> Finca Glie
Carrer Santa g ® o

Maria Cervello

.. .
a) o . G\‘O(\
3, o &
X :50
% xe
&/ \!
(e
S, U co' .. Parc de
e'o/}a e Pedralbes
(<]
o
(<]
rtest Path -
® £ 12min
e, ¢ 900m
Yo " E—
’7?67
&,
= %, ...%
%5 | e
A 13min | .
r o
R
A J
°
°
Zona Universitaria <)» @

_— 0@
Carrel; de Pau o

: e\
o\aqo
B: Ga?ggll?]f

nal

Myriad of applications

» Finding shortest distances between 2 locations (Google maps,
etc.)

» Internet router protocols: OSPF (Open Shortest Path First) is
used to find the shortest path to interchange packages
between servers (IP)

» Traffic information systems
» Routing in VSLI

> etc ...

Shortest distance between two points not always follow

human intuition

It may depend on many more constrains than the pure geometric
ones.

Shortest path problems in direct weighted graphs

Given a digraph G = (V, E) with edge's weights w : E—>R a
path p = {w,..., vk} is a sequence of consecutive edges, where
(vi, vit1) € E define w(p) = Zf'(;ol w(vi, viy1)-

The shortest path between u and v as

u,v) = mpin{w(p)\u ~P v}

U1 (o) Vs (1 Us
o —0—>0—»0—>0 O(vy,v5) = —1
2 -1 -5 3

If G is undirected, we can consider every edge as doubly directed.
Unweighted, every edge of weight =1.

Optimal substructure of shortest path

Given G = (V, E), w: E =R, for any shortest path p: v~ v
and any 1/, vertices in p, the sub-path p’ =i~ j in p has the
shortest distance (i,).

Negative cycles

u 2 = v o(u,v) = —o0

Taxonomy of shortest path problems

» Single source shortest path (SSSP): Given
G=(V, E),WZ E—>sRandseV, compute
i(s,v),Vv eV —{s}.
In the graph below we want to compute
(5,2), (5. b), (5. <), (5.)
» All paths shortest paths (APSP): Given = (V,E),w: E - R
compute 0(u, v) for every pair (u,v) € V x V.
In the graph below we want to compute

(s,a),(a,s),...(d,b),(b,d),(d,c),(c,d)

a b

Single source shortest path

Let us consider the particular case of having a source s and a sink
t Assume that w : e — R

Brute-force(G, W, s, t)
for all simple p:s—t do

compute w(p) s 1
end for
Compare all p
return the p with smallest s >.©
w(p)

3n

The number of paths could be O(2")

Shortest Path Tree

SSSP algorithms have the property that at termination the
resulting paths form a shortest path tree.

Given G = (V, E) with edge weights we and a distinguished s € V,
a shortest path tree is a directed sub-tree Ty = (V/,E') of G, s.t.
» T is rooted at s,
» V' is the set of vertices in G reachable from s,
» Vv € V' the path s ~» v in T is the shortest path (s, v).

Triangle Inequality

Recall that §(u, v) is shortest distance from v — v

Given G = (V, E), W, if u,v,z € V, notice the shortest path
u ~+ v is < any other path between v and v. Therefore.

Theorem
For all u,v,z € V 6(u,v) < (u,z)+d(z,v).

u 3 v
UZ w
Z

8(z,y)
UL

Want minimum Notice, in this case 0(u,v) = —3

Basic technique for SSSP: Relaxation

Given G = (V,E),W. Vv € V we maintain a SP-estimate d[v],
which is an UB on 4(s, v).

Initially, start with d[v] = 400, Vv € V — {s} and d[s] = 0.
Repeatedly improve estimates toward the goal d[v] = (s, v).

For (u,v) € E,

Relax(u, v, w(u, v)) dlu]
if d[v] > d[u] + w(u, V) S w(uv)
then

dv] = d[u] + w(u, v) divl ™y

end if

Generic Relaxation algorithm

Relaxation(G, W, s)

forall v € V —{s} do
d[v] = 400

end for

d[s]=0

while 3(u, v) with d[v] > d[u] + w(u, v) do
Relax(u, v, w(u, v))

end while

Can we replace the condition d[v] > d[u] + w(u, v) by
dv] > d[u] + w(u, v)?

Generic Relaxation algorithm

Relaxation(G, W, s)

for all v e V — {s} do
d[v] = +o0

end for

d[s] =0

while 3(u, v) with d[v] > d[u] + w(u, v) do
Relax(u, v, w(u, v))

end while

Lemma
For all v € V, Relaxation(G, W,s) maintains the invariant that

d[v] > (s, v).

Proof (Induction)

I.H. when applying Relax(u, v, w(u, v)) we get d[u] > (s, u)

By the triangle ineq. 6(s,v) < d(s, u) + 6(u, v) < d[u] + w(u, v).
Therefore, letting 6(u, v) = d[u] + w(u, v) is not a problem. O

Generic Relaxation algorithm

00O 0O -1 0O
a 2 b a 2 b
L.\ r ----- - -1
s 2 s 2
1 1
d 2 c d 2 c
00 (@] 00 (@]

Recall: Dijkstra SSSP

E.W.Dijkstra, "A note on two problems in connexion with graphs”.
Num. Mathematik 1, (1959)
Dijkstra(G, W, s)

> Greedy algorithm. Initialize SP-estimates on V
. . . S=0,Q={V}
> Relax edges in an increasing ball while Q 0 do
around s. u =EXT-MIN(Q)
> Uses a priority queue @ S=Su{u})
-) for all v € Adj[u] do
» Dijkstra does not work with Relax(u, v, w(u, v))
negative weights end for
end while

Dijkstra is the fastest SSSP algorithm.

Q@ implementation | Worst-time complexity
Array o(n?)
Heap O(mlgn)
Fibonacci heap O(m+ nlgn)

Bellman-Ford-Moore-Shimbel SSSP

R. Bellman (1958)
L. Ford (1956)

E. Moore (1957)
A. Shimbel (1955)

(Shimbel matrices)

» The algorithm BFMS is used for G with negative weights, but
without negative cycles.

» Given G,w,s € V(G),with n vertices and m edges, the BFMS
algorithm does n — 1 iterations:

» Each iteration j does a relaxation on all edges than can be
reached from s in at most i-steps, the remaining ones are set
to o0

(e1,€,...,6en),(e1,€,...,€n), - (e1,€,...,€n)
—_—

i=1 i=2 i=n—1

BFMS Algorithm

Recall that given a graph G,

|V| = n,|E| = m, and a set of edges’
weights w with a source vertex v € V.
Recall 7[v] = u points to the u used to

compute d[v].

BEMS (G, w, s)
Initialize Vv # s, d[v] = o0, 7[v] = u
Initialize d[s] =0
fori=1ton—1do
for every (u,v) € E do
Relax(u, v, w(u, v))
end for
end for
for every (u,v) € E do
if d[v] > d[u] + w(u, v) then
return Negative-weight cycle
end if
end for

Relax(u, v, w(u, v))

if d[v] > d[u] + w(u, v) then
d{v% - d[u] + w(u, v)

endlif N

BFMS Algorithm: Example

Node

| -~ QO N T L ”

BFMS Algorithm: Example

Node i

0 1 2 3 4 5 6 7
s 0 0 0 0 0 0 0 0
a o | 10 | 10 | 10 | 10 | 10 | 10 | 10
b 00 | o0 | 0o | 0| 0| oo | 0| oo
c 0 | o0 | o0 | oo | oo | oo | oo | oo
d 0o | o0 | 0o | 0| 0| oo | 0| oo
e o0 | 0 | o0 | oo | oo | oo | co| oo
f o0 | 00 | 0o | oo | oo | oo | oo | oo
g %) 8 8 8 8 8 8 8

BFMS Algorithm: Example

0
10

o

oS 888dow
©cZ888Jow
©cZ888Jow
=288 8Fow®
o2 888Jow
o2 88838w
©8B888BEA
w®O UT VW W

Node

BFMS Algorithm: Example

g gwow
g gwowm
R gwow
88N 0w
R88 8w
R8288

Node

O T VY% o

BFMS Algorithm: Example

Node

w ©0 UVUT VW o

BFMS Algorithm: Example

ocww~I~o®

ocww~I~ow®

ocwwn~I~ow®

omwoD ¥~o0®

onwS B Rwow

Node

w ©0 UVUT VW o

BFMS Algorithm: Example

ocwwo I ~ow®

owwo I~ ®

ocww~I~o®

omwoD ¥~o0®

onwS B Rwow

Node

w ©0 UVUT VW o

BFMS Algorithm: Example

0
5
10
0o
00
8
9

Node

w @0 VT VY

Complexity BFMS

BFM (G, w,s)
Initialize Yv # s, d[v] = o0, 7[v] = u } O(n x n)
Initialize d[s] =0 B
fori=1ton-1do
for every (u,v) € E do
Relax(u, v, w(u, v)) o) } O(m) [O(m)
end for
end for
for every (u,v) € E do
if d[v] > d[u] + w(u, v) then
return Negative-weight cycle O(m)
end if
end for

Complexity T(n)=O(nm)

Correctness of BFMS

Lemma
In the BFMS-algorithm, after the ith. iteration we have that
d[v] < the weight of every path s ~~ v using at most i edges,
Vv e V.

Proof (Induction on /)

Before the ith iteration, d[v] < min{w(p)} over all paths p with at
most i — 1 edges.

The relaxation only decreases d|[v]

O

The ith iteration considers all paths
with </ edges when relaxing the
edges to v. O

X 7
at most i—1
edges

Correctness of BFMS

Theorem

If G, w has no negative weight cycles, then at the end of the
BFM-algorithm d[v] = é(s, v).

Proof

» Without negative-weight cycles, shortest paths are always
simple.

» Every simple path has at most n vertices and n — 1 edges.

» By the previous lemma, the n — 1 iterations yield
d[v] < (s, v).

» By the invariance of the relaxation algorithm d[v] > (s, v). O

Correctness of BFMS

Theorem
BFM will report negative-weight cycles if there exists in G.
Proof

» Without negative-weight cycles in G, the previous theorem
implies d[v] = (s, v), and by triangle inequality
d[v] < (s, u) + w(u,v), so BFM won't report a negative
cycle if it doesn't exists.

> If there is a negative-weight cycle, then one of its edges can
be relaxed, so BFM will report correctly.

Shortest path in a direct acyclic graphs (dags).

Min-cost paths in DAG

INPUT: Edge weighted dag G = (V, E, w),

|V| =n,|E| = m,w: E — R together with given s, t € V.
QUESTION: Find a path P : s — t of minimum total weight.

Notice given a dag G = (V, E), W we wish to find a path P from
s to tst. minp X nep Wi

Arranging dag's into a line

Arrange the dag in topological order, so that all edges go from left
to right. This can be done in O(n+ m) using DFS.

We want to find shorter distance from s to v. Let d(v) = distance
sS—vVv

d(f) = min{d(b)+2,d(c)+3}) 3
The schema is based on the n -1
topological linearity of G. 3 @ O ® 5 ©

Shortest distance in dag G
Initialize d(s) := 0 and Vv € V — {s}, d(v) :==
for all v € V — {s} in linearized order do
d(V) = min(u,v)EE{d(u) + Wuv}
end for

Complexity? T(n) = O(n+ m)

All pairs shortest paths: APSP

Given G = (V,E), |V| =n,|E| = m and a weight w : E — R we
want to determine Yu,v € V, d(u,v).

We assume we can have w < 0 but G does not contain negative
cycles.

Naive idea: We apply O(n) times BFMS or Dijkstra (if there are
not negative weights)

Repetition of BFMS: O(n?m)
Repetition of Dijkstra: O(nmlgn) (if Q is implemented by a heap)

All pairs shortest paths: APSP

» Unlike in the SSSP algorithm that assumed adjacency-list
representation of G, for the APSP algorithm we consider the
adjacency matrix representation of G.

» For convenience V = {1,2,...n}. The n x n adjacency
matrix W = (w(/,j)) of G, w:

0 ifi=j
wi=qw; if(i,j)eE
oo ifi#jand (i,j)¢€E

All pairs shortest paths: APSP

» The input is a n x n adjacency matrix W = (w;;)

0 1 o0 o

oo 0 1 o0

W= 2 4 0 O

-1 oo oo 0

» The output is a n x n matrix D = (dj;), where djj = (/)

» For the implementation we also need to compute the set of
predecessors matrix MM%

Bernard-Floyd-Warshall Algorithm

R. Bernard: Transitivité et connexité C.R.Aca. Sci. 1959
R. Floyd: Algorithm 97: Shortest Path. CACM 1962
S. Warshall: A theorem on Boolean matrices. JACM, 1962

The BFW Algorithm used dynamic programming to compare all
possible paths between each pair of vertices in G.

The algorithm work in O(n?) and the number of edges could be
o(n?).

Optimal substructure of APSP

0(u, 1
Recall: Triangle inequality u (u,v)

d(u,v) <o(u,z) +0(z,v).

d(u, 2) 5(2,y)

> Let P =p1,p2,---5Pr—1,Pr and
—_——
intermediate v.

> Let d,-S-k) be the shortest / ~» j s.t. the intermediate vertices
are in {1,..., k}.

» So if k=0, then di(jo) = wjj.

The recurrence

Let p a shortest path i ~ j with value d,.(jk)

(k) _ Jk-1)

> If k is not an intermediate vertex of p, then d; s

» If k is an intermediate vertex of p, then
p=1_(>i....,k)U(k,...,J)
—_— Y
P P2
» By triangle inequality p; is a shortest path i ~» k and p; is a
shortest path k ~ j.

wij if k=0

(k1)

Therefore d¥) =
j {min{d,.(jk_l), AV +df V) ifk>1

Bottom-up BFW-algorithm

Given G = (V,E),w : E — Z without negative cycles, the
following DP algo. computes d”, i, j € V:

BFW W = (w;)
for k=1to ndo
for i=1to ndo
for j =1 to ndo
d{ = min{d{ ", di¥ "V + dif TV}
end for
end for
end for
return d

» Time complexity: T(n) = O(n%),S(n) = O(n*) but S(n) can
be lowered to O(n?) How?

» Correctness follows from the recurrence argument.

¥ oo
g—o 8

- O ™M O

g goo
g ~o 8

104%

3 — 1 — 2 (using vertex 2)

3 — 4 — 1 (using all vertices)

2

d

For instance,

d

32 =

4
31—

Example

0
(0) _ | o
b7 =12
-1
0
(1) o
b 2
-1
0
(2) _ | o
=17
-1
0
@ _ |3
b 2

owor g poOm

O WwWo

owo

gorgy 8§ ony

HOoORN

o RN

cog g cog g

cog g

co RN

NIL
n© _ [NIL

NIL
n _ [N

NIL
n@ _ | NI

NIL

NIL

NIL

NIL

NIL

NIL

NIL
NIL

NIL

NIL
NIL

NIL

NIL
NIL

NIL

NIL
NIL

NIL

NIL
NIL

NIL

NIL
NIL

NIL

Constructing the shortest path

» We want to construct the matrix I = (7;;), where
mij = predecessor of j in shortest / ~ j,

» we define a sequence of matrices M) ... N s¢t.

nk) = (wf.jk)), i.e. the matrix of last predecessors in the
shortest path i ~ j, which uses only vertices in {1,..., k}.

b If k=0 7t = NIL if/::J:orWij:OO’
’ ! if i # j and w;jj # 0.
» For k > 1 we get the recurrence:

T
ij k—1)
Ty

J otherwise.

BFW with paths

BFW W
d® =w
for k=1 to ndo
for i=1to ndo
for j =1 to ndo
if df < d¥V df "+ dl Y then

(k) _ 4(k=1)
d’{k) _ dij(k 1)
n;’ =y
else() (k—1) (k—1)
K k—1 k—1
dij = dy + dkj
(k) (k—1)
n;’ =M
end if
end for
end for

end for
return d

Complexity: T(n) = O(n%)

Conclusions

SSSP

SSSP

Dijkstra | BFMS

w >0 | O(mlgn) | O(nm)

weR NO O(nm)
Dijkstra BFMS | BFW
w >0 | O(nmlign) | O(n’m) | O(n%)
weR NO O(n’m) | O(n®)

Conclusions: Remarks for APSP algorithms

» Note that for sparse graphs with m = O(n), Dijkstra is the
most efficient: O(n?Ig n), while for dense graphs with
m = O(n?), BFW is the best complexity.

» There exists an algorithm for the APSP problem by D.
Johnson (1978) that works in O(n?Ig n) for sparse graphs
with negative edges. It uses Dijkstra and BFMS as functions.

» For graphs that are undirected and without weights, there is
an algorithm by R.Seidel that works in O(n* Ig n), where w is
the complexity of multiplying 2 n x n matrices, which of as
today is w ~ 2.3.

» For further reading on shortest paths, see chapters 24 and 25
of Cormen, Leiserson, Rivest, Stein:

Introduction to Algorithms.

