 4

As W = 28 then take 10 of 1 and 18 of 2

Correctness?

Greedy does not always work

0-1 Knapsack
INPUT:a set I of n items that can NOT be fractioned, each i with
weight wi and value vi . A maximum weight W permissible
QUESTION: select the items to maximize the profit, within
allowed weight W .
For example

Item I : 1 2 3
Value V : 60 100 120
Weight w : 10 20 30
v/w : 6 5 4

with

W = 50.
Then any solution which includes item 1 is not optimal. The
optimal solution consists of items 2 and 3.

Activity scheduling problems

A set of activities S = {1, 2, . . . , n} to be processed by a single
processor, according to different constrains.

1. Interval scheduling problem: Each i ∈ S has a start time si
and a finish time fi . Maximize the set of mutually compatible
activities

2. Weighted interval scheduling problem: Each i ∈ S has a si , a
fi , and a weight wi . Find the set of mutually compatible such
that it maximizes

∑
i∈S wi

3. Job scheduling problem (Lateness minimization): Each i ∈ S
has a processing time ti (could start at any time si) but it has
a deadline di , define lateness Li of i by maxi{0, (si + ti)− di}.
Find the schedule of the si for all the tasks s.t. no two tasks
are planned to be processed at the time and the lateness is
minimized.

The interval scheduling problem

Activity Selection Problem
INPUT: a set S = {1, 2, . . . , n} of activities to be processed by a
single resource. Each activity i has a start time si and a finish time
fi , with fi > si .
QUESTION: Maximize the set of mutually compatible activities,
where activities i and j are compatible if [si fi) ∩ (sj fj] = ∅.

Notice, the set of compatible solution is the set of activities with
empty intersection, and the objective function to maximize is the
cardinality of every compatible set.

Example.

Activity : 1 2 3 4 5 6 7 8
Start (s): 3 2 2 1 8 6 4 7
Finish (f): 5 5 3 5 9 9 5 8

4

41 5 6 7 82 3 9 10

1 5

2 6

3 7 8

To apply the greedy technique to a problem, we must take into
consideration the following,

I A local criteria to allow the selection,

I a condition to determine if a partial solution can be
completed,

I a procedure to test that we have the optimal solution.

The Activity Selection problem.

Given a set A of activities, wish to maximize the number of
compatible activities.

Activity selection A
Sort A by increasing order of fi
Let a1, a2, . . . , an the resulting sorted list of activities
S := {a1}
j := 1 {pointer in sorted list}
for i = 2 to n do

if si ≥ fj then
S := S ∪ {ai} and j := i

end if
end for
return S .

A : 3 1 2 7 8 5 6; fi : 3 5 5 5 8 9 9
⇒ SOL: 3 1 8 5

4

41 5 6 7 82 3 9 10

1 5

2 6

3 7 8

Notice: In the activity problem we are maximizing the number of
activities, independently of the occupancy of the resource under
consideration. For example in:

4

41 5 6 7 82 3 9 10

1 5

2 6

3 7 8

solution 3185 is as valid as 3785. If we were asking for maximum
occupancy 456 will be a solution.
Problem: How would you modify the previous algorithm to deal
with the maximum occupancy problem?

Theorem
The previous algorithm produces an optimal solution to the activity
selection problem.

There is an optimal solution that includes the activity with earlier
finishing time.

Proof.
Given A = {1, . . . , n} sorted by finishing time, we must show there
is an optimal solution that begins with activity 1. Let
S = {k , . . . ,m} be a solution. If k = 1 done. Otherwise, define
B = (S − {k}) ∪ {1}. As f1 ≤ fk the activities in B are disjoint.
As |B| = |S |, B is also an optimal solution. If S is an optimal
solution to A, then S ′ = A− {1} is an optimal solution for
A′ = {i ∈ A|si ≥ f1}. Therefore, after each greedy choice we are
left with an optimization problem of the same form as the original.
Induction on the number of choices, the greedy strategy produces
an optimal solution

Notice the optimal substructure of the problem: If an optimal
solution S to a problem includes ak , then the partial solutions
excluding ak from S should also be optimal in their corresponding
domains.

Greedy does not always work.

Weighted Activity Selection Problem
INPUT: a set A = {1, 2, . . . , n} of activities to be processed by a
single resource. Each activity i has a start time si and a finish time
fi , with fi > si , and a weight wi .
QUESTION: Find the set of mutually compatible activities such
that it maximizes

∑
i∈S wi

S := ∅
sort W = {wi} by decreasing value
choose the max. weight wm

add m = (sm, fm) to S
remove all w from W ,
which the correspond to activities overlapping with m
while there are w ∈W do

repeat the greedy procedure
end while
return S

Correctness?

Greedy does not always work.

The previous greedy does not always solve the problem!

6

1 5

10

6

10

The algorithm chooses the interval (1, 10) with weight 10, and the
solution is the intervals (2, 5) and (5, 9) with total weight of 12

Job scheduling problem

Also known as the Lateness minimisation problem.
We have a single resource and n requests to use the resource, each
request i taking a time ti .

In contrast to the previous problem, each request instead of having
an starting and finishing time, it has a deadline di . The goal is to
schedule the resources (processors) as to minimize over all the
requests, the maximal amount of time that a request exceeds the
deadline.

Minimize Lateness
I We have a single processor
I We have n jobs such that job i :

I requires ti units of processing time,
I it has to be finished by time di ,

I Lateness of i :

Li =

{
0 if fi ≤ di ,

fi − di otherwise.

i ti di
1 1 9

2 2 8

3 2 15

4 3 6

5 3 14

6 4 9

Goal: schedule the jobs to minimize the maximal lateness, over all
the jobs
i.e. We must assign starting time si to each i , as to mini max Li .

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

654321

60200

Minimize Lateness

Schedule jobs according to some ordering

(1.-) Sort in increasing order of ti :
Process jobs with short time first

i ti di
1 1 6

2 5 5

(2.-) Sort in increasing order of di − ti :
Process first jobs with less slack time

i ti di d1 − ti
1 1 2 1

2 10 10 0

In this case, job 2 should be processed first, which doesn’t
minimise lateness.

