

Myriad of applications

- ► Finding shortest distances between 2 locations (Google maps, etc.)
- ▶ Internet router protocols: OSPF (Open Shortest Path First) is used to find the shortest path to interchange packages between servers (IP)
- ► Traffic information systems
- Routing in VSLI
- ▶ etc . . .

Shortest distance between two points not always follow human intuition

It may depend on many more constrains than the pure geometric ones.

Shortest path problems in direct weighted graphs

Given a digraph $G=(V,\vec{E})$ with edge's weights $w:\vec{E}\to\mathbb{R}$, a path $p=\{v_0,\ldots,v_k\}$ is a sequence of consecutive edges, where $(v_i,v_{i+1})\in\vec{E}$ define $w(p)=\sum_{i=0}^{k-1}w(v_i,v_{i+1})$.

The shortest path between u and v as

$$\delta(u,v) = \min_{p} \{ w(p) | u \leadsto^{p} v \}$$

If G is undirected, we can consider every edge as doubly directed. Unweighted, every edge of weight =1.

Optimal substructure of shortest path

Given $G=(V,\vec{E}), w:\vec{E}\to\mathbb{R}$, for any shortest path $p:u\leadsto v$ and any i,j vertices in p, the sub-path $p'=i\leadsto j$ in p has the shortest distance $\delta(i,j)$.

Negative cycles

Taxonomy of shortest path problems

- ▶ Single source shortest path (SSSP): Given $G = (V, \vec{E}), w : \vec{E} \to \mathbb{R}$ and $s \in V$, compute $\delta(s, v), \forall v \in V \{s\}$. In the graph below we want to compute (s, a), (s, b), (s, c), (s, d)
- ► All paths shortest paths (APSP): Given = $(V, \vec{E}), w : \vec{E} \to \mathbb{R}$ compute $\delta(u, v)$ for every pair $(u, v) \in V \times V$. In the graph below we want to compute $(s, a), (a, s), \dots (d, b), (b, d), (d, c), (c, d)$

Single source shortest path

Let us consider the particular case of having a source s and a sink t Assume that $w: e \to \mathbb{R}^+$

Brute-force(G, W, s, t)for all simple $p: s \rightarrow t$ do compute w(p)end for Compare all preturn the p with smallest w(p)

The number of paths could be $O(2^n)$

Shortest Path Tree

SSSP algorithms have the property that at termination the resulting paths form a shortest path tree.

Given $G = (V, \vec{E})$ with edge weights w_e and a distinguished $s \in V$, a shortest path tree is a directed sub-tree $T_s = (V', \vec{E}')$ of G, s.t.

- ► T_s is rooted at s,
- \triangleright V' is the set of vertices in G reachable from s,
- ▶ $\forall v \in V'$ the path $s \leadsto v$ in T_s is the shortest path $\delta(s, v)$.

Triangle Inequality

Recall that $\delta(u, v)$ is shortest distance from $u \to v$

Given $G=(V,\vec{E}),W$, if $u,v,z\in V$, notice the shortest path $u\leadsto v$ is \leq any other path between u and v. Therefore.

Theorem

For all $u, v, z \in V$ $\delta(u, v) \leq \delta(u, z) + \delta(z, v)$.

Want minimum $\delta(u, v)$

Notice, in this case $\delta(u, v) = -3$

Basic technique for SSSP: Relaxation

Given $G = (V, \vec{E}), W. \forall v \in V$ we maintain a SP-estimate d[v], which is an UB on $\delta(s, v)$.

Initially, start with $d[v] = +\infty$, $\forall v \in V - \{s\}$ and d[s] = 0. Repeatedly improve estimates toward the goal $d[v] = \delta(s, v)$.

For
$$(u,v) \in \vec{E}$$
,

Relax
$$(u, v, w(u, v))$$

if $d[v] > d[u] + w(u, v)$
then
 $d[v] = d[u] + w(u, v)$
end if

Generic Relaxation algorithm

```
Relaxation (G, W, s)
  for all v \in V - \{s\} do
     d[v] = +\infty
  end for
  d[s] = 0
  while \exists (u, v) with d[v] > d[u] + w(u, v) do
     Relax(u, v, w(u, v))
  end while
Can we replace the condition d[v] > d[u] + w(u, v) by
d[v] \geq d[u] + w(u, v)?
```

