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Abstract

The step of identifying to which class of operational situation belongs the current environmental system (ES) situation is a key
element to build successful environmental decision support systems (EDSS). This diagnosis phase is especially difficult due to
multiple features involved in most environmental systems. It is not an easy task for environmental managers to acquire, to integrate
and to understand all the increasing amount of data obtained from an environmental process and to get meaningful knowledge from
it. Thus, a deeper classification task in a EDSS needs a full integration of gathered data, including the use of statistics, pattern
recognition, clustering techniques, similarity-based reasoning and other advanced information technology techniques. Consequently,
it is necessary to use automatic knowledge acquisition and management methods to build consistent and robust decision support
systems. Additionally, some environmental problems can only be solved by experts who use their own experience in the resolution
of similar situations. This is the reason why many artificial intelligence (AI) techniques have been used in recent past years trying
to solve these classification tasks. Integration of AI techniques in EDSS has led to more accurate and reliable EDSS.

Case-based reasoning (CBR) is a good technique to solve new problems based on previous experience. Main assumption in CBR
relies on the hypothesis that similar problems should have similar solutions. When working with labelled cases, the retrieval step
in CBR cycle can be seen as a classification task. The new cases will be labelled (classified) with the label (class) of the most
similar case retrieved from the case base. In environmental systems, these classes are operational situations. Thus, similarity measures
are key elements in obtaining a reliable classification of new situations. This paper describes a comparative analysis of several
commonly used similarity measures, and a study on its performance for classification tasks. In addition, it introducesL’Eixample
distance, a new similarity measure for case retrieval. This measure has been tested with good accuracy results, which improve the
performance of the classification task. The testing has been done using two environmental data sets and other data sets from the
UCI Machine Learning Database Repository.
 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The management of environmental system (ES) is a
very complex and dangerous task. The step of ident-
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ifying to which class of operational situation belongs the
current ES situation is a key element to build successful
environmental decision support systems (EDSS). If
EDSS are able to make reliable diagnostics, then the pro-
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posed plan to deal with the situation will be accurate and
optimal enough to lead the environmental system to a
normal operation state.

1.1. Identification of current situations in classical
EDSS

This diagnosis phase is especially difficult due to mul-
tiple features involved in most environmental systems,
including chemical, biological, physical, inflow-varia-
bility, microbiological, subjectivity and temporal effects,
which implies the analysis of different kind of data
(numerical and qualitative) and uncertainty to identify a
particular situation.

Progress in instrumentation, in computer technology
and in process sensors has enabled data gathering, which
implies more available information. However, it is not
an easy task for experts to acquire, to integrate and to
understand all the increasing amount of data obtained
from an environmental process and to get meaningful
knowledge from it.

Usually, the first step in the diagnosis of specific situ-
ations in environmental systems is to determine which
are the key parameters that identify an operational state
and that need to be checked to deal with that situation.
However, it is important to remark that what defines a
situation is not a single parameter, but a group of vari-
ables and their interrelations. In this sense, there exist
several physical, biological and chemical indicators that
are commonly used for a fast monitoring of the state of
environmental processes. The main objective of indi-
cators, which can be numerical and/or symbolic, is to
transform data and statistics into synthetic information
easy to understand by several groups of people involved
in the domain such as scientists, politicians, adminis-
tration and citizens. For example, the number and type
of filamentous organisms and protozoa in the activated
sludge process, or the presence of Cladophora in the
streams are biological indicators, while the suspended
solids concentration or the biological oxygen demand (a
global measure of the biodegradable organic matter) are
chemical indicators in wastewater treatment plant pro-
cesses. Another example of indicator, in this case for
atmospheric pollution, is the National Ambient Air
Quality Standards in the USA or the Catalan Index of
air quality, which is a single unit-free figure denoting
the effect of the different pollutants measured on overall
air quality including particles, such as SO2, NO2, O3,
or CO.

Commonly, a first diagnosis assessing the perform-
ance and behaviour of environmental systems compares
the results of indicators with respect to the environmen-
tal goals, normally based on the legal requirements.
Thus, the goal of this first diagnosis is to determine if
the process is in a normal or abnormal state. However,
scientists and environmental managers are more inter-

ested in predicting or making an early diagnosis of any
abnormal process situation and unfamiliar situations.
They want to infer the causes to these problems to gener-
ate a sophisticated action plan, while applying the rec-
ommended list of tasks to return the process to a “nor-
mal” situation. For this reason, a second and deeper
classification task of the environmental system status
should be covered by an EDSS.

1.2. Identification of current situations in advanced
EDSS

This deeper classification task in a EDSS needs a full
integration of gathered data, including the use of stat-
istics, pattern recognition, clustering techniques, and
other advanced information technology techniques. Also,
the use of modelling techniques (both mechanistic and
black box models) must be considered to simulate and
predict the conditions of the process. The experts of the
domain, who occasionally carry out the study and
interpretation of the database to increase the knowledge
about the process, usually do this mathematical analysis.
Clearly, it is necessary to use automatic knowledge
acquisition and management methods to build consistent
and robust decision support systems. In addition, some
environmental problems can only be solved by experts
using their own experience in the resolution of similar
situations. These experts are not always accessible when
dealing with risk situations, and it is crucial to record
each new experience to learn about the process, while
reusing this specific knowledge in the future. This is the
reason why many artificial intelligence (AI) techniques
have been used in recent past years trying to solve these
classification tasks. Integration of AI techniques in
EDSS has led to obtain more accurate and reliable
EDSS. Furthermore, case-based reasoning (CBR) can be
a good technique to make diagnosis based on previous
experience.

Main assumption in CBR relies in retrieving the most
similar cases or experiences among those stored in the
case base. Then, previous solutions given to these most
similar past-solved cases can be adapted to fit new sol-
utions for new cases or problems in a concrete domain,
instead of deriving them from scratch. When working
with labelled cases, the retrieval step in CBR cycle can
be seen as a classification task. The new cases will be
labelled (classified) with the label (class) of the most
similar case retrieved from the case base. In environmen-
tal systems, these classes are operational situations.
Thus, similarity measures are key elements in obtaining
a reliable classification of new situations.

1.3. Related work

Theoretical frameworks for the systematic construc-
tion of similarity measures have been described in
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Osborne and Bridge (1996, 1997) and Bridge (1998).
Other research work introduced new measures for a
practical use in CBR systems, such as Bayesian distance
measures in Kontkanen et al. (2000) and some hetero-
geneous difference metrics in Wilson and Martı́nez
(1997). Also, a review of some used similarity measures
was done in Liao and Zhang (1998).

This paper aims to analyse and study the performance
of several commonly used measures in practical use, for
a better classification of environmental situations. In
addition, L’Eixample distance, a new similarity measure
for case retrieval, is introduced. This measure tries to
improve the competence of a CBR system, providing
flexibility and adaptation to environmental domains
where some attributes have a substantial higher impor-
tance than others do. This similarity measure has been
tested against some other related and well-known simi-
larity measures with good results. Measures are evalu-
ated in terms of classification accuracy on unseen cases,
measured by a 10-fold cross-validation process. In this
comparative analysis, we have selected two basic simi-
larity measures (Euclidean and Manhattan), two
unweighted similarity measures (Clark and Canberra)
and two heterogeneous similarity measures
(heterogeneous value difference metric and interpolated
values difference metric). Although all these are dissimi-
larity measures, we can refer to similarity measures nor-
malized in interval [0,1], by means of the relation:

SIM(x,y) � 1�DISS(x,y)

where DISS(x,y) means the dissimilarity measure
between cases x and y, which is commonly computed as
a sum of attribute differences within the interval [0,1].
For this reason throughout the paper, these measures will
be equally referred as similarity or dissimilarity measur-
es.

1.4. Overview

The paper is organized in the following way. Section
2 outlines main features about case-based reasoning. In
Section 3, background information on selected distance
measures is provided. Section 4 introduces L’Eixample
distance measure. Section 5 presents the results compar-
ing the performance of all measures for classification
tasks tested on two environmental databases and 14 data-
bases from the UCI Machine Learning Repository.
Finally, in Section 6, conclusions and future research
directions are outlined.

2. Case-based reasoning

CBR systems have been used in a broad range of
domains to capture and organize past experience and to

learn how to solve new situations from previous past sol-
utions.