Process urgent jobs first

(3.-) Sort in increasing order of di .

LatenessA {i , ti , di}
SORT by increasing order of di :
{d1, d2, . . . , dn}
Rearrange the jobs i : 1, 2, . . . , n
t = 0
for i = 2 to n do

Assign job i to [t, t + ti]
t = t + ti
si = t; fi = t + ti

end for
return S = {[s1, f1], . . . [sn, fn]}.

i ti di sorted i

1 1 9 3

2 2 8 2

3 2 15 6

4 3 6 1

5 3 14 5

6 4 9 4

i: 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 01

 6 8 9 9 14 15d:

Complexity and idle time

Time complexity
Running-time of the algorithm without comparison sorting: O(n)
Total running-time: O(n lg n)

Idle steps
From an optimal schedule with idle steps, we always can eliminate
gaps to obtain another optimal schedule:

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

There exists an optimal schedule with no idle steps.

Inversions and exchange argument

An schedule has an inversion if i is scheduled before j with dj < di .

f ′i

dj di

i

i

j

j

fj

Lemma
Exchanging two inverted jobs reduces the number of inversions by 1 and
does not increase the max lateness.

Proof Let L = lateness before exchange and let L′ be the lateness after
the exchange, let Li , Lj , L

′
i , L
′
j , the corresponding quantities for i , j .

Notice that fj > fi , f
′
j < f ′j and f ′j < fi , using the fact that dj < di

⇒ L′i = f ′i − di < fj − di < fj − dj = Lj

Therefore the swapping does not increase the maximum lateness of the
schedule. 2

Correctness of LatenessA

Notice the output S produced by LatenessA has no inversions and
no idle steps.

Theorem
Algorithm LatenessA returns an optimal schedule S .

Proof
Assume Ŝ is an optimal schedule with the minimal number of
inversions (and no idle steps).
If Ŝ has 0 inversions then Ŝ = S .
If number inversions in Ŝ is > 0, let i − j be an adjacent inversion.
Exchanging i and j does not increase lateness and decrease the
number of inversions.
Therefore, max lateness S ≤ max lateness Ŝ . 2

Network construction: Minimum Spanning Tree

I We have a set of locations V = {v1, . . . , vn},
I we want to build a communication network on top of them

I we want that any vi can communicate with any vj ,

I for any pair (vi , vj) there is a cost w(vi , vj) of building a
direct link,

I if E is the set of all possible edges (|E | ≤ n(n − 1)/2), we
want to find a subset T (E) ⊆ E s.t. (V ,T (E)) is connected
and minimizes

∑
e∈T (E) w(e).

Network construction: Minimum Spanning Tree

I We have a set of locations V = {v1, . . . , vn},
I we want to build a communication network on top of them

I we want that any vi can communicate with any vj ,

I for any pair (vi , vj) there is a cost w(vi , vj) of building a
direct link,

I if E is the set of all possible edges (|E | ≤ n(n − 1)/2), we
want to find a subset T (E) ⊆ E s.t. (V ,T (E)) is connected
and minimizes

∑
e∈T (E) w(e).

Construct
the
MST

Minimum Spanning Tree (MST).

INPUT: An edge weighted graph G = (V ,E),
|V | = n, ∀e ∈ E ,w(e) ∈ R,
QUESTION: Find a tree T with V (T) = V and E (T) ⊆ E , such
that it minimizes w(T) =

∑
e∈E(T) w(e).

3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8 3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8

Some definitions

Given G = (V ,E):
A path is a sequence of consecutive
edges. A cyle is a path with no
repeated vertices other that the one
that it starts and ends.
A cut is a partition of V into S and
V − S .
The cut-set of a cut is the set of
edges with one end in S and the
other in V − S .

S

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

83

Overall strategy

Given a MST T in G , with different edge weights, T has the
following properties:

I Cut property
e ∈ T ⇔ e is the lighted edge across some cut in G .

I Cycle property
e 6∈ T ⇔ e is the heaviest edge on some cycle in G .

The MST algorithms are methods for ruling edges in or out of T .

The ⇐ implication of the cut property will yield the blue (include)
rule, which allow us to include a min weight edge in T for ∃ cut.

The ⇒ implication of the cycle property will yield the red (exclude)
rule which allow us to exclude a max weight edge from T for ∃
cycles.

The cut rule (Blue rule)

Given an optimal MST T , removing an edge e yields T1 and T2

which are optimal for each subgraph.

Theorem (The cut rule)

Given G = (V ,E),w : E → R, let T be a MST of G and S ⊆ T .
Let e = (u, v) an min-weight edge in G connecting S to V − S .
Then e ∈ T .

The edges incorporated to the solution by this rule, are said to be
blue.

Proof.
Assume e 6∈ T . Consider a path from
u to v in T . Replacing the first edge
in the path, which is not in S , by e,
must give a spanning tree of equal or
less weight.

2

 a

b

c

d

f

e

g

h

46

14

5

10

9

15

83

The cycle rule (Red rule)

Theorem (The cycle rule)

Given G = (V ,E),w : E → R, let C be a cycle in G , the edge
e ∈ C with greater weight can not be part of the optimal MST T .

The edges processed by this rule, are said to be red.

Proof.
Let C be a cycle spanning through
vertices {vi , . . . , vl}, then removing
the max weighted edge gives a a
better solution.

C=cycle spanning {a,c,d,f}

 a

b

c

d

f

e

g

h

46

14

5

10

9

15

83

2C

Greedy for MST

The Min. Spanning Tree problem has the optimal substructure
problem we can apply greedy.
Robert Tarjan: Data Structures and Network Algorithms, SIAM ,
1984

Blue rule: Given a cut-set between S and
V − S with no blue edges, select from the
cut-set a non-colored edge with min weight
and paint it blue
Red rule: Given a cycle C with no red
edges, selected an non-colored edge in C
with max weight and paint it red. 3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8

Greedy scheme:
Given G , V (G) = n, apply the red and blue rules until having
n − 1 blue edges, those form the MST.

