
Context Matching for Compressed Terms

Adria Gascon and Guillem Godoy
LSI Department, Universitat Politècnica de Catalunya

Jordi Girona, 1-3 08034 Barcelona, Spain,
adriagascon@gmail.com, ggodoy@lsi.upc.edu

Manfred Schmidt-Schauss
Inst. Informatik, J.W.Goethe-Universität,

D-60054 Frankfurt, Germany,
schauss@ki.informatik.uni-frankfurt.de

Abstract

This paper is an investigation of the matching problem
for term equations s = t where s contains context vari-
ables, and both terms s and t are given using some kind of
compressed representation. In this setting, term representa-
tion with dags, but also with the more general formalism of
singleton tree grammars, are considered.

The main result is a polynomial time algorithm for con-
text matching with dags, when the number of different con-
text variables is fixed for the problem. NP-completeness
is obtained when the terms are represented using singleton
tree grammars. The special cases of first-order matching
and also unification with STGs are shown to be decidable
in PTIME.

1 Introduction

Solving equations is a fundamental part of any mathe-
matically founded science. In general, solving an equation
s

.= t consists of finding a substitution σ for variables such
that σ(s) = σ(t). The range for the variables, the kind of
expressions s and t, and their semantics, as well as the se-
mantics of =, depend on the context.

The first-order term unification problem is a particular
case of solving equations where the expressions s and t
are terms with leaf variables ranging over terms, all func-
tion symbols are non-interpreted, and = is interpreted as
syntactic equality. First-order term unification and its vari-
ants are basic ingredients in many areas of logic in com-
puter science. A particular case of term unification ap-
pears when one of the sides of the equation s

.= t, say t,
contains no variables. This is the term matching problem,
and it is again a fundamental ingredient of many areas like
functional and logic programming, rewriting, automated de-
duction, deductive databases, artificial intelligence, pattern
matching, compilation, etc.

The above mentioned particular problems are efficiently
solvable, where the most efficient algorithm uses dags to

represent the solutions, but their expressivity is often insuf-
ficient. For this reason, several variants and generalizations
of the first-order term matching and unification problems
have been studied. Incorporating more complex interpreta-
tion of the function symbols and equality predicate under
equational theories has been widely considered (see [?, 1]).
Another direction of extending expressivity is to reconsider
complexity issues for the original problem or its variants by
assuming that the input terms are given in some compressed
representation. This is important from a practical point of
view, since much of the applications involving terms and
matching use some kind of internal succinct representation
for terms. Finally, extensions like allowing other kinds of
variables related to terms have also been explored. This is
the case of context variables, i.e. variables which can be
substituted by contexts, which are trees with a single hole.

For example, let t = f(g(a, b), g(a, h(b))) in the match-
equation F (a) = t, where F is a context variable. This
has the solutions F 7→ f(g([.], b), g(a, h(b))) (where [·]
means the hole) and F 7→ f(g(a, b), g([.], h(b))); the equa-
tion f(F (b), F (h(b)) = t has the solution F 7→ g(a, [.]),
whereas f(F (b), F (b)) = t has no solution. Context
matching is known to be NP-complete, but there are several
subcases that can be solved efficiently [20]. If terms are
large but have lots of common subterms, like t1 = f(a, b),
t2 = f(t1, t1), . . . , tn = f(tn−1, tn−1), then the context
matching equation X(a) = tn will require exponential
space using the term representation to represent tn, whereas
a dag representation requires linear space. This motivates to
investigate context matching with dags and also in connec-
tion with more general compression techniques for terms.

An interesting application of context matching is the
search within tree structures and the corresponding ex-
traction of information. For example, the match equation
F (s) = t where t is ground and s has no occurrences of F
corresponds to the question whether there is a subtree of t
that is matched by s. This can easily be combined as con-
junctive search F1(s1) = t; . . . ;Fn(sn) = t, where Fi are
all different and do not occur elsewhere. This match equa-
tions correspond to the search question whether there are

subterms ri of t that can be matched by si for i = 1, . . . , n,
where variables within si must have a common instance in
t. Using dags, the multiple occurrences of t can be repre-
sented as the same node. The instantiation of a context vari-
able by a match is a context, i.e. tree with a hole. Thus mul-
tiple occurrences of the same context variable correspond
to the question whether there are occurrences of the same
subtree, but up to one position. This interpretation has ap-
plications in computational linguistics [14]. Questions that
ask for subtrees that are equal up to several positions can
be encoded using context variables. Applications of context
matching are in querying XML-data bases: see [2] for the
XPATH-standard, [20] for investigating context matching,
and [8] for analyzing conjunctive query mechanisms over
trees.