The basic reasoning cycle of a CBR agent can be sum-
marized by a schematic cycle (see Fig. 1) and detailed
in the following steps (Kolodner, 1993):

� Retrieve the most similar case(s) to the new case.
Similarity measures are involved in this step.

� Adapt or reuse the information and knowledge in that
case to solve the new case. The selected best case has
to be adapted when it does not match perfectly the
new case.

� Evaluate or revise the proposed solution. A CBR-
agent usually requires some feedback to know what
is going right and what is going wrong. Usually, it is
performed by simulation or by asking a human.

� Learn or retain the parts of this experience likely to
be useful for future problem solving. The agent can
learn both from successful solutions and from failed
ones (repair).

Case-based reasoning in continuous situations has
been applied in CIDA (Joh, 1997), an assistant for con-
ceptual internetworking design, and NETTRAC
(Brandau et al., 1991) as a case-based system for plan-
ning and execution monitoring in traffic management in
public telephone networks. In environmental sciences,
CBR has been applied in different areas with different
goals, because of its general applicability. It has been
used in information retrieval from large historical
meteorological databases (Jones and Roydhouse, 1995),
in optimization of sequence operations for the design of
wastewater treatment systems (Krovvidy and Wee,
1993), in supervisory systems for supervising and con-
trolling WWTP management (Rodrı́guez-Roda et al.,
1999; Sànchez-Marrè et al., 1997), in decision support
systems for planning forest fire fighting (Avesani et al.,
2000), in case-based prediction for rangeland pest man-
agement advisories by Branting et al. (1997), or in case-
based design for process engineering (Surma and
Brauschweig, 1996).

There are several case representation formalisms rang-
ing from flat structures to hierarchical structures such
as a graph representation. One of the most used by its
simplicity and applicability is the feature vector
approach, where the cases are represented by means of
a set of attribute-value pairs. For this reason, the paper
will focus on feature vector CBR systems. Similarity
measures are intrinsically related to the used case rep-
resentation formalism in the CBR system. Within the
feature vector approach, the similarity measures are nor-
mally computed as an aggregation of attribute differ-
ences between two cases. If similarity measures do not
capture the actual differences between cases, the
retrieval step, and the whole CBR performance will be
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Fig. 1. The general case-based reasoning paradigm.

bad. Thus, the selection of an appropriate similarity mea-
sure is a key point in CBR systems.

3. Similarity measures

Most case-based reasoners use a generalized weighted
dissimilarity measure such as,

diss(Ci,Cj) �

�n

k � 1

wk∗atr—diss(Cik,Cjk)

�n

k � 1

wk

where Ci and Cj are two cases; wk is the weight or impor-
tance assigned to attribute k; and atr—diss(Cik,Cjk) is the
dissimilarity degree between the value of attribute k in
cases i and j.

Currently, there are several similarity measures that
have been used in CBR systems, and some comparison
studies exist among these similarity measures (see Wil-
son and Martı́nez, 1997; Liao and Zhang, 1998). The
results obtained in these studies show that the different
similarity measures have a performance strongly related
to the type of attributes representing the case and to the
importance of each attribute. Thus, it is very different to
deal with only continuous data, with ordered discrete
data or non-ordered discrete data. Also, it is necessary
to give a greater distance contribution to an important
attribute than to other less important ones. In this study,
our new proposed similarity measure, L’Eixample, is
compared against some other measures that had been
used before, with a very good performance in tests done

in prior studies carried out. These selected similarity
measures are described in the following subsections.

3.1. Measures derived from Minkowski’s metric

d(Ci,Cj) � � �n

k � 1

|Cik�Cjk|r�1/r

r�1

where n is the number of input attributes. When r = 1,
Manhattan or City-Block distance function is obtained.
If r = 2, Euclidean distance is obtained. When including
weights for all the attributes, the general formula
becomes the following:

d(Ci,Cj) � ��
n

k � 1

wr
k∗|d(Cik,Cjk)|r

�n

k � 1

wr
k

�
1/r

where for non-ordered attributes, their contribution to the
distance is,

d(Cik,Cjk) � 1�dqlv(Cik),qlv(Cjk)

and d is the Kronecker d.

3.2. Unweighted similarity measures

We include in this study two similarity measures that
ignore attribute weight:

These similarity metrics, defined in Lance and Willi-
ams (1966), are very sensitive to small changes close to
xik = 0=xjk, and can be less reliable if the (xik) are sample
estimates of some quantities. An advantage of these met-
rics is that they do not need a previous normalization.
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Clark:

d(Ci,Cj) � �n

k � 1

|Cik�Cjk|2

|Cik � Cjk|2

and Canberra:

d(Ci,Cj) � �n

k � 1

|Cik�Cjk|
|Cik � Cjk|

3.3. Heterogeneous similarity measures

To obtain a broader study and results, two other dis-
tance measures that show very high values of efficiency
have been included. These functions were proposed in
Wilson and Martı́nez (1997).

Heterogeneous value difference metric (HVDM):

HVDM(Ci,Cj) � ��n

k � 1

d2
k(Cik,Cjk)

where m is the number of attributes. The function
dk(Cik,Cjk) returns a distance between the two values Cik

and Cjk for attribute k, and is defined as:

d2
k(Cik,Cjk)

� �1, if Cik or Cjk is unknown; otherwise

normalized—vdmk(Cik,Cjk), if k is nominal

normalized—diffk(Cik,Cjk), if k is linear

where normalized—vdmk(Cik,Cjk), is defined as follows:

normalized—vdmk(Cik,Cjk) � ��C
c � 1

|Nk,Cik,c

Nk,Cik

�
Nk,Cjk,c

Nk,Cjk
|
2

where Nk,x is the number of instances that have value Cik

for attribute k; Nk,Cik,c is the number of instances that
have value Cik for attribute k and output class c; C is
the number of output classes in the problem domain.

The function normalized—diffk(Cik,Cjk), is defined as
shown below:

normalized—diffk(Cik,Cjk) �
|Cik�Cjk|

4sa

where sk is the standard deviation of the numeric values
of attribute k.

Interpolated value difference metric (IVDM):

IVDM(Ci,Cj) � �n

k � 1

ivdmk(Cik,Cjk)2

where ivdmk is defined as:

ivdmk(Cik,Cjk)

� �vdmk(Cik,Cjk) if k is discrete

�C
c � 1

|pk,c(Cik)�pk,c(Cjk)|2 otherwise

where vdmk(Cik,Cjk) is defined as follows:

vdmk(Cik,Cjk) � �C
c � 1

|Pk,Cik,c�Pk,Cjk,c|2

C is the number of classes in the database. Pk,Cik,c is the
conditional probability that the output class is c given
that attribute k has the value Cik. And:

Pk,Cik,c �
Nk,Cik,c

Nk,Cik

where Nk,Cik
is the number of instances that have value

Cik for attribute k; Nk,Cik,c is the number of instances that
have value Cik for attribute k and output class c.

Pk,c(x) is the interpolated probability value of a con-
tinuous value Cik for attribute k and class c, and is
defined:

Pk,c(x) � Pk,u,c � � x�midk,u

midk,u+1�midk,u
�∗(Pk,u+1,c�Pk,u,c)

In this equation, midk,u and midk,u+1 are midpoints of two
consecutive discretized ranges such that midk,u�Cik �
midk,u + 1. Pk,u,c is the probability value of the discretized
range u, which is taken to be the probability value of
the midpoint of range u. The value of u is found by first
setting u = discretizek(Cik), and then subtracting 1 from
u if Cik � midk,u. The value of midk,u can be found as fol-
lows:

midk,u � mink � widthk∗(u � 0.5)

4. L’Eixample heterogeneous weight-sensitive
measure

After a theoretical and experimental analysis of some
measures in real domains, it was assumed that an
exponential weighting transformation would lead to a
better attribute relevance characterization when the num-
ber of attributes, n, is very high. This exponential trans-
formation allows amplifying the differences among attri-
butes, when n becomes a large number. It has been
experimentally tested that experts do not assign very
extreme weights to attributes, as they do not want to
be considered as very rigid experts in the field. After
a preliminary competence study, a normalized weight-
sensitive similarity measure was developed, and named
as L’Eixample distance (Sànchez-Marrè et al., 1998). It
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takes into account the different nature of the quantitative
or qualitative values of the continuous attributes
depending on its relevance.

Main feature of L’Eixample measure is the sensitivity
to weights for continuous attributes. For the most
important continuous attributes, that is weight � a, the
distance is computed based on their qualitative values.
This implies that relevant attributes having the same
qualitative value are equal, and having different qualitat-
ive values are very different, even when a continuous
measure would be very small. And for those less relevant
ones, that is weight�a, the distance is computed based
on their quantitative values. This implies that non-rel-
evant attributes having the same qualitative value are not
equal, and those having different qualitative values are
more similar (see Fig. 2).

For example, think of a continuous attribute like pH of
water that is a common feature for many environmental
system tasks such as wastewater treatment plants super-
vision, river water quality management or lake water
quality management. The pH value is computed as fol-
lows:

pH � �log[H3O+]

The pH values range from 0 to 14, with a common
agreed discretization in three categories named as low
(acidic), normal (neutral) and high (alkaline). Low
values range from 0 to 6, normal values range from 6
to 8, and high values range from 8 to 14. In this situation,
current values for pH measures of 5.8 and 6.3 could be
very similar in a simple quantitative scale measurement,
but in fact, both values are extremely different because
they represent an acidic and a neutral characteristic of
water. If this qualitative difference is really important
(i.e. the attribute is relevant), then it should be measured

Fig. 2. Continuous attribute scenarios depending on weight wk and values of Cik and Cjk.

in a better way. Thus, it would be better to compute
the degree of similarity between both values within a
qualitative scale. On the other hand, if the attribute rel-
evance were not very important, then a quantitative scale
could be used. This is what L’Eixample measure per-
forms.

L’Eixample measure is defined as:

d(Ci,Cj) �

�n

k � 1

ewk � d(Cik,Cjk)

�n

k � 1

ewk

where

d(Cik,Cjk) � �
�qtv(Cik)�qtv(Cjk)�

upperval(k)�lowerval(k)
if k is continuous and wk�a

�qlv(Cik)�qlv(Cjk)�
#mod(k)�1

if k is continuous and wk � a

or k is ordered discrete

1�dqlv(Cik),qlv(Cjk) if k is non � ordered discrete

and Ci and Cj are two different cases. wk is the weight
of attribute k; Cik is the value of the attribute k in the
case i; Cjk is the value of the attribute k in the case Cj;
qtv(Cik) is the quantitative value of Cik; qtv(Cjk) is the
quantitative value of Cjk; upperval(k) is the upper quanti-
tative value of k; lowerval(k) is the lower quantitative
value of k; a is a cut point on the weight of the attributes;
qlv(Cik) is the qualitative value of Cik; qlv(Cjk) is the
qualitative value of Cjk; #mod(k) is the number of
modalities (categories) of k; dqlv(Cik),qlv(Cjk) is the d of
Kronecker.
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5. Experimental test

To test the efficiency of all similarity measures tested,
a nearest neighbour classifier was implemented using
each one of the seven similarity measures: HVDM,
IVDM, Euclidean, Manhattan, Clark, Canberra and
L’Eixample. Each measure was tested in two environ-
mental databases as well as in 14 databases from the
UCI database repository. Two real environmental data-
bases were selected and tested: air pollution database and
wastewater treatment plant database (WWTP). These
databases were selected for several reasons. One is that
they are the most easily available environmental data-
bases for the study. Another one is that they represent
extreme difficulty cases. The air pollution database has
no missing values, while the WWTP database has an
average of 35.8% of missing values and an imprecise
labelling of cases due to multiple label setting by the
experts. Finally, in both environmental domains, there
were human experts available to help in the validation
and interpretation of results.

The air pollution database contains information about
the contamination level of the air in the central area of
Mexico City. There are five continuous attributes indi-
cating the presence of substances affecting the air qual-
ity: ozone, sulphur dioxide, nitrogen dioxide, carbon
monoxide and total suspended particles. According to
these values, a pollution-degree state is assigned to each
case, which can be: Normal, No—satisfactory, Bad, and
Too—bad. This database is available at
http://www.sma.df.gob.mx/imecaweb/base—datos.htm.

The WWTP database describes the daily operation of
a WWTP located in Catalonia. There are 15 attributes
used for its characterization measured at different
location points in the WWTP: the influent flow rate, the
concentration of organic matter measured as chemical
oxygen demand at the influent, the concentration of sus-
pended solids at the influent, the concentration of total
kjeldhal nitrogen (TKN) at the influent, the concentration
of organic matter measured as chemical oxygen demand
at the primary effluent, the concentration of suspended
solids at the primary effluent, the concentration of
biomass in the biological reactor, the settleability index
of activated sludge (SVI), the sludge residence time, the
food to microorganism ratio (F/M) in the biological reac-
tor, the predominant filamentous organism in the biologi-
cal reactor, the dissolved oxygen concentration of the
biological reactor, the concentration of organic matter
measured as chemical oxygen demand at the effluent,
the concentration of suspended solids at the effluent, and
the concentration of total nitrogen (TN) at the effluent
(see Rodrı́guez-Roda et al., 2002 for a detailed
description). Taking into account these features, an oper-
ational state label is assigned as the environmental situ-
ation. Twenty-four classes are used. Some of them have

very few examples, making the classification process
still more difficult.

5.1. Missing values

In Euclidean, Manhattan, Clark, Canberra and L’Eix-
ample measures, a pre-processing task was carried out
to substitute the missing input values by the average
value of the instances with valid values. This was done
for all the attributes. In the case of HVDM, a distance
of 1 is given when one of the values compared or both
are unknown. IVDM treats the unknown values as any
another value. Thus, if the two values compared are both
missing, the distance between them is 0 (Table 1).

5.2. Discretization

Some similarity measures have a good performance
when the attributes are all continuous or all discrete.
Others incorporate mechanisms to deal appropriately all
types of attributes. Our proposal is to perform a discret-
ization pre-process on the continuous attributes in such
a way that the general accuracy can be improved
(Dougherty et al., 1995). Discretization may serve to
mark differences that are important in the problem
domain. There exist many discretization algorithms in
the literature, and had been compared among them to
prove their general accuracy (Dougherty et al., 1995;
Ventura and Martı́nez, 1995). To improve the retrieval
accuracy, a global and supervised method to discretize
all the continuous attributes, the CAIM algorithm pro-
posed by Kurgan and Cios (2001), was selected. This
algorithm tries to maximize the dependency relationship
between the class label and the continuous-values attri-
bute, and at the same time, to minimize the number of
discrete intervals. In our approach, all the continuous
attributes were divided in a number of intervals equal to
the number of present classes in the database, or in five
intervals when the number of present classes was less
than 5. The class-attribute interdependency maximiz-
ation (CAIM) criterion which measures the dependency
between the class variable C and the discretization vari-
able D for attribute F is defined as:

CAIM(C,D|F) �

�n

r � 1

max2
r

M+r

n

where n is the number of intervals; r iterates through all
intervals, i.e. r = 1,2,…,n; maxi is the maximum value
among all qir values (maximum value within the rth col-
umn of the quanta matrix), i = 1,2,…,S; M+r is the total
number of continuous values of attribute F that are
within the interval (dr�1,dr] (Table 2).

The CAIM criterion is a heuristic measure that quan-
tifies the interdependence between classes and the num-

http://www.sma.df.gob.mx/imecaweb/base_datos.htm


ARTICLE IN PRESS
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Table 1
Major properties of databases considered in the experimentation

Database Database characteristics

#Inst. Cont. Disc Ord. Disc NOrd. #Class. %Mis.

Air pollution 365 5 0 0 4 0
WWTP 793 14 0 1 24 35.8
Auto 205 15 0 8 7 0.004
Bridges 108 3 0 8 3 0.06
Cleveland 303 5 2 6 2 0
Glass 214 9 0 0 7 0
Hepatitis 155 6 0 13 2 5.7
Horse-colic 301 7 0 16 2 30
Ionosphere 351 34 0 0 2 0
Iris 150 4 0 0 3 0
Liver disorders 345 6 0 0 2 0
Pima Indians diabetes 768 8 0 0 2 0
Soyabean (large) 307 0 6 29 19 21.7
Votes 435 0 0 16 2 7.3
Wine 178 13 0 0 3 0
Zoo 90 0 0 16 7 0

Table 2
Quanta matrix. Frequency matrix for attribute F and discretization scheme D

Class Interval Class total

[d0,d1] % [dr�1,dr] % [dn�1,dn]

C1 q11 % q1r % Q1n M1+

� � � � � � �

Ci qi1 % qir % qin Mi+

� � � � � � �

CS qS1 % qSr % qSn MS+

Interval total M+1 % M+r % M+n M

ber of unique values of the continuous attribute. For
complete details about the CAIM algorithm, see Kurgan
and Cios (2001).

5.3. Weight assignment

Although there are some global weighting schemes in
the literature (Wettschereck et al., 1997; Jarmulak et al.,
2000; Mohri and Tanaka, 1994), we use a new approach
named as the class-value distribution (CVD), which was
proposed in Núñez et al. (2002). This approach is based
on estimated probabilities and correlation. The calcu-
lated values are in the range from 0 to 10 in ascending
order of relevance. In this algorithm, a correlation
matrix is filled for each attribute, representing the corre-
lation between attribute values and class value as shown
in Table 3. In this table, Vi is the i value of a discrete
attribute. When the attribute is continuous, Vi represents
one interval after the discretization process. Cj is the
class j. qij is the number of instances that have value i
and belong to class j. q+j is the number of instances

belonging to class j. qi+ is the number of instances that
have value i. q++ is the number of instances in the train-
ing set.

Two main issues must be taken into account to set
appropriates weights: the distribution of the values of the
attribute across the classes, and the values associated to
a class across the attribute values, which happens when
all row values are 0 except one.

The first one shows how a single attribute value can
determine a class. In the correlation matrix, this fact can
be easily noticed by observing a single row. By observ-
ing a column, it is possible to determine the different
attribute values that predict a class. In both cases, it will
be ideal to find only one value different to 0 in each row
and in the column where that value is. This indicates
that one attribute value can predict a single class, and at
the same time, one class is determined only by a single
attribute value. The perfect attribute can be seen like a
near-diagonal matrix. To take into account both class
and value distribution, a score for each attribute must
be calculated:
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Table 3
Correlation matrix of an attribute

C1 C2 % Cn Value total

V1 q11 q12 % q1n q1+

V2 q21 q22 % q2n q2+

� � � % � �

Vm qm1 qm2 % qmn qm+

Class total q+1 q+2 % q+n q++

Ha �
1
n�

n

i � 1

�qmax,i

q+,i
∗qmax,i

qmax,+
�

where qmax,i is the maximum value among all qx,i

(maximum value within the ith column of the correlation
matrix), qmax+ is the number of instances that have the
value qmax,i (total of the row where the maximum
values are).

The lowest limit will be 1 / (�a�∗n), where |a| is the
number of different feature values and n is the number
of classes. The weight of the attribute is finally obtained
by means of a scaling process:

Wa � int�Ha�
1

�a�∗n

1�
1

�a�∗n

∗10�
In this approach, small addends are necessary to prevent
possible zero division in very special conditions.

5.4. Evaluation

To verify the accuracy of the environmental situation
classification in both environmental databases, and class
prediction in the other databases, a test was implemented
by means of a 10-fold cross-validation process. The
average accuracy and standard deviation over all 10
trials are reported for each data test, and the highest
accuracy achieved for each data set is shown in boldface
in Table 4. Another feature was taken into account: the
accuracy ordering among the measures, in order to show
the accuracy quality of all measures, and not only the
best one. For each data test, seven points were given to
the best measure, until 1 point to the worst measure.
Table 1 shows the number of instances in each database
(#Inst.), the number of continuous attributes (Cont.),
ordered discrete attributes (Disc Ord.), non-ordered dis-
crete attributes (Disc NOrd.), number of classes (#Class.)
and percentage of missing values (%Mis.).

From the experiments, it can be argued that L’Eixam-
ple measure accuracy mean seems to be better than the
other measures in several tested domains. To ensure the
experimental results, statistical significance tests were
done to decide whether the differences between each one

of the measures and L’Eixample measure were really sig-
nificant or not. Results have shown that at 90% level of
confidence, the differences between mean accuracy are
statistically significant in most cases. Thus, L’Eixample
measure is significatively better than the other ones,
except HVDM measure, in the context of the experi-
mental work done. At an 80% level of confidence, L’Eix-
ample measure is significatively better than all other
measures. And finally, at a 95% level of confidence,
L’Eixample measure is significatively better than IVDM,
Clark and Canberra measures.

From the accuracy results and from the definition of
L’Eixample measure, it can be stated that in general, this
measure is very well-suited for databases with a high
number of continuous attributes where it exploits the
domain knowledge about feature relevance to improve
its performance.

6. Conclusions and future work

The main result of this paper is to show a comparison
of several similarity measures to improve the classi-
fication of environmental situations. From Table 4, it can
be argued that L’Eixample measure seems to outperform
the others in a general case improving the performance
of a CBR system. Thus, using L’Eixample similarity
measure, the classification of environmental system situ-
ations can be improved. The average accuracy on seven
of 16 databases is the highest, and also, the accuracy
ordering punctuation is the best. This improvement is
due to the fact that the domain knowledge of the experts
has been taken into account in the measure, as it has
been recognized by some researchers (Leake et al.,
1997). For example, the weights assigned to the attri-
butes have actually split them between important and
irrelevant. Another feature is the proposal of an
exponential weight transformation that gives more
importance to separate important from irrelevant attri-
butes. On the other hand, the most important contri-
bution is the proposal of a weight-sensitive and hetero-
geneous function, in the sense of discretizing the most
important continuous attributes to improve the retrieval
process and to apply a different criterion of distance for
continuous attributes. Some previous measures were
presented as heterogeneous only by the fact of applying
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Table 4
Generalization accuracy

Database Similarity measures

HVDM IVDM Euclid Manh Clark Canberra L’Eixample

Air pollution 90.72 82.87 93.19 91.31 90.20 89.68 99.44
WWTP 49.64 32.73 52.14 50.47 46.42 47.26 50.47
Auto 81.98 82.04 74.87 77.87 71.29 77.41 79.37
Bridges 87.75 83.29 83.45 85.29 84.45 83.45 92.37
Cleveland 74.85 72.58 77.21 77.54 74.88 75.59 73.88
Glass 71.20 72.31 68.03 70.72 64.94 68.63 73.18
Hepatitis 78.47 79.51 81.16 79.83 82.28 80.98 75.83
Horse-colic 78.37 79.60 72.46 72.46 72.55 73.54 76.56
Ionosphere 90.01 83.76 85.46 89.73 88.59 90.02 92.86
Iris 92.66 92.66 96.00 94.00 95.33 94.00 96.00
Liver disorders 62.09 62.08 60.89 61.75 60.87 59.08 65.48
Pima Indians diabetes 69.65 65.63 71.08 69.89 64.30 65.60 67.35
Soyabean (large) 90.33 90.76 91.95 91.95 91.80 91.50 91.95
Votes 97.06 97.58 93.48 93.48 93.48 93.48 94.95
Wine 98.50 82.91 95.64 96.82 96.14 97.32 96.14
Zoo 97.00 95.00 96.00 96.00 96.00 96.00 95.00
Average accuracy 81.89 78.46 80.81 81.19 79.60 80.22 82.55
Standard deviation of accuracy 13.83 15.69 13.52 13.54 15.05 14.57 14.27
Accuracy ordering 75.00 49.00 74.00 76.00 54.00 60.00 83.00

different functions of distance to the different attribute
types (Wilson and Martı́nez, 1997). A final remark in
the analysis result must be made; a very poor accuracy
is obtained for the WWTP database with all measures.
This is principally due to the large amount of missing
values present in all the attributes (35.8%). Moreover,
there are six attributes, of a total of 15 attributes, which
have more than 50% of missing values, even reaching
an 88.9% in one feature, and also the labelling of cases
is very imprecise due to multiple label setting by the
experts, as mentioned before.

Although only the experimental results with a unique
discretization method, i.e. the CAIM method, and with
a unique feature weighting technique, i.e. the CVD
method, have been presented in this paper, the perform-
ance of L’Eixample measure holds independently of the
used discretization method or weighting scheme as
shown in Núñez et al. (2003).

The direction of future investigations will be focussed
mainly on studying the sensitivity of similarity assess-
ment in the process of automatic discretization and in
the automatic assignment of weights, and additionally,
in assigning different weights for each interval found in
the discretization step (local weighting schemes). Some
preliminary work was reported in Núñez et al. (2002).
Also, new environmental databases will be searched and
tested. Only two were tested in this study, as they were
the only two available to the authors.
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