Greedy for MST

The Min. Spanning Tree problem has the optimal substructure
problem we can apply greedy.
Robert Tarjan: Data Structures and Network Algorithms, SIAM ,
1984

Blue rule: Given a cut-set between S and
V − S with no blue edges, select a
non-colored edge with min weight and
paint it blue
Red rule: Given cycle C with no red edges,
selected a non-colored edge in C with max
weight and paint it red.

3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8

Greedy scheme:
Given G , V (G) = n, apply the red and blue rules until having
n − 1 blue edges, those form the MST.

Greedy for MST

The Min. Spanning Tree problem has the optimal substructure
problem we can apply greedy.
Robert Tarjan: Data Structures and Network Algorithms, SIAM ,
1984

Blue rule: Given a cut-set between S and
V − S with no blue edges, select a
non-colored edge with min weight and
paint it blue
Red rule: Given cycle C with no red edges,
selected a non-colored edge in C with max
weight and paint it red. 3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8

Greedy scheme:
Given G , V (G) = n, apply the red and blue rules until having
n − 1 blue edges, those form the MST.

Greedy for MST

The Min. Spanning Tree problem has the optimal substructure
problem we can apply greedy.
Robert Tarjan: Data Structures and Network Algorithms, SIAM ,
1984

Blue rule: Given a cut-set between S and
V − S with no blue edges, select a
non-colored edge with min weight and
paint it blue
Red rule: Given cycle C with no red edges,
selected a non-colored edge in C with max
weight and paint it red.

3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8

Greedy scheme:
Given G , V (G) = n, apply the red and blue rules until having
n − 1 blue edges, those form the MST.

Greedy for MST

The Min. Spanning Tree problem has the optimal substructure
problem we can apply greedy.
Robert Tarjan: Data Structures and Network Algorithms, SIAM ,
1984

Blue rule: Given a cut-set between S and
V − S with no blue edges, select a
non-colored edge with min weight and
paint it blue
Red rule: Given cycle C with no red edges,
selected a non-colored edge in C with max
weight and remove it. 3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8

Greedy scheme:
Given G , V (G) = n, apply the red and blue rules until having
n − 1 blue edges, those form the MST.

Greedy for MST : Correctness

Theorem
There exists a MST T containing only all blue edges. Moreover
the algorithm finishes and finds a MST
Sketch of proof Induction on number of
iterations for blue and red rules. The base
case (no edges colored) is trivial. The
induction step is the same that in the
proofs of the cut and cycle rules.
Moreover if we have an e not colored, if
ends are in different blue tree, apply blue
rule, otherwise color red e. 2

C

 a

b

c

d

f

e

g

h

46

14

5

2

9

15

83
e

10

We need implementations for the algorithm! The ones we present
use only the blue rule

A short history of MST implementation

There has been extensive work to obtain the most efficient
algorithm to find a MST in a given graph:

I O. Bor̊uvka gave the first greedy algorithm for the MST in 1926. V.
Jarnik gave a different greedy for MST in 1930, which was re-discovered
by R. Prim in 1957. In 1956 J. Kruskal gave a different greedy algorithms
for the MST. All those algorithms run in O(m lg n).

I Fredman and Tarjan (1984) gave a O(m log∗ n) algorithm, introducing a
new data structure for priority queues, the Fibbonacci heap. Recall log∗ n
is the number of operations to go from n = 1 to log∗ 1000 = 4.

I Gabow, Galil, Spencer and Tarjan (1986) improved Fredman-Tarjan to
O(m log(log∗ n)).

I Karger, Klein and Tarjan (1995) O(m) randomized algorithm.

I In 1997 B. Chazelle gave an O(mα(n)) algorithm, where α(n) is a very
slowly growing function, the inverse of the Ackermann function.

Basic algorithms
Use the greedy

I Jarnik-Prim (Serial centralized) Starting from a vertex v ,
grows T adding each time the lighter edge already connected
to a vertex in T , using the blue’s rule. Uses a priority queue
(usually a heap) to store the edges to be added and retrieve
the lighter one.

I Kruskal (Serial distributed) Considers every edge and grows a
forest F by using the blue and red rules to include or discard
e. The insight of the algorithm is to consider the edges in
order of increasing weight. This makes the complexity of
Kruskal’s to be dominated by Ω(m lgm). At the end F
becomes T . The efficient implementation of the algorithm
uses Union-find data structure.

Jarnik-Prim vs. Kruskal

How blue man can spread his message to everybodyJarnik−Prim:

How to stablish a min distance cost network about all menKruskal:

Jarńık-Prim vs. Kruskal

(first 6 steps)

Jarnik−Prim: How blue man can spread his message to everybody

(6 first edges)

Kruskal: How to stablish a min distance cost network about all men

Jarńık - Prim greedy algorithm.

V. Jarńık, 1936, R. Prim, 1957

Greedy on vertices with Priority queue

Starting with an arbitrary node r , at each step build the MST by
incrementing the tree with an edge of minimum weight, which
does not form a cycle.

MST (G ,w , r)
T := ∅
for i = 1 to |V | do

Let e ∈ E : e touches T , it has min weight, and do not form a
cycle
T := T ∪ {e}

end for

Use a priority queue to choose min e connected to the tree already
formed.

For every v ∈ V − T , let k[v] = minimum weight of any edge
connecting v to any vertex in T .

Start with k[v] =∞ for all v .

For v ∈ T , let π[v] be the parent of v . During the algorithm
T = {(v , π[v]) : v ∈ V − {r} − Q}

where r is the arbitrary starting vertex and Q is a min priority
queue storing k[v]. The algorithm finishes when Q = ∅.

Example.

3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8 3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8 3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8

3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8 3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8 3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8

3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8 3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8

w(T) = 52

Time: depends on the implementation of Q.

Q an unsorted array: T (n) = O(|V |2);
Q a heap: T (n) = O(|E | lg |V |).
Q a Fibonacci heap: T (n) = O(|E |+ |V | lg |V |)

Kruskal’s greedy algorithm.

J. Kruskal, 1956

Similar to Jarńık - Prim, but chooses minimum weight edges,
without keeping the graph connected.

MST (G ,w , r)
Sort E by increasing weight
T := ∅
for i = 1 to |V | do

Let e ∈ E : with minimum weight and do not form a cycle
with T
T := T ∪ {e}

end for

We have an O(m lgm) from the sorting the edges.
But as m ≤ n2 then O(m lgm) = O(m lg n).

Example.

3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8 3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8 3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8

3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8 3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8 3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8

MST induces am equivalence classes partition of V of G

Notice that Kruskal evolves by building clumps of trees and
merging the clumps into larger clumps, taking care there are not
cycles.

In trees, the connectivity relation is an equivalence relation, two
nodes are connected if there is only one path between them.

Given an undirected G = (V ,E), the MST T on G = (V ,E),
induces an equivalence relation between the vertices of V : uRv iff
there a T -path between u and v :

R partition the elements of V in equivalence classes, which are
connected components without cycles

Disjoint Set Union-Find

B. Galler, M. Fisher: An improved equivalence algorithm. ACM
Comm., 1964; R.Tarjan 1979-1985

Nice data structure to implement Kruskal, but also useful to
maintain any collection of dynamic disjoint sets
Basic idea: Give a disjoint-set, data structure that it maintains a
collection {S1, . . . ,Sk} of disjoint dynamic sets, each set identified
by a representative.
Union-Find supports three operations on partitions of a set:
MAKESET (x): creates a new set containing the single element x .
UNION (x , y): Merge the sets containing x and y , by using their
union. (x and y do not have to be the representatives of their sets)
FIND (x): Return the representative of the set containing x .

Graph connectivity
Given a G = (V ,E), by the vertices and edges, we want to know if
any two v , u ∈ V belong to the same connected component.

CONNECTED-COMP. G
for each v ∈ V (G) do

MAKESET (v)
end for
for each (u, v) ∈ E (G) do

if FIND (u) 6= FIND (v)
then

UNION (u, v)
end if

end for

SAME-COMPO (u, v)
if FIND u = FIND (v) then

return true
else

return false
end if

g

a b

c

d

e

f

{ a b c } {e d f} {g}

Union-Find Data Structure: The problem

We have n initial elements, we start by applying n times
MAKESET to have n single element sets.
We want to implement a sequence of m UNION and FIND
operations on the initial sets, using the minimum number of steps.

Union-find implementation: First idea

Given {S1, . . . ,Sk}, use linked lists to represent
• Each set Si represented by a linked list.
• The representative of Si is defined to be the element at the head
of the list representing the set.

I MAKESET (x): Initializes x as a lone list. Worst time Θ(1).

I UNION (z ,w): Find the representative y , and point to the
tail of the list Sx implementing Sx ∪ Sy . Worst time
Θ(|Sx |+ |Sy |).

I FIND (z): Goes left from z to the head of Sx . Worst case
Θ(|Sx |).

Union-find list implementation: Example

z

y

x

y y

Sy

Sx

w

We start with x1, x2, . . . , xn, do n MAKESET, followed by
UNION(x1, x2), UNION(x2, x3), . . . , UNION(xn−1, xn),
we are doing 2n − 1 operations, with a total cost of Θ(n2) why?

Notice we have that the on average cost of each operation is
Θ(n2)/(2n − 1) ∼ Θ(n).

That is called the amortized time analysis.

Union-Find implementation: Tree like structure

y

x

y

S

S

x

I MAKESET (x): Initializes x as a lone list. Worst time Θ(1).

I FIND (z): Goes left from z to the head of Sx . Worst case
Θ(max{|Sx |, |Sy |}).

I UNION (z ,w): FIND(z), FIND(w), and y points to the tail
of Sx implementing Sx ∪ Sy . Worst time Θ(|Sy |+ |Sx |).

Recall: We have n initial sets and we want see the number of steps
to implement a sequence of m UNION and FIND operations on the
initial sets (m > n).

Union-Find implementation: Link by size of forest of Trees

Represent each set as a tree of elements:

Notice that the root contains the representative.

• MAKESET (x): Θ(1)
• FIND (z): find the root of the tree containing z . Θ(height)
• UNION (x , y): make the root of the tree with less elements
point to the root of the tree with more elements. Complexity?

A

B

D

C

E

H

F G

It is not difficult to see the cost of making m UNION operations
on n singleton sets, is the same that in the list case.

A better implementation: Link by rank

Let r(x) = height of subtree rooted at x .

Any singleton element has rank=0

Inductively as we join trees, increase the rank of the root.

2

rank= rank= rank= rank=0 1 2 3

0 0

0 0

0 0

0 0

0

1 1

1

Link by rank

Union rule: Link the root of smaller rank tree to the root of larger
rank tree.

In case the roots of both trees have the same rank, choose
arbitrarily and increase +1 the rank of the winer

except for the root, a node does not change rank during the
process

Union(D,F)

B

D

rank=1

rank=2

E

H

F G {H,E,F,G} U {B,D}

• UNION (x , y): climbs to the roots of the tree containing x and y
and merges sets by making the tree with less rank a subtree of the
other tree. This takes Θ(height) steps.

Link by rank

Maintain an integer rank for each node, initially 0. Link root of
smaller rank to root of larger rank; if a tie, increase rank of new
root by 1.

Let p(z) be the parent of (z) in the forest, and let r(z) be the
rank of (z).