Term compression generalizes string compression. A
general string compression mechanism is the grammar-
based compression formalism introduced by Plandowski
[15, 16, 17], where it is shown that the word problem for
compressed strings is polynomial in the size of the (re-
stricted) context free grammar, which are also known as
straight-line programs. For some complexity results for the
word problem under compression see [?, ?]. This grammar
formalism is extended also to trees (see [3, 18]) and com-
prises the dag-representation of terms and also compress-
ing context composition, such that e.g. Cn for a context
C and a fixed number n can be represented in linear space.
Term compression was applied to the complexity analysis
of unification algorithms in [13, 12], where the grammars
are called singleton tree grammars (STG), and also to com-
pressing XML-data bases [3].

In this paper we consider the context matching prob-
lem when the input is compressed using dags, but also us-
ing the more general representation of singleton tree gram-
mars. Since the context matching problem itself with un-
compressed terms is NP-complete, it seems to be difficult to
obtain interesting results for the compressed case. But we
consider the situation where the number of different context
variables is small, or fixed for the problem. This kind of
restriction has already been considered for context unifica-
tion restricted to two context variables [19], and also proved
useful in the context of program verification with procedure
calls [9], where context unification for monadic signatures
and a single context variable allows the automatic genera-
tion of invariants.

Our main result is a polynomial time algorithm for
context matching when the input terms are represented
with dags. This is presented in Section 5 with a non-
deterministic polynomial time algorithm which permits
only a polynomial number of possibilities. It is based on
the observation that during the solution process, there is al-
ways either a context variable with an arbitrary solution, or
a context variable, where a suffix of the path to the hole can

be inferred, but perhaps not the exact path. Thus the nec-
essary guessings are limited to a polynomial number. We
also prove NP-completeness of context matching when the
input terms are represented with singleton tree grammars
using previously known results (Section 4). In our view this
result shows that compression is well-behaved for context
matching and can be tamed. The special case of first-order
matching with STG-compressed terms is shown to be solv-
able in PTime by analysing the complexity of operations
on STGs (Subsection 4.1). A slight extension of the argu-
ment than also shows that first-order unification with STG-
compressed terms is in PTime.

2 Preliminaries

We use a signature Σ of function symbols that come
with an arity ar(f), where we assume that at least one 0-
ary function symbol (a constant) is in Σ. There are two
sets of variables: first order variables x, y, z, and context
variables X, Y, Z of arity 1. We employ the syntax of
second-order terms (without abstraction) and denote them
as s, t, u, v, The set of variables occurring in terms or
other syntactic objects is denoted as FV (·). A term with-
out occurrences of free variables is said to be ground. The
size of a term t is denoted |t| and defined as its number of
symbols. We use positions in terms, denoted p, q, as se-
quences of positive integers following Dewey notation. In
f(t1, . . . , tn) or X(r), respectively, the position of the func-
tion symbol and the context variable X is 0 and the position
of the ith argument is i. The empty word is denoted ε, p ≺ q
means the prefix relation, p ·q the concatenation, and t|p the
subterm at position p of t. Contexts are terms with a single
occurrence of a hole [·], which are denoted by upper case
letters C,D. If the term s or context D, respectively, is
plugged into the hole of C[·], we denote the result as the
term C[s] or the context C[D]. The position of the hole in
a context D is called hole path, and denoted hp(C), and its
length is denoted as |hp(C)|. If D1 = D2[D3] for contexts
Di, then D2 is called a prefix of D1, and D3 is called a suffix
of D1.

Substitutions are functions from terms to terms, defined
as usual, where we assume that first-order variables can be
instantiated with terms, and context variables can be instan-
tiated with contexts. The application of a substitution σ to
a term t is written σ(t).

With [i, n] we denote the set {i, i + 1, . . . , n} ⊆ N. In
later paragraphs we will use rooted directed acyclic graphs
(dags) to represent first-order terms. The semantics of the
dags is always the represented term, whereas dags are used
for arguing about efficiency. We use the same notation for
terms and dags. To avoid ambiguity we sometimes use u =t

v to denote that u and v represent the same term.

2

3 Compression and Encodings

We will describe the compression mechanisms of STGs,
the relation of context matching with compression to con-
text unification using encodings and some first complexi-
ties.

3.1 Singleton Tree Grammars (STG)

For compacting trees we use singleton tree grammars
[13] that can represent dags and e.g. in addition Cn for
ground context C and a number n. We define singleton
tree grammars as a generalization of singleton context free
grammars (SCFG) [10, 15], extending the expressivity of
SCFGs by terms and contexts. This is consistent with [3],
and also with the context free tree grammars in [6], how-
ever, the latter is slightly more general in permitting con-
texts with several holes.

Definition 3.1 A singleton tree grammar (STG) is a 4-
tuple G = (T N , CN ,Σ, R), where T N are tree nonter-
minals, CN are context nonterminals, and Σ is a signature
of function symbols and constants (the terminals), such that
the sets T N , CN , Σ are pairwise disjoint. The set of non-
terminals N is defined as N = T N ∪ CN . The rules in R
may be of the form:

• A ::= f(A1, . . . , An), where A,Ai ∈ T N , and f ∈
Σn.

• A1 ::= C[A2] where A1, A2 ∈ T N , and C ∈ CN .

• C ::= [·].

• C1 ::= C2C3, where Ci ∈ CN .

• C ::= f(A1, . . . , Ai−1, [·], Ai+1, . . . , An), where
Ai ∈ T N , C ∈ CN , [·] is the hole, and f ∈ Σ an
n-ary function symbol.

Let D′ >G D′′ for two nonterminals D′, D′′, iff D′ ::= t,
and D′′ occurs in t. The STG must be non-recursive, i.e. the
transitive closure >∗

G must be terminating. Furthermore,
for every non-terminal N there is exactly one rule having
N as left hand side. Given a term t with occurrences of
nonterminals, the derivation by G is an exhaustive iterated
replacement of the nonterminals by the corresponding right
hand sides, using the convention for second-order terms.
The result is denoted as wG,t. In the case of a nonterminal
C (A) we also say that G defines wG,C (or wG,A, resepc-
tively). As a short hand for hp(wC) we use hp(C) also for
context nonterminals C.

For our purposes of context matching we will also allow
first-order and context variables Z in the STG. The conven-
tion is that in case there is a rule with left hand side Z, then
it is a nonterminal, otherwise we treat Z as terminal.

Note that term dags can efficiently be represented in
STGs, but terms may have exponential depth in contrast to
dags, which only allow for a linear depth in the size of the
dags.

A special case of STGs are singleton context free gram-
mars (SCFG), which can only represent strings. They can
be obtained from STGs for the case of a monadic signature.
An independent definition of SCFGs is as follows: There
are string nonterminals SN , and the possible grammar rules
format is: SN ::= t where t is a string of at most length 2,
and consists of letters and string nonterminals. These gram-
mars are non-recursive, for every nonterminal there is ex-
actly one rule, and hence every nonterminal can represent
exactly one word. The rest is analogous to STGs.

3.2 Encodings and Complexities

There is a polynomial translation of Context Matching
with Dags (CMD) and also of Context Matching with STGs
into a context unification problem using the following steps:
encode a node t in a dag as a first-order variable x and add
an equation x

.= f(x1, . . . , xn), where xi are the first-order
variables corresponding to the successor-nodes of t. The
same can be done for the STG-rules, where context non-
terminals are encoded as context variables. The encoding
of rules is straightforward, the only slight exception is that
rules of the form C ::= C1C2 have to be encoded as two
equations C[a] = C1C2[a], C[b] = C1C2[b] for two dif-
ferent constants a, b. This translation has the disadvantage
that context matching problems are turned into context uni-
fication problems for which no decision algorithm is known.
For first-order matching where left- and right-hand sides are
dags, the translation produces an equivalent first-order uni-
fication problem with only a linear size increase, that can be
solved using a polynomial first-order unification algorithm.
Using the naı̈ve translation of Context Matching with dags
or with STG-compressed terms into context matching by
simply expanding the terms yields a NEXPTIME algorithm.
However, we will show that context matching using com-
pressed terms is in NP: For dags the argumentation is easy:
guess an instantiation possibility for every context variable:
The ground contexts for the instantiation can be represented
in linear space. For every particular guess, it is possible to
check in polynomial time whether it solves the given CMD-
problem, hence the problem is in NP. For the more general
case of STG-compression Theorem 4.10 shows that context
matching using STGs is also in NP.

The following hardness result holds for the term-
representation, and hence also for the compressed variants.

Proposition 3.2 Context matching where every context
variable occurs at most once, but first order variables are
unrestricted, is NP-hard.

3

Proof. We encode the positive ONE-IN-THREE-SAT prob-
lem (see [7]) For every propositional variable pi of the
given positive ONE-IN-THREE-SAT problem, let xi, x

′
i be

first order variables, Fi be a context variable, and there is an
equation
Fi(g(xi, x

′
i)) = f(g(a, b), g(b, a)).

For every clause Cj = pj1 ∨ pj2 ∨ pj3 , let Hj be a fresh
context variable, and add an equation as follows:
Hj(c(xi1 , xi2 , xi3)) = h(c(a, b, b), c(b, a, b), c(b, b, a)).

This encodes every positive ONE-IN-THREE-SAT-
problem as a context matching problem where every con-
text variable occurs at most once, such that the positive
ONE-IN-THREE-SAT-problem is satisfiable iff the context
matching problem is unifiable. 2

Full linearity guarantees polynomiality for CMD (a
slight generalization of the term case [20]).

Proposition 3.3 Context matching where the left- and
right-hand side is a dag, and where the left hand side is
linear in all variables, is polynomial.

Proof. We apply dynamic programming tabling the pairs
of left and right hand matching subdags from bottom-up.
Note that every variable occurs at most once, so no partial
substitution has to be remembered. This shows that a table
of polynomial size can be built in polynomial time. 2

A context matching problem instance obeys Comon’s re-
striction (CMCR)[4, 5] if for each context variable all its
occurrences are applied to the same term. Proposition 3.2
shows that CMCR is NP-hard.

The restriction that the left hand side is a dag linear in
all the variables is a slight variation of Comon’s restriction,
where first-order variables must occur at most once, and
where context matching is polynomial. These comments
correct a faulty remark in [20] on context matching using
Comon’s restriction.

4 Context Matching Using Compression by
Singleton Tree Grammars

Now we analyze context matching using singleton tree
grammars (see 3.1). We will show that context matching
with STG-compression is in NP.

Definition 4.1 The size |G| of a grammar (STG) G is the
number of its rules. The depth of a nonterminal D is defined
as the maximal number of >G-steps from D. The depth of a
grammar is the maximum of the depths of all nonterminals,
denoted as depth(G).

As a generalization of the theorem in Plandowski [15,
16], the following theorem for STGs holds:

Theorem 4.2 ([3, 18]) Given an STG G, and two tree non-
terminals A,B from G, it is decidable in polynomial time
depending on |G| whether wA = wB .

The following lemmas state how the size and the depth
of an STG are increased by extending it with concatena-
tions, exponentiation, prefixes and suffixes of contexts and
subterms/subcontexts of terms and contexts. The depth/size
bounds for these operations are related to balancing con-
ditions for trees. The development is borrowed from [13],
and the proofs of the lemmas can be derived either from the
corresponding proofs in the forthcoming journal version of
[11] or are in [13]. We denote with log the logarithm for
base 2 and with ln the logarithm for base e.

Lemma 4.3 Let G be an STG defining the contexts
D1, . . . , Dn for n ≥ 1. Then there exists an STG G′ ⊇ G
that defines the context D1 · · · · · Dn and satisfies |G′| ≤
|G|+ n− 1 and depth(G′) ≤ depth(G) + dlog ne.

Lemma 4.4 Let G be an STG defining the context D. For
any n ≥ 1, there exists an STG G′ ⊇ G that defines
the context Dn and satisfies |G′| ≤ |G| + 2 blog nc and
depth(G′) ≤ depth(G) + dlog ne

Lemma 4.5 Let G be an STG defining the context D and
the term t, respectively. Let D′ be a nontrivial prefix or
suffix of the context D, or let t′ be a subterm of the term t or
context D, respectively. Then there exists an STG G′ ⊇ G
that defines D′ or t′, respectively, and satisfies |G′| ≤ |G|+
depth(G) and depth(G′) = depth(G).

Lemma 4.6 covers the case that the hole path of the de-
sired prefix context of a term t (or subcontext of a context)
deviates from the paths as given in the STG.

Lemma 4.6 Let G be an STG defining the term t. For
any nontrivial prefix context D of the term t, there ex-
ists an STG G′ ⊇ G that defines D and satisfies |G′| ≤
|G|+2 depth(G) (log(depth(G))+1) and depth(G′) ≤
depth(G) + 2 + log(depth(G)),

We will use Lemma 4.3 only for n = 2 and we will
make no use of Lemma 4.4, hence we formulate a simplified
version of a Proposition in [13].

Definition 4.7 Let G, G′ be STGs. Then we write G →sd

G′ for a grammar extension by size and depth, iff

|G′| ≤ |G|+ 3depth(G) ∗ log(depth(G)) + 2
depth(G′) ≤ depth(G) + log(depth(G)) + 2

Proposition 4.8 Let G, G′ be STGs such that
G →sd . . . →sd G′ in k steps. For simplicity, we as-
sume that depth(G) ≥ 7. Then with D = depth(G)) and
β(D, k) := D + 2k + k log(D) + k2:

|G′| ≤ |G|+ 3k(β(D, k)) log(β(D, k)) + 2k
depth(G′) ≤ β(D, k)

4

Proof. Let G = G0, G1, . . . Gk = G′ be a sequence of
STGs, such that for every i = 0, . . . , k − 1: Gi →sd

Gi+1. To verify the bound for depth(Gk), let di :=
depth(Gi), i = 1, . . . , k. Then di+1 = di + log(di) + 2,
which implies depth(Gk) ≤ d0 + 2k +

∑
(log(di)).

Using log(di + a) ≤ log(di) + a/(di ∗ ln(2)), it fol-
lows that log(di+1) − log(di) ≤ 1 for i ≥ 2, where
we used the assumption D ≥ 7. Then we obtain
depth(Gk) ≤ D + 2k + k log(D) + k2. The bound for
|Gk| can be derived by summing the upper bounds: |Gk| ≤
|G0|+ 3k

(
β(D, k) ∗ log(β(D, k))

)
+ 2k. 2 2

Corollary 4.9 Let G be an STG, and G′ be constructed
from G by k grammar extensions according to Lemmas 4.3
with n = 2, Lemma 4.5 and Lemma 4.6. Then with D =
depth(G)):

|G′| = O(Dk3(log(k) + log(D))
depth(G′) = O(Dk2)

Theorem 4.10 Context matching with STGs is in NP, and
hence is NP-complete.

Proof. The proof is aimed at using Theorem 4.2 after guess-
ing instantiations. First we assume that the right as well as
the left-hand sides of the match-equations are defined by an
STG G, where we use the convention that variables without
instantiation are terminals. Now we guess an instantiation
to solve the context matching problem. The guessed con-
texts are contained in the right-hand sides, hence 3 grammar
extension steps per context variable are sufficient to obtain
a larger STG that defines the guessed contexts: define sub-
term, define subcontext of a subterm and add a concatena-
tion to the grammar. Hence 3 ∗ K steps, where K is the
number of context variables in the problem are sufficient to
construct a common STG G′ for all the instantiations. The
same can be done for the first-order variables, and requires
a linear number of extensions. Corollary 4.9 shows that the
new STG G′ has only a polynomial size increase in com-
parison with G. Now an application of Theorem 4.2 shows
that the complexity of checking whether the guessed instan-
tiations are a solution can also be done in polynomial time.
Hence context matching with STGs is in NP. Since con-
text matching is already known as NP-hard, we have NP-
completeness. 2

For the special case matching of strings we obtain also
NP-completeness: An instance of the matching problem for
strings is a list of equations s1

.= t1, . . . , sn
.= tn, where

si, ti are strings, only si may contain string variables, and a
solution σ may replace string variables by strings, and must
solve all equations, i.e. σ(si) = ti for all i.

Corollary 4.11 String-matching where left and right hand
sides are compressed using an SCFG, is NP-complete.

Proof. It is well-known that string matching is NP-hard,
and using a monadic signature, Theorem 4.10 shows the
claim. 2

4.1 A PTime Algorithm for First-Order
Matching with STGs

The encoding of a first-order matcing problem where the
terms are compressed with STGs by expansion or the above
translation into uncompressed first-order unification does
not lead to a PTime algorithm, since there may be an expo-
nential increase of the size. First we will prepare some fur-
ther polynomial operations on STGs and SCFGs that allow
to construct a polynomial algorithm for first-order matching
using STGs.

Lemma 4.12 Given an STG G, a term t that is defined by
G, and a terminal symbol x in the STG, it is possible in poly-
nomial time to construct an SCFG that defines the position
of the left-most occurrence of x in t.

Proof. First of all, it is easy to see that given an STG, it is
possible in polynomial time to compute a mirror-SCFG that
defines the hole-positions of every context non-terminal of
G. We denote the position non-terminals for a context non-
terminal C as posC . It is efficiently checkable which non-
terminals contain the terminal x (after expansion). Now the
construction of non-terminals qA,x, qC.x is as follows: If
x = Ai in the rule A ::= f(A1, . . . , An), then qA,x ::= i.
For the rule C ::= C1[A], there are two cases: if x oc-
curs in wC , then qC ::= qC1 , otherwise if x = wA, then
qC ::= posC1

. For the rule C ::= