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Abstract—This paper presents a method for automatic microarchi-
tectural pipelining of systems with loops. The original specification
is pipelined by performing provably-correct transformations including
conversion to a synchronous elastic form, early evaluation, inserting
empty buffers, anti-tokens, and retiming. The design exploration is done
by solving an optimization problem followed by simulation of solutions.
The method is explained on a DLX microprocessor example. The
impact of different microarchitectural parameters on the performance
is analyzed.

I. INTRODUCTION

The structure of the pipeline is one of the key decisions in the early

design stages of a system. However, microarchitectural pipelining

is often done ad hoc, due to the significant computational costs

of simulation during the design space exploration and the lack of

analytical optimization methods capable of pipelining in the presence

of dependencies between iterations.

For a given workload, there is an optimum pipeline depth that

delivers the best possible performance [1]. Thus, specialization of the

CPU cores and IP blocks can significantly increase their performance.

Such specialization would benefit from automation during early

design stages.

This paper presents a method that given a microarchitectural graph

with delay annotation of functional nodes automatically pipelines

this graph such that a near optimal performance is achieved. The

algorithm can also output a set of Pareto-points with different clock

cycles and throughputs such that a designer or an architect can select

best suited for the application. Starting from a functional unpipelined

specification as shown in Fig. 1(a), our algorithm produces a pipelined

specification as in Fig. 1(b). Design space exploration is driven by

certain probabilities at the decision points of the microarchitecture,

which must be given as an input to the optimization procedure. Using

our method a designer can quickly analyze the optimal pipeline depth

for a given microarchitecture conducting pipelining studies similar to

proposed in [1], [2].

Our method relies on the capabilities of Synchronous Elastic (aka

Latency Tolerant) Systems [3], [4], [5]. Such systems can tolerate

latency changes in computations and communications. This elasticity

enables new microarchitectural trade-offs aiming at average-case

optimization rather than worst case. As shown in [6], it is possible to

pipeline elastic systems (even in presence of cycles and dependen-

cies between iterations) using a set of correct-by-construction local

transformations.

II. BACKGROUND

An elastic system can be defined as a collection of blocks and

FIFOs connected by channels. A channel is comprised from a set of

data wires and a few control signals implementing a synchronous

handshake. Synchronous ELastic Flow (SELF) [7], [4] defines a

formal protocol and a set of control circuit primitives for creating

an elastic system. A pair of control signals bits (valid and stop)

implements a handshake protocol between the sender and the receiver

of an elastic channel. The valid bit, going in the forward direction, is

set by the sender when some piece of data (a token) is being sent. The
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Fig. 1. Example (a) input and (b) output graphs for our method

stop bit, going in the backward direction, implements back-pressure

and is used for stalling the sender when the receiver is not ready.

Elastic buffers (EB) store and transmit tokens through the elastic

network. They are replacing registers in conventional synchronous

designs, and can be efficiently implemented using transparent

latches [4]. Throughout the paper EBs are represented as shown in

Figure 1(c). If the EB initially contains some data, it is marked with

a dot. Otherwise, it is called a bubble and is initially empty. Lines

in the figures represent elastic channels: each line represents a set of

datapath wires and the associated handshake wires. We assume that

EBs have a latency of one clock cycle in absence of back-pressure.

Register files are considered as a special case of EB. The array

of memory elements in the register file can be viewed as a buffer.

The write logic (denoted “W” in our figures) at the input of the

buffer requires the write data wd and address wa channels to carry

valid tokens to store a new token inside the array. The read function

(denoted “R”) requires the read address ra and the previous write

operation to be available in order to perform a read and propagate a

token to the output channel rd.

Anti-tokens can be propagated backwards in order to nullify

irrelevant information [7]. When a token and an anti-token meet,

they cancel each other, creating a bubble in the channel. Channels

may initially store anti-tokens using counters (drawn as pentagons)

for canceling a few of the next arriving tokens, as shown in Figure

1(b).

Early evaluation nodes [7] wait only for a required subset of input

tokens to start a computation, instead of waiting for all of them. For

example, a multiplexor only needs to wait for the select channel and

one of data channels (that corresponds to the value of the select bit)

to be valid. Once enabled, early evaluation nodes insert an anti-token

into the input channels which are irrelevant for this computation.

Anti-tokens may stay in place (in the counters) or travel in the

backward direction.

Besides standard transformations, such as retiming [8] and bypass,

elastic systems with early evaluation enable transformations, shown

in Figure 2(a), that allow richer exploration of the design space,

preserving system behavior. It is always correct to insert a bubble

in an elastic channel (see bubble insertion (BI), transformation also

called recycling) and to replace this bubble by an EB with a token

followed by an anti-token (AI). The anti-token insertion can be

extended to an arbitrary number of anti-tokens. Furthermore, anti-

token counters in channels can be grouped (AG) and retimed (AR),

as long as the capacity of the counters and the initial number of
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Fig. 2. (a) Elastic transformations [6], (b) bypass, (c) write data forwarding

anti-tokens are preserved.

The throughput of an elastic channel is the average number of

tokens processed during a cycle. The effective cycle time, the cycle

time divided by the throughput, is the average time elapsed between

two token transfers in a channel and is similar to an average time

per instruction in processors. The effective cycle time is the main

optimization target of this paper.

The retiming and recycling method [9] captures all transformations

from Figure 2(a) in a formal model. A retiming and recycling

configuration, RC, assigns an initial number of tokens (possibly

negative) and a number of EBs to each edge. Since analysis of

throughput in elastic systems with early evaluation only provides

an upper bound, the heuristic method based on mixed integer linear

programming presented in [9] finds a set of Pareto-point RCs/ with

different trade-offs between cycle time and analytical throughput.

III. AUTOMATIC PIPELINING

A. Overview

Starting with a functional specification graph of the design, our

method automatically pipelines it by using elastic transformations.

First, bypasses are inserted around register files and memories of the

functional model. Then, the graph is modified to enable forwarding to

the bypass multiplexors. Finally, the EBs inserted with the bypasses

are moved to pipeline the design by applying automatic retiming and

recycling optimization.

To determine how many bypasses to apply to each memory

element, our method uses a combination of a few greedy algorithms,

e.g., inserting one bypass at a time, favoring the one that leads to the

maximal performance improvement (more details in Section III-E).

During the exploration, the effective cycle time of the design is an-

alytically estimated using TGMG analysis[10]. After the exploration,

the most promising points are simulated in order to determine which

one is the optimum.

B. Bypasses and Forwarding

Bypasses are widely used to resolve data hazards in proces-

sors [11]. Figure 2(b) shows a register file after one bypass. Write of

input data is delayed by one EB, and a forwarding path is added,

so that if the read address is equal to the write address of the

previous instruction (RAW dependency), the correct data value can

be propagated, even though it has not yet been written in the register

file.

Figure 3(a) shows a register file with 3 bypasses. Write address and

read address are omitted for simplicity. Even though three EBs have

been inserted, only the leftmost one can be retimed backwards. By

using the AI transformation multiple times, EBs and anti-tokens can

be inserted on the bypass channel. Then, all the EBs can be retimed

out of the bypass structure, as shown in Figure 3(b), and used to

pipeline the design along the dotted line. However, the inserted anti-

tokens will stall the system on data hazards, waiting for the correct

token to arrive.

In addition to stalling, data hazards can also be solved by for-

warding. In order to enable forwarding to the bypass multiplexor,

some EBs and multiplexors must be duplicated. For example, after
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bypassing the register file twice in the graph in Figure 1(a), some

nodes in the graph are duplicated to achieve the system in Figure

2(c). In this figure, each bypass is fed independently, creating new

forwarding paths and retiming opportunities that can lead to the

retimed design in Figure 1(b).

C. Two-phase Exploration

Simulations of controllers can take significant time. Thus, it is

not feasible to simulate each of the RCs found by the retiming and

recycling (RR) solver. In order to prune the design space, bypasses

are greedily applied instead of trying all combinations, and the

throughput is estimated, rather than simulated, during a first stage

of the exploration.
Hence, design space is explored using a two-phase exploration

strategy, similar to [12]. During the first phase, bypasses are applied

incrementally on the memory elements and RR optimization executed

on each step, as shown in Figure 3(c). Within RR, performance for

each point is estimated using analytical TGMG analysis [10], and

the most promising points are stored. At the end of the exploration,

a set of design points with near-optimal performance are simulated

in order to determine the overall optimum. Since the relative error

between TGMG analysis and simulation is small in most cases, we

can safely assume that design points pruned during the first phase

are not optimal.

D. Data Hazard Probabilities

In order to perform the TGMG analysis it is necessary to assign

probabilities to the inputs of early evaluation multiplexors. For bypass

structures, these probabilities should be determined by the expected

frequencies of data hazards in the class of workloads for which

optimization is done.
We model data hazard probability on bypass multiplexors with a

single probability, γ. The register file reads the value written at the

previous clock cycle (back-to-back dependency) with probability γ.

Then, dependencies are assumed to decrease geometrically. Thus, the

probability of p1 (from Figure 3(a)) to be selected by the multiplexor

is p(p1) = γ; the register file reads the data value written two clock

cycles before with probability p(p2) = (1− γ)γ; and in general, the

probability of distance i dependency is p(pi) = (1 − γ)i−1γ.

E. Exploration Algorithm

During the exploration phase, the Algorithm 1 tries different

number of bypasses for each of the memory nodes of the graph. If

there is a single register file, the algorithm adds one bypass at each

iteration, and then calls the retiming and recycling function (RR) for

performance optimization.
The more bypasses the algorithm adds, the less recycling is needed

for achieving small cycle time through pipelining. Therefore, the

throughput (and the effective cycle time) keeps improving at each

iteration, while the cycle times can be kept constant. At some point,

either the number of bypasses is enough to fully pipeline the design

using retiming, or the throughput degradation due to data hazards

stalls in the new bypass is larger than the cycle time improvement due

to pipelining. At this point, adding more bypasses does not improve

the performance, and the exploration is completed.



If the graph has more than one memory element, the exploration

can be performed in a similar way, but the algorithm selects which

element to bypass next based on sensitivity analysis. Given a graph

G with a set of elements that can be bypassed (memories(G)), Algo-

rithm 1 greedily selects which element to bypass. For every memory

m, H.bypass(m) applies one more bypass. Then, the algorithm calls

RR optimization and estimates the effective cycle time (ξlp(c)) for

each Pareto-point c found by RR.

The node m that leads to the fastest configuration is chosen as the

next step, and the greedy algorithm continues into the next iteration.

Variable ξloop keeps track of the best effective cycle time and Gloop

keeps the best graph found so far within the loop of the algorithm.

Algorithm 1: Bypass One(G)

explored points := ∅; ξmin := ∞; done := false; Gloop := G

while not done do
ξloop := ξ0 := ξmin

for m ∈ memories(G) do
H := G

H.bypass(m)
RCs := RR(H)
for c ∈ RCs do

explored points.add(c)
ξmin := min(ξlp(c), ξmin)
if ξlp(c) < ξloop then

Gloop := H

ξloop := ξlp(c)

done := ξmin ≥ ξ0 ∗ (1 − improve threshold)
G := Gloop

return G, explored points

When the estimated effective cycle time cannot be improved with a

given threshold (improve threshold, in our experiments is set to 1%),

the exploration stops. The priority queue explored points stores the

best designs within a given performance overhead compared to the

best design found by analytical estimation. At the end, all stored

designs are simulated in order to find the best one. The frontier

of best solutions is kept in addition to the best one with effective

cycle time of ξmin since analytical LP formulation for the effective

cycle analysis is approximate and estimates the upper bound on

performance. Therefore some other points in the frontier close to the

best estimated may have the best performance (as can be checked by

simulation). The ability to store a set of solutions can be also used to

extend the algorithm for generating Pareto-points in the (performance,

area) solution space.

Some graphs may require several memory elements to be bypassed

at the same time in order to reach a performance improvement. On

such designs, algorithm Bypass One may be inefficient. Therefore,

we first run an algorithm, called Bypass All, which is similar to 1

but bypasses all memories once before calling RR.

If a memory node is not further bypassed by the Algorithm 1, it

might have too many bypasses. By running Algorithm 1 again starting

from the best found design but using unbypass transformation instead

of bypass, we can further explore the design space. Algorithm 1 with

unbypass has a different termination condition: instead of checking

that a better design point is found, it checks that the best RR Pareto-

point is not significantly worse than the best ξ found so far.

Algorithm 2: Top-level Algorithm

Gbest, explored points1 := Bypass All(G)
Gbest, explored points2 := Bypass One(Gbest)
Gbest := simulate(explored points1 + explored points2)
H, explored points := Unbypass One(Gbest)
Gbest2 := simulate(explored points)

The top-level algorithm, shown in Algorithm 2, calls algorithm

Bypass All first and then algorithm Bypass One. Next, the best

design points are simulated in order to obtain the best one from
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this first exploration. Since it may be over-bypassed, algorithm

Bypass One with unbypass transformation is called. If unbypass

is not applied the algorithm ends. Otherwise, it will explore new

design points. At the end, this new explored points are simulated.

The performance of Gbest2 can be at most equal to Gbest. In our

experiments we have never observed a large performance difference

between them. Depending on the area gain and the performance loss

of Gbest2 , the user can decide which one to take as the best one.

IV. EXPERIMENTS

We have implemented the presented method in our toolkit for

exploration of elastic systems. To obtain an accurate throughput

of a system, our tool simulates a Verilog controller synthesized

automatically from the microarchitectural graph.

We experimented with a large set of micro-architectural graphs to

tune the optimization algorithm. In particular, if the algorithm stores

only those design points which have an estimated effective cycle time

within 1% from ξmin, then the design point with the best effective

cycle time is found with a 70% success rate. When the optimal

design point is missed, the performance degradation with respect to

the optimal point is on average only 3%. The average number of

simulations required is 4.125. The success rate of finding the optimal

performance design increases to 91% if the solution frontier threshold

is set to 5%. The best design point is always found if the threshold

is set to 10%. The average number of simulations are 12.6 and 24.3,

respectively.

A. DLX Pipeline

We illustrate our method on a simple microarchitecture similar to

a DLX, shown in Figure 4(a) before pipelining. The execution part of

the pipeline has an integer ALU and a long operation F. Table I shows

approximate delays and area of the functional blocks of the example,

taking NAND2 with FO3 as unit delay and unit area. In order to

obtain these parameters, some of the blocks have been synthesized in

a 65nm technology library using commercial tools (ALU, RF, mux2,

EB and nextPC), and the rest of the values have been estimated. EB
and mux2 delay and area numbers were taken for single bit units.

The delay of bit-vector multiplexors and EBs is assumed to be the

one shown in the table, while area is scaled linearly w.r.t. the number

of bits. Multiplexors with a fan-in larger than two are assumed to be

formed by a tree of 2-input multiplexors.



TABLE I
DELAY, AREA AND LATENCY NUMBERS FOR DLX EXAMPLE

Block Delay Area Lat. Block Delay Area Lat.

mux2 1.5 1.5 1 EB 3.15 4.5 1
ID 6.0 72 1 nextPC 3.75 24 1
ALU 13.0 1600 1 F 80.0 8000 1
RF W 6 6000 1 RF R 11 - 1
MEM W - - 1 MEM R - - 10

The register file is 64 bits wide, with 16 entries, 1 write and 2 read

ports. The total footprint of the RF is 6000 units, (including both

cell and wire area). To account for wiring of other blocks we assume

that 40% space is reserved for their wiring. Based on experiments

with multiple design points, we assume a 5% area is reserved for

the controllers. Given that AreaBlocks is the area due to the different

combinational blocks plus the area of all the EBs, the total area of the

design is AreaRF + (AreaBlocks ∗ 1.05)/0.6). The area of the initial

non-pipelined design shown in Figure 4(a) is 23284 units.
The memory has a read latency of LMEM cycles, which is set to 10

in Table I (corresponds to a realistic L2 read latency). Memory reads

are assumed to be non-blocking, i.e., a few reads can be pipelined

into a memory subsystem. We do not account for area of the memory

subsystem (as it is roughly constant regardless of pipelining).
Figure 5 shows one of the best design points found by our method

under the following design parameters: the F unit has been divided

into three blocks, the memory data dependency probability is 0.5

(γMEM = 0.5), and register file data dependency probability is 0.2

(γRF = 0.2), the instruction probabilities are: (pALU = 0.35, pF =
0.2, pLOAD = 0.25, pSTORE = 0.075, pBR = 0.125). Finally, the

probability of a branch taken is 0.5. These values are based on

the experiments found in [11], and they are mapped to the early

evaluation multiplexors.
In Figure 5, the cycle time is 29.817 time units, due to the

F0, F1 and F2 functional blocks. 3 bypasses have been applied to

RF and then EBs have been retimed to pipeline F . Note that our

algorithm inserted an extra bubble at the output of F2: the reduction

in the throughput due to this bubble, is compensated by a larger

improvement in the cycle time (without this bubble the critical path

would include the delay of the multiplexors after F2). Our method

does such decisions automatically based on the expected frequencies

of instructions and data dependencies.
The inserted memory bypasses are used to hide the memory latency

via a load-store buffer, as shown in Figure 5. Such structure can

be substituted by a more efficient implementation: an associative

memory. The algorithm automatically detects the need for a load-

store buffer and its optimal size.
Figure 4(b) shows the effective cycle time and area of the best

design point found by our method on different depths of F, forming a

Pareto-point curve. As depth(F) increases, more bypasses are needed

on the register file. The area of the design increases with more

bypasses. The best effective cycle time is achieved with F divided

into 6 stages, 8 bypasses applied to RF and 9 to MEM. Design points

(4,5) and (3,4) (circled in the Figure) for 4 and 3 stages are simpler

and overall might deliver a better design compromise.
The runtime of algorithm 2 is about 200 sec for every DLX

configuration (the longest was 400 sec). The larger depth of F and

memory latency increases the run time as more bypasses are needed.

About 93% of run time is spent solving RR ILP problems using the

CPLEX solver.
We have successfully applied our method to other micro-

architectural graphs with a more heterogeneous structure and multiple

register files, including a video decoding engine of the industrial

SOC. The algorithm scales well up to hundreds of nodes - enough

for realistic IP blocks and embedded CPUs.

V. PREVIOUS WORK

A few automatic [13] and semi-automatic [14] pipelining ap-

proaches have been discussed in the literature.They relied on use

of a global controller for resolving data hazards. Global controllers

that handle stalling and logic forwarding may introduce critical paths

in the control of design and are generally not acceptable in the

nanometer technologies. In contrast, elastic pipelines implement fully

distributed and pipelined stall logic avoiding global critical signals.

It is possible to pipeline logic blocks without adding latency using

a negative/positive register pair [15]. The output of the negative

register must either be precomputed or predicted. This is not possible

within a critical loop (unless an expensive unrolling operation is

attempted). In our approach, anti-tokens of elastic design can be

viewed as a physical implementation of the negative registers that

leads to efficient pipelining of critical loops, as long as they contain

register files or memories.

Our method is based on the pipelining method presented in [6].

However, [6] was relying on manual application of the above transfor-

mations and did not propose a technique for automatic exploration

and optimization. Our method enables a better exploration of the

design space since it is fully automatic and can handle large micro-

architectural graphs hard or impossible to comprehend by a human.

VI. CONCLUSION

A method for automatic pipelining has been proposed. This method

takes advantage of optimization techniques available for elastic

systems. The method has been effectively applied to several pipeline

designs. By setting different parameters on the input graph, a designer

can explore different design trade-offs and decide which pipelined

design is the best for a given application.
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