MAKESET (x)
p(x) = x
r(x) = 0

FIND (z)
while (z 6= p(z) do
z = p(z)

end while

UNION (x , y)
rx = FIND(x)
ry = FIND(y)
if rx = ry then

STOP
else if r(rx) > r(ry) then

p(ry) = rx
else if r(rx) < r(ry) then

p(rx) = ry
else

p(rx) = ry
r(ry) = r(ry) + 1

end if

Example of construction by Union-Find

3

A B C D E F G H I J K

A

B C

D

F

E G

H

I
J K

H

I
J K

A

B

C

D
F

E G

H

I
J K

C

D

A

B

F

E G

00000000000

0 0 0 0 0
0 0

0

0

0 0

0
0

0

00
0

0
00

0

11
11

1 1

1

1

2 2

2

Properties of Link by rank

P1.- If x is not a root then
r(x) < r(p(x))

P2.- If p(x) changes then r(p(x))
increases

0
Ranks

3

2

1

P3.- Any root of rank k has ≥ 2k descendants.
Proof (Induction on k) True for k = 0, if true for k − 1 then

a node of rank k results from the merging of 2 nodes with
rank k − 1. 2

Properties of Link by rank

P4.- The highest rank of a root is ≤ blg nc
Proof Follows P1 and P3. 2

P5.- For any r ≥ 0, there are ≤ n/2r nodes with rank r .
Proof By (P4) any root node x with r(x) = k has ≥ 2k

descendants.
Any non-root node y with r(x) = k has ≥ 2k descendants.
By (P1) different nodes with rank = k can’t have common
descendants. 2

0

H

I
J K

F

E G
C

D

A

B

3

2

1

0

0

1 0
0 0

0

Complexity of Link by rank

Theorem
Using link-by-rank, each application of UNION(x , y) or FIND(x)
takes O(lg n) steps.

Proof The number of steps for each operation is bounded by the
height of the tree, which is O(lg n), (P4). 2

Theorem
Starting from an empty data structure with n elements,
link-by-rank performs any intermixed sequence of m FIND and
UNION operations in O(n + m lg n) steps.

An improvement: Path compression

To improve the O(log n) bound per operation in union-bound, we
keep the trees as flat as possible.
We use the path compression: At each use of FIND(x) we follow
all the path {yi} of nodes from x to the root r change the pointers
of all the {yi} to point to r .

 x

T

T

 T

 T

 T T T T
1

2

3

4

1 2 3 4

 r r

 x

Path compression: Function

FIND (x)
if (x 6= p(x) then

p(x) = FIND p(x)
return p(x)

end if X

r

a b

e

c d f

g

ij k0 0

2

1 1

0 0

04

5

3

h

m

Path compression: Function

FIND (x)
if (x 6= p(x) then

p(x) = FIND p(x)
return p(x)

end if

m

r

a b

e

c d f

g

j0

2

1

0 0

04

3

h

ki 0

5

1

0

Path compression: Function

FIND (x)
if (x 6= p(x) then

p(x) = FIND p(x)
return p(x)

end if

0

r

a b

c d f0 0

04

3

h

ki 0

5

1

0m

g

e2

1

j

Path compression: Function

FIND (x)
if (x 6= p(x) then

p(x) = FIND p(x)
return p(x)

end if

0

r

a b

d f0 0

04h

ki 0

5

1

g

e2

1

j0

3 c

m

Union-Find: Link by rank with path compression

This implementation of the data structure is the one that reduces
the complexity of making a sequence of m UNION and FIND
operations.

Key Observation: Path compression does not create new roots,
change ranks, or move elements from one tree to the another

As a corollary, the properties 1 to 5 of Link by rank also hold for
this implementation.

Notice, FIND operations only affect the inside nodes, while Union
operations only affect roots.
Thus compression has no effect on UNION operations.

Iterated logarithm

The iterated logarithm is defined:

lg∗(n) =

0 if n ≤ 1

1 if n = 2

1 + lg∗(lg(n)) if n > 2.

n lg∗ n

1 0

2 1

[3,4] 2

[5,16] 3

[17,65536] 4

[65537,1019728] 5

Therefore, lg∗(n) ≤ 5 for all n ≤ 2216 ∼ 1019728.

If we consider that in any computer, each memory bit has size ≥ 1 atoms, using

the canonical estimation that the number of atoms in the universe is ≤ 1083,

we can conclude the size of any computer memory is < 1083. Therefore it is

impossible with today technology, that you can manipulate sets of size 1083

⇒ for all practical purposes we can consider lg∗(n) ≤ 5.

Main result

Theorem
Starting from an empty data structure with n disjoint single sets,
link-by-rank with path compression performs any intermixed
sequence of m FIND and UNION operations in O(m lg∗ n) steps.

The proof uses an amortized analysis argument: look at the
sequence of FIND and UNION operations from an empty and
determine the average time per operation. The amortized costs
turns to be lg∗ n (basically constant) instead of lg n.

The detailed argument of the proof is outside the scope of the course.
The details could be found in Sect. 21.4 of Cormen, Leiserson, Rivest, Stein

or Sec. 5.1.4 of Dasgupta, Papadimitriou, Vazirani.

Back to Kruskal

Kruskal, grows disjoint partial MST and joints them into a final MST solution.

It seems natural apply Union-find to the construction of the MST

MST (G(V ,E),w , r), |V | = n, |E | = m
Sort E by increasing weight: {e1, . . . , em}
T := ∅
for all v ∈ V do

MAKESET(v)
end for
for i = 1 to m do

Chose ei = (u, v) in order from E
if FIND(x) 6= Find(y) then

T := T ∪ {ei}
UNION(u, v)

end if
end for

If we use the link-by-rank with path compression implementation, the disjoint
set operations take O(m lg∗ n) = O(m).

But due to the sorting instruction, the overall complexity of Kuskal still is

O(m lg n), unless we use a range of weight that allow us to use RADIX.

Example of Kruskal using Union-Find

3

 a

b

c

d

f

e

g

h

46

14

5

10

2

9

15

8

E = {(f , d), (c , b), (e, f), (a, f), (a, e), (c , d),
(f , g), (a, c), (a, b), (d , h)}

4

a b c d e f g h

f
d

e
a b

c

h

g

f
d

e
a b

c

f d b c

a e

2 3

5

Greedy and Approximations algorithms

Many times the Greedy strategy yields a local feasible solution with
value which is near to the optimum solution.
In many practical cases, when finding the global optimum is hard,
it is sufficient to find a good local approximation.

Given an optimization problem (maximization or minimization) an
optimal algorithm computes the best output OPT (e) on any
instance e of size n.
An approximation algorithm for the problem computes any valid
output.

We want to design approximation algorithms, that are fast and in
worst case get an output as close as possible to OPT (e).

Greedy and Approximations algorithms

Given an optimization problem, an α-approximation algorithm Apx
computes a worst case output Apx(e), whose cost is within an
α ≥ 1 factor of OPT (e):

1

α
≤ Apx(e)

OPT (e)
≤ α.

α is denotes as the approximation ratio.

Notice, α measures the factor by which the output of Apx exceeds
OPT (e) , on a worst-case input.

The first ≤ works for maximization and the second ≤ works for
minimization.

An easy example: Vertex cover

Given a graph G = (V ,E) with |V | = n, |E | = m find the
minimum set of vertices S ⊆ V such that it covers every edge of G .

GreedyVC G = (V ,E)
E ′ = E , S = ∅,
while E ′ 6= ∅ do

Pick e ∈ E ′, say e = (u, v)
S = S ∪ {u, v},
E ′ = E ′ − {(u, v) ∪ {edges incident to u, v}}

end while
return S .

7

1
2

3

4 5 6

An easy example: Vertex cover

Given a graph G = (V ,E) with |V | = n, |E | = m find the
minimum set of vertices S ⊆ V such that it covers every edge of G .

GreedyVC G = (V ,E)
E ′ = E , S = ∅,
while E ′ 6= ∅ do

Pick e ∈ E ′, say e = (u, v)
S = S ∪ {u, v},
E ′ = E ′ − {(u, v) ∪ {edges incident to u, v}}

end while
return S .

7

1
2

3

4 5 6

An easy example: Vertex cover

Given a graph G = (V ,E) with |V | = n, |E | = m find the
minimum set of vertices S ⊆ V such that it covers every edge of G .

GreedyVC G = (V ,E)
E ′ = E , S = ∅,
while E ′ 6= ∅ do

Pick e ∈ E ′, say e = (u, v)
S = S ∪ {u, v},
E ′ = E ′ − {(u, v) ∪ {edges incident to u, v}}

end while
return S .

7

1
2

3

4 5 6

An easy example: Vertex cover

Given a graph G = (V ,E) with |V | = n, |E | = m find the
minimum set of vertices S ⊆ V such that it covers every edge of G

GreedyVC G = (V ,E)
E ′ = E , S = ∅,
while E ′ 6= ∅ do

Pick e ∈ E ′, say e = (u, v)
S = S ∪ {u, v},
E ′ = E ′ − {(u, v) ∪ {edges incident to u, v}}

end while
return S .

7

1
2

3

4 5 6

An easy example: Vertex cover

Theorem
The algorithm Apx runs in O(m + n) steps. Moreover,
|Apx(e)| ≤ 2|OPT (e) |.

Proof.
We use induction to prove |Apx(e)| ≤ 2|OPT (e) |. Notice for
every {u, v} we add to Apx(e), either u or v are in OPT (e).
Base: If V = ∅ then |Apx(e)| = |OPT (e) | = 0.
Hipothesis: |Apx(e)− {u, v}| ≤ 2|OPT (e)− {u, v}|. Then,

|Apx(e)| = |Apx(e)− {u, v}|+ 2 ≤ 2|OPT (e)− {u, v}|+ 2

≤ 2(|OPT (e) | − 1) + 2 ≤ 2|OPT (e) |.

The decision problem for Vertex Cover is NP-complet. Moreover,
unless P=NP, vertex cover can’t be approximated within a factor
α ≤ 1.36

Clustering problems

Clustering: process of finding interesting structure in a set of data.
Given a collection of objects, organize them into coherent groups
with respect to some metric distance (distance function d(·, ·)).
Recall if d is a metric: d(x , x) = 0, d(x , y) > 0, d(x , y) > 0 for
x 6= y and d(x , y) + d(y , z) ≤ d(x , z).

k-clustering Problem: Given a set of points X = {x1, x2, . . . , xn}
together with a distance function on X and given a k > 0, want to
partition X into k disjoint subsets, a k-clustering, such as to
optimize some function (depending on d).

In this lecture we use d = Euclidean distance, and Z2.

The k-Center clustering problem

Given as input a set of X = {x1, . . . , xn}, with distances
D = {d(xi , xj)} and a given integer k:
Find the partition X into k clusters {C1, . . . ,Ck} such as to
minimize the diameter of the clusters, minj maxx ,y∈Cj

d(x , y).

Each ball Ci will be determine by a center ci and a radius r . Let
C = {c1, . . . , ck} be the set of centers and r = r(C).

Define C to be a r -cover for X if ∀x ∈ X , ∃cj ∈ C s.t. d(x , cj) ≤ r .

The k-Center clustering problem

Equivalent statement of the problem: Given as input (X ,D, k),
select the centers C = {c1, . . . , ck}, and r = r(C) such that the
resulting {C1, . . . ,Ck} is an r -cover for X , with r as small as
possible.

Formal definition of k-center: Given X ⊂ Z2 points and k ∈ Z,
compute the set C = {c1, . . . , ck} of centers C ⊂ X such that if
X̃ = X\C , it maximizes minx∈X̃ d(x ,C).

The k-Center clustering problem: Complexity

For k > 2, the decision version of the k-center clustering problem
is NP-complete.

There is a deterministic algorithm working in O(nk). (Can you
design one?)

For k = 1: Find the smallest radius disk enclosing a point set
The problem can be solved in O(n lg n) (How?)

The k-Center clustering problem: Greedy algorithm

The algorithm iterates k times, at each iteration choose a new
center, add a new cluster and it refines the radius ri of the cluster
balls. T. Gonzalez (1985)

1. Choose arbitrarily x and make c1 = x . Let C1 = {c1}
2. For all xi ∈ X compute d(xi , c1).

3. Choose c2 = xj s.t. maxx∈X d(x , c1).

4. Let r1 = d(c1, c2) and C2 = {c1, c2}.
5. For i = 2 to k

5.1 At interaction i + 1: Let ci+1 be the element in X\Ci that
maximizes the minimum distances to Ci .

5.2 Let Ci+1 = {c1, c2, . . . , ci+1} and ri = max minj≤i d(ci+1, cj),

6. Output the C = {c1, . . . , ck} centers and rk .

Greedy algorithm: Example

Given X , k = 3 and the n2 distance vector D:

1

r1

x

2

x 1

x
2

r
r

Greedy algorithm: Complexity

We have the set X of points and all their O(n2) distances. We assume we have
a data structure that keeps ordered the set of distances D, so we can and it is
quick to retrieve quickly any distance between points in X . How?

I At each step i we have to compute the distance from all x ∈ X to all
current centers c ∈ Ci−1, and choose the new ci and ri , but

I For each x ∈ define
di [x] = d(x ,Ci) = min{d(x ,Ci−1), d(x , ci)} = min{di−1[x], d(x , ci)︸ ︷︷ ︸

(∗)

}

I Therefore at each step, to compute ri we need to update (∗).

I At iteration i , choosing ci and computing ri takes O(n) steps, therefore
the complexity of the greedy algorithm is O(kn) steps.

Approximation to the k-center problem

Theorem
The the resulting diameter in the previous greedy algorithm is an
approximation algorithm to the k-center problem, with an
approximation ratio of α = 2.

(i.e. It returns a set C s.t. r(C) ≤ 2r(C ∗) where C ∗ is an optimal
set of k-centers.

Proof
Let C ∗ = {c∗i }ki=1 and r∗ be the optimal values, and let
C = {Ci}ki=1 and r the values returned by the algorithm. Want to
prove r ≤ 2r∗.

Case 1: Every C ∗j covers at least one ci .
⇒ as ∀x ∈ X ,∃C ∗j covering it, let
∃ci ∈ C ∗j . Then, d(x , ci) ≤ 2r∗.

r*

r

Proof cont.

Case 2: At least one C ∗j does not cover any center in C . Then,
∃C ∗l covering at least ci and cj ⇒ d(ci , cj) ≤ 2r∗.
We need to prove that d(ci , cj) > r . Wlog assume the algorithm
chooses cj at iteration j and that ci has been selected as centre in
a previous iteration, then d(ci , cj) > rj .
Moreover, notice than r1 ≥ r2 ≥ . . . rk = r ,
therefore d(ci , cj) ≥ rj > r and r ≤ d(ci , cj) ≤ 2r∗ 2

Data Compression

INPUT: Given a text T over an finite
alphabet Σ
QUESTION: Represent T with as few
bits as possible.

The goal of data compression is to
reduce the time to transmit large
files, and to reduce the space to
store them.
If we are using variable-length
encoding we need a system easy to
encode and decode.

Example.

AAACAGTTGCAT · · ·GGTCCCTAGG︸ ︷︷ ︸
130.000.000

I Fixed-length encoding: A = 00 ,C = 01, G = 10 and T = 11.
Needs 260Mbites to store.

I Variable-length encoding: If A appears 7× 108 times, C
appears 3× 106 times, G 2× 108 and T 37× 107, better to
assign a shorter string to A and longer to C

Prefix property

Given a set of symbols Σ, a prefix code, is φ : Σ→ {0, 1}+

(symbols to chain of bits) where for distinct x , y ∈ Σ, φ(x) is not a
prefix of φ(y).

If φ(A) = 1 and φ(C) = 101 then φ is no prefix code.

φ(A) = 1, φ(T) = 01, φ(G) = 000, φ(C) = 001 is prefix code.

Prefix codes easy to decode (left-to-right):
000101100110100000101

000︸︷︷︸
G

1︸︷︷︸
A

01︸︷︷︸
T

1︸︷︷︸
A

001︸︷︷︸
C

1︸︷︷︸
A

01︸︷︷︸
T

000︸︷︷︸
G

001︸︷︷︸
C

01︸︷︷︸
T

Prefix tree.
Represent encoding with prefix property as a binary tree, the prefix
tree:
A prefix tree T is a binary tree with the following properties:

I One leaf for symbol,

I Left edge labeled 0 and right edge labeled 1,

I Labels on the path from the root to a leaf specify the code for
that leaf.

For Σ = {A,T ,G ,C}

1

A

T

CG

0 1

0 1

0

Frequency.

To find an efficient code, first given a text S on Σ, with |S | = n,
first we must find the frequencies of the alphabet symbols.

∀x ∈ Σ, define the frequency

f (x) =
number occurrencies of x ∈ S

n

Notice:
∑

x∈Σ f (x) = 1.
Given a prefix code φ, which is the total length of the encoding?
The encoding length of S is

B(S) =
∑
x∈Σ

nf (x)|φ(x)| = n
∑
x∈Σ

f (x)|φ(x)|︸ ︷︷ ︸
α

.

Given φ, α =
∑

x∈Σ f (x)|φ(x)| is the average number of bits
required per symbol.

In terms of prefix tree of φ, given x and f (x), the length of the
codeword |φ(x)| is also the depth of x in T , let us denote it by
dx(T).

Let B(T) =
∑

x∈Σ f (x)dx(T).

Example.

Let Σ = {a, b, c, d , e} and let S be a text over Σ.
Let f (a) = .32, f (b) = .25, f (c) = .20, f (d) = .18, f (e) = .05
If we use a fixed length code we need dlg 5e = 3 bits.
Consider the prefix-code φ1:
φ1(a) = 11, φ1(b) = 01, φ1(c) = 001, φ1(d) = 10, φ1(e) = 000

0

e c

b d a

0

0

0 1

1

1

1

α = .32 · 2 + .25 · 2 + .20 · 3 + .18 · 2 + .05 · 3 = 2.25
In average, φ1 reduces the bits per symbol over the fixed-length
code from 3 to 2.25, about 25%

Is that the maximum reduction?
Consider the prefix-code φ2:
φ2(a) = 11, φ2(b) = 10, φ2(c) = 01, φ2(d) = 001, φ2(e) = 000

 a

e

0

0

0 1

1

1

10

d

c b

α = .32 · 2 + .25 · 2 + .20 · 2 + .18 · 3 + .05 · 3 = 2.23

is that the best? (the maximal compression)

Optimal prefix code.

Given a text, an optimal prefix code is a prefix code that minimizes
the total number of bits needed to encode the text.

Note that an optimal encoding minimizes α.

Intuitively, in the T of an optimal prefix code, symbols with high
frequencies should have small depth ans symbols with low
frequency should have large depth.

The search for an optimal prefix code is the search for a T , which
minimizes the α.

Characterization of optimal prefix trees.

A binary tree T is full if every interior node has two sons.

Lemma
The binary prefix tree corresponding to an optimal prefix code is
full.

Proof.
Let T be the prefix tree of an optimal code, and suppose it
contains a u with a son v .
If u is the root, construct T ′ by deleting u and using v com root.
T ′ will yield a code with less bits to code the symbols.
Contradiction to optimality of T .
If u is not the root, let w be the father of u. Construct T ′ by
deleting u and connecting directly v to w . Again this decreases the
number of bits, contradiction to optimality of T .

Greedy approach: Huffman code

Greedy approach due to David Huffman
(1925-99) in 1952, while he was a PhD student
at MIT

Wish to produce a labeled binary full tree, in which the leaves are
as close to the root as possible. Moreover symbols with low
frequency will be placed deeper than the symbol with high
frequency.

Greedy approach: Huffman code

I Given S assume we computed f (x) for every x ∈ Σ

I Sort the symbols by increasing f . Keep the dynamic sorted
list in a priority queue Q.

I Construct a tree in bottom-up fashion, take two first elements
of Q join them by a new virtual node with f the sum of the
f ’s of its sons, and place the new node in Q.

I When Q is empty, the resulting tree will be prefix tree of an
optimal prefix code.

Huffman Coding: Construction of the tree.

Huffman Σ,S
Given Σ and S {compute the frequencies {f }}
Construct priority queue Q of Σ, ordered by increasing f
while Q 6= ∅ do

create a new node z
x =Extract-Min (Q)
y =Extract-Min (Q)
make x , y the sons of z
f (z) = f (x) + f (y)
Insert (Q, z)

end while

If Q is implemented by a Heap, the algorithm has a complexity
O(n lg n).

Example

Consider the text: for each rose, a rose is a rose, the rose.
with Σ = {for/ each/ rose/ a/ is/ the/ ,/ b}
Frequencies: f (for) = 1/21, f (rose) = 4/21, f (is) = 1/21,
f (a) = 2/21, f (each) = 1/21, f (,) = 2/21, f (the) = 1/21,
f (b) = 9/21.
Priority Queue:
Q=(for(1/21), each(1/21), a(1/21), is(1/21), ,(2/21), the(2/21),
rose(4/21), b(9/21))

(2/21)

for each

z1

Q=(a(1/21), is(1/21), ,(2/21), the(2/21), z1(2/21), rose(4,21),
b(9/21))

Example.

(2/21)

a is

z2 (4/21)

, the

z3
(4/21)

for each

z1

z4

a

z2

is

z5

z3

the,

rose

z6

z4 z5

(21/21)

the,

z3rose

z5

afor each

z2z1

z4

z6

is

0 1

0 1

0 1 0 1

0 1

0 1

0 1

z7

b

Example

Therefore for each rose, a rose is a rose, the rose is Huffman
codified:
10000100101101110010100110010110101001101110011110110

Notice with a fix code we will use 4 bits per symbol ⇒ 84 bits
instead of the 53 we use.

The solution is not unique!

Why does the Huffman’s algorithm produce an optimal prefix code?

Correctness.

Theorem (Greedy property)

Let Σ be an alphabet, and x , y two symbols with the lowest
frequency. Then, there is an optimal prefix code in which the code
for x and y have the same length and differ only in the last bit.

Proof.
For T optimal with a and b sibilings at max. depth. Assume
f (b) ≤ f (a). Construct T ′ by exchanging x with a and y with b.
As f (x) ≤ f (a) and f (y) ≤ f (b) then B(T ′) ≤ B(T).

Theorem (Optimal substructure)

Assume T ′ is an optimal prefix tree for (Σ− {x , y}) ∪ {z} where
x , y are symbols with lowest frequency, and z has frequency
f (x) + f (y). The T obtained from T ′ by making x and y children
of z is an optimal prefix tree for Σ.

Proof.
Let T0 be any prefix tree for Σ. Must show B(T) ≤ B(T0).
We only need to consider T0 where x and y are siblings. Let T ′0 be
obtained by removing x , y from T0. As T ′0 is a prefix tree for
(Σ− {x , y}) ∪ {z}, then B(T ′0) ≥ B(T ′).
Comparing T0 with T ′0 we get,
B(T ′0) + f (x) + f (y) = B(T0) and B(T ′) + f (x) + f (y) = B(T),
Putting together the three identities, we get B(T) ≤ B(T0).

Optimality of Huffman

Huffman is optimal under assumptions:

I The compression is lossless, i.e. uncompressing the
compressed file yield the original file.

I We must know the alphabet beforehand (characters, words,
etc.)

I We must pre-compute the frequencies of symbols, i.e. read
the data twice

For certain applications is very slow (on the size n of the input
text)