Generic Relaxation algorithm

```
Relaxation (G, W, s)
  for all v \in V - \{s\} do
     d[v] = +\infty
  end for
  d[s] = 0
  while \exists (u, v) with d[v] > d[u] + w(u, v) do
     Relax(u, v, w(u, v))
  end while
Lemma
For all v \in V, Relaxation(G, W, s) maintains the invariant that
d[v] > \delta(s, v).
Proof (Induction)
I.H. when applying Relax(u, v, w(u, v)) we get d[u] \geq \delta(s, u)
By the triangle ineq. \delta(s, v) \leq \delta(s, u) + \delta(u, v) \leq d[u] + w(u, v).
Therefore, letting \delta(u, v) = d[u] + w(u, v) is not a problem.
```

Generic Relaxation algorithm

Recall: Dijkstra SSSP

E.W.Dijkstra, "A note on two problems in connexion with graphs". Num. Mathematik 1, (1959)

- Greedy algorithm.
- Relax edges in an increasing ball around s.
- Uses a priority queue Q
- Dijkstra does not work with negative weights

 $S = \emptyset, \ Q = \{V\}$ while $Q \neq \emptyset$ do $u = \mathsf{EXT-MIN}(Q)$ $S = S \cup \{u\}$ for all $v \in Adj[u]$ do $\mathsf{Relax}(u, v, w(u, v))$ end for end while

Initialize SP-estimates on V

Dijkstra(G, W, s)

Dijkstra is the fastest SSSP algorithm.

Q implementation	Worst-time complexity
Array	$O(n^2)$
Неар	$O(m \lg n)$
Fibonacci heap	$O(m + n \lg n)$

Bellman-Ford-Moore-Shimbel SSSP

- R. Bellman (1958)
- L. Ford (1956)
- E. Moore (1957)
- A. Shimbel (1955)

(Shimbel matrices)

- ► The algorithm BFMS is used for *G* with negative weights, but without negative cycles.
- ▶ Given $G, w, s \in V(G)$, with n vertices and m edges, the BFMS algorithm does n-1 iterations:
- ▶ Each iteration i does a relaxation on all edges than can be reached from s in at most i-steps, the remaining ones are set to ∞

$$\underbrace{(e_1, e_2, \dots, e_n)}_{i=1}, \underbrace{(e_1, e_2, \dots, e_n)}_{i=2}, \dots \underbrace{(e_1, e_2, \dots, e_n)}_{i=n-1}$$

BFMS Algorithm

```
Recall that given a graph G.
|V| = n, |E| = m, and a set of edges'
weights w with a source vertex v \in V.
Recall \pi[v] = u points to the u used to
compute d[v].
    BFMS (G, w, s)
    Initialize \forall v \neq s, d[v] = \infty, \pi[v] = u
    Initialize d[s] = 0
    for i = 1 to n - 1 do
       for every (u, v) \in E do
          Relax(u, v, w(u, v))
       end for
    end for
    for every (u, v) \in E do
       if d[v] > d[u] + w(u, v) then
          return Negative-weight cycle
       end if
    end for
```

```
 \begin{array}{l} \operatorname{Relax}(u,v,w(u,v)) \\ \operatorname{if} \ d[v] > d[u] + w(u,v) \ \operatorname{then} \\ d[v] = d[u] + w(u,v) \\ \pi[v] = u \\ \operatorname{end} \ \operatorname{if} \end{array}
```


Node				i				
	0	1	2	3	4	5	6	7
S	0	0	0	0	0	0	0	0
а	∞							
b	∞							
С	∞							
d	∞							
е	∞							
f	∞	$\mid \infty \mid$						
g	∞							

Node				i				
	0	1	2	3	4	5	6	7
S	0	0	0	0	0	0	0	0
a	∞	10	10	10	10	10	10	10
b	∞							
С	∞							
d	∞							
е	∞							
f	∞							
g	∞	8	8	8	8	8	8	8

Node				i				
	0	1	2	3	4	5	6	7
S	0	0	0	0	0	0	0	0
a	∞	10	10	10	10	10	10	10
b	∞							
С	∞							
d	∞							
е	∞	∞	12	12	12	12	12	12
f	∞	∞	9	9	9	9	9	9
g	∞	8	8	8	8	8	8	8

Node				i				
	0	1	2	3	4	5	6	7
S	0	0	0	0	0	0	0	0
a	∞	10	10	5	5	5	5	5
b	∞	∞	∞	10	10	10	10	10
С	∞							
d	∞							
е	∞	∞	12	8	8	8	8	8
f	∞	∞	9	9	9	9	9	9
g	∞	8	8	8	8	8	8	8

Node				i				
	0	1	2	3	4	5	6	7
S	0	0	0	0	0	0	0	0
а	∞	10	10	5	5	5	5	5
b	∞	∞	∞	10	6	10	10	10
С	∞	∞	∞	∞	11	11	11	11
d	∞							
е	∞	∞	12	8	7	7	7	7
f	∞	∞	9	9	9	9	9	9
g	∞	8	8	8	8	8	8	8

Node				i				
	0	1	2	3	4	5	6	7
S	0	0	0	0	0	0	0	0
a	∞	10	10	5	5	5	5	5
b	∞	∞	∞	10	6	5	5	5
С	∞	∞	∞	∞	11	7	7	7
d	∞	∞	∞	∞	∞	14	14	14
е	∞	∞	12	8	7	7	7	7
f	∞	∞	9	9	9	9	9	9
g	∞	8	8	8	8	8	8	8

Node				i				
	0	1	2	3	4	5	6	7
S	0	0	0	0	0	0	0	0
а	∞	10	10	5	5	5	5	5
b	∞	∞	∞	10	6	5	5	5
С	∞	∞	∞	∞	11	7	6	6
d	∞	∞	∞	∞	∞	14	10	14
е	∞	∞	12	8	7	7	7	7
f	∞	∞	9	9	9	9	9	9
g	∞	8	8	8	8	8	8	8

Node				i				
	0	1	2	3	4	5	6	7
S	0	0	0	0	0	0	0	0
a	∞	10	10	5	5	5	5	5
b	∞	∞	∞	10	6	5	5	5
С	∞	∞	∞	∞	11	7	6	6
d	∞	∞	∞	∞	∞	14	10	9
e	∞	∞	12	8	7	7	7	7
f	∞	∞	9	9	9	9	9	9
g	∞	8	8	8	8	8	8	8

Complexity BFMS

```
BFM (G, w, s)
                                                           O(n \times n)
Initialize \forall v \neq s, d[v] = \infty, \pi[v] = u
Initialize d[s] = 0
for i = 1 to n - 1 do
   for every (u, v) \in E do
      Relax(u, v, w(u, v))
   end for
end for
for every (u, v) \in E do
  if d[v] > d[u] + w(u, v) then
                                                        O(m)
      return Negative-weight cycle
   end if
end for
```

Complexity T(n)=O(nm)

Correctness of BFMS

Lemma

In the BFMS-algorithm, after the ith. iteration we have that $d[v] \le$ the weight of every path $s \leadsto v$ using at most i edges, $\forall v \in V$.

Proof (Induction on *i*)

Before the *i*th iteration, $d[v] \leq \min\{w(p)\}$ over all paths p with at most i-1 edges.

The relaxation only decreases d[v]

The *i*th iteration considers all paths with $\leq i$ edges when relaxing the edges to v.

Correctness of BFMS

Theorem

If G, w has no negative weight cycles, then at the end of the BFM-algorithm $d[v] = \delta(s, v)$.

Proof

- Without negative-weight cycles, shortest paths are always simple.
- ▶ Every simple path has at most n vertices and n-1 edges.
- ▶ By the previous lemma, the n-1 iterations yield $d[v] \leq \delta(s, v)$.
- ▶ By the invariance of the relaxation algorithm $d[v] \ge \delta(s, v)$. □

Correctness of BFMS

Theorem

BFM will report negative-weight cycles if there exists in G.

Proof

- ▶ Without negative-weight cycles in G, the previous theorem implies $d[v] = \delta(s, v)$, and by triangle inequality $d[v] \leq \delta(s, u) + w(u, v)$, so BFM won't report a negative cycle if it doesn't exists.
- ▶ If there is a negative-weight cycle, then one of its edges can be relaxed, so BFM will report correctly.

Shortest path in a direct acyclic graphs (dags).

Min-cost paths in DAG

INPUT: Edge weighted dag G = (V, E, w),

 $|V| = n, |E| = m, w : E \to \mathbb{R}$ together with given $s, t \in V$.

QUESTION: Find a path $P: s \rightarrow t$ of minimum total weight.

Notice given a dag G = (V, E), W we wish to find a path P from s to t s.t. $\min_{P} \sum_{(ij) \in P} w_{ij}$.

Arranging dag's into a line

Arrange the dag in topological order, so that all edges go from left to right. This can be done in O(n+m) using DFS.

We want to find shorter distance from s to v. Let $d(v) = \text{distance } s \rightarrow v$

$$d(f) = \min\{d(b)+2, d(c)+3\}$$

The schema is based on the topological linearity of G .

Shortest distance in dag GInitialize d(s) := 0 and $\forall v \in V - \{s\}$, $d(v) := \infty$ for all $v \in V - \{s\}$ in linearized order do $d(v) := \min_{(u,v) \in E} \{d(u) + w_{uv}\}$ end for

Complexity?
$$T(n) = O(n + m)$$

All pairs shortest paths: APSP

Given G = (V, E), |V| = n, |E| = m and a weight $w : E \to \mathbb{R}$ we want to determine $\forall u, v \in V$, $\delta(u, v)$.

We assume we can have w < 0 but G does not contain negative cycles.

Naive idea: We apply O(n) times BFMS or Dijkstra (if there are not negative weights)

Repetition of BFMS: $O(n^2m)$

Repetition of Dijkstra: $O(nm \lg n)$ (if Q is implemented by a heap)

All pairs shortest paths: APSP

- ▶ Unlike in the SSSP algorithm that assumed adjacency-list representation of *G*, for the APSP algorithm we consider the adjacency matrix representation of *G*.
- For convenience $V = \{1, 2, ... n\}$. The $n \times n$ adjacency matrix W = (w(i, j)) of G, w:

$$w_{ij} = \begin{cases} 0 & \text{if } i = j \\ w_{ij} & \text{if } (i,j) \in E \\ \infty & \text{if } i \neq j \text{ and } (i,j) \notin E \end{cases}$$

All pairs shortest paths: APSP

▶ The input is a $n \times n$ adjacency matrix $W = (w_{ij})$

$$W = \begin{pmatrix} 0 & 1 & \infty & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 4 & 0 & 0 \\ -1 & \infty & \infty & 0 \end{pmatrix}$$

- ▶ The output is a $n \times n$ matrix $D = (d_{ij})$, where $d_{ij} = \delta(i,j)$
- For the implementation we also need to compute the set of predecessors matrix Π^k

Bernard-Floyd-Warshall Algorithm

R. Bernard: *Transitivité et connexité* C.R.Aca. Sci. 1959

R. Floyd: Algorithm 97: Shortest Path. CACM 1962

S. Warshall: A theorem on Boolean matrices. JACM, 1962

The BFW Algorithm used dynamic programming to compare all possible paths between each pair of vertices in G.

The algorithm work in $O(n^3)$ and the number of edges could be $O(n^2)$.

Optimal substructure of APSP

Recall: Triangle inequality $\delta(u, v) \leq \delta(u, z) + \delta(z, v)$.

- Let $p = p_1, \underbrace{p_2, \dots, p_{r-1}}_{\text{intermediate v.}}, p_r$ and
- ▶ Let $d_{ij}^{(k)}$ be the shortest $i \rightsquigarrow j$ s.t. the intermediate vertices are in $\{1, \ldots, k\}$.
- ▶ So if k = 0, then $d_{ij}^{(0)} = w_{ij}$.

The recurrence

Let p a shortest path $i \rightsquigarrow j$ with value $d_{ij}^{(k)}$

- ▶ If k is not an intermediate vertex of p, then $d_{ij}^{(k)} = d_{ij}^{(k-1)}$
- If k is an intermediate vertex of p, then $p = \underbrace{(i, \dots, k)}_{p_1} \cup \underbrace{(k, \dots, j)}_{p_2}$
- ▶ By triangle inequality p_1 is a shortest path $i \rightsquigarrow k$ and p_2 is a shortest path $k \rightsquigarrow j$.

Therefore
$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \\ \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\} & \text{if } k \ge 1 \end{cases}$$

Bottom-up BFW-algorithm

Given $G = (V, E), w : E \to \mathbb{Z}$ without negative cycles, the following DP algo. computes $d_{ij}^{(n)}, \forall i, j \in V$:

```
BFW W=(w_{ij}) for k=1 to n do for i=1 to n do for j=1 to n do d_{ij}^{(k)}=\min\{d_{ij}^{(k-1)},d_{ik}^{(k-1)}+d_{kj}^{(k-1)}\} end for end for return d^{(n)}
```

- ► Time complexity: $T(n) = O(n^3)$, $S(n) = O(n^3)$ but S(n) can be lowered to $O(n^2)$ How?
- Correctness follows from the recurrence argument.

Example

$$D^{(0)} = \begin{pmatrix} 0 & 1 & \infty & \infty \\ \infty & 0 & 1 & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 4 & 0 & 0 \\ -1 & \infty & \infty & 0 \end{pmatrix} D^{(1)} = \begin{pmatrix} 0 & 1 & \infty & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 3 & 0 & 0 \\ -1 & 0 & \infty & 0 \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 1 & 2 & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 3 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix} \quad D^{(3)} = \begin{pmatrix} 0 & 1 & 2 & 2 \\ 3 & 0 & 1 & 1 \\ 2 & 3 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix} \quad D^{(4)} = \begin{pmatrix} 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 1 \\ -1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix}$$

For instance, $d_{3,2}^2=3 \rightarrow 1 \rightarrow 2$ (using vertex 2) $d_{3,1}^4=3 \rightarrow 4 \rightarrow 1$ (using all vertices)

Example

$$D^{(0)} = \begin{pmatrix} 0 & 1 & \infty & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 4 & 0 & 0 \\ -1 & \infty & \infty & 0 \end{pmatrix}$$

$$D^{(0)} = \begin{pmatrix} 0 & 1 & \infty & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 4 & 0 & 0 \\ -1 & \infty & \infty & 0 \end{pmatrix} \qquad \Pi^{(0)} = \begin{pmatrix} \text{NIL} & 1 & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & 2 & \text{NIL} \\ 3 & 3 & \text{NIL} & 3 \\ 4 & \text{NIL} & \text{NIL} & \text{NIL} \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 1 & \infty & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 3 & 0 & 0 \\ -1 & 0 & \infty & 0 \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 1 & 2 & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 3 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 1 & 2 & \infty \\ \infty & 0 & 1 & \infty \\ 2 & 3 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} \text{NIL} & 1 & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & 1 & \text{NIL} \\ 3 & 1 & \text{NIL} & 3 \\ 4 & 1 & \text{NIL} & \text{NIL} \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 1 & 2 & 2 \\ 3 & 0 & 1 & 1 \\ 2 & 3 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 1 & 2 & 2 \\ 3 & 0 & 1 & 1 \\ 2 & 3 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix} \qquad \qquad \Pi^{(3)} = \begin{pmatrix} \mathsf{NIL} & 1 & 2 & 3 \\ 3 & \mathsf{NIL} & 2 & 3 \\ 3 & 1 & \mathsf{NIL} & 3 \\ 4 & 1 & 2 & \mathsf{NIL} \end{pmatrix}$$

Constructing the shortest path

- ▶ We want to construct the matrix $\Pi = (\pi_{ij})$, where $\pi_{ij} = \text{predecessor of } j \text{ in shortest } i \leadsto j$,
- we define a sequence of matrices $\Pi^{(0)}, \ldots, \Pi^{(n)}$ s.t. $\Pi^{(k)} = (\pi^{(k)}_{ij})$, i.e. the matrix of last predecessors in the shortest path $i \leadsto j$, which uses only vertices in $\{1, \ldots, k\}$.
- ▶ If k = 0: $\pi_{ij}^{(k)} = \begin{cases} NIL & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} \neq \infty. \end{cases}$
- ▶ For $k \ge 1$ we get the recurrence:

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)}, \\ \pi_{kj}^{(k-1)} & \text{otherwise.} \end{cases}$$

BFW with paths

```
BFWW
   d^{(0)} = W
   for k = 1 to n do
       for i = 1 to n do
           for j=1 to n do if d_{ij}^{(k)} \leq d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} then
                    d_{ii}^{(k)} = d_{ii}^{(k-1)}
                   \Pi_{ii}^{(k)} = \Pi_{ii}^{(k-1)}
                    d_{ii}^{(k)} = d_{ik}^{(k-1)} + d_{ki}^{(k-1)}
                    \Pi_{ii}^{(k)} = \Pi_{ki}^{(k-1)}
                end if
            end for
       end for
   end for
   return d^{(n)}
Complexity: T(n) = O(n^3)
```

Conclusions

SSSP

	Dijkstra	BFMS
$w \ge 0$	$O(m \lg n)$	O(nm)
$w \in \mathbb{R}$	NO	O(nm)

SSSP

	Dijkstra	BFMS	BFW
$w \ge 0$	$O(nm \lg n)$	$O(n^2m)$	$O(n^3)$
$w \in \mathbb{R}$	NO	$O(n^2m)$	$O(n^3)$

Conclusions: Remarks for APSP algorithms

- Note that for sparse graphs with m = O(n), Dijkstra is the most efficient: $O(n^2 \lg n)$, while for dense graphs with $m = O(n^2)$, BFW is the best complexity.
- ▶ There exists an algorithm for the APSP problem by D. Johnson (1978) that works in $O(n^2 \lg n)$ for sparse graphs with negative edges. It uses Dijkstra and BFMS as functions.
- ▶ For graphs that are undirected and without weights, there is an algorithm by R.Seidel that works in $O(n^{\omega} \lg n)$, where ω is the complexity of multiplying 2 $n \times n$ matrices, which of as today is $\omega \sim 2.3$.
- ► For further reading on shortest paths, see chapters 24 and 25 of Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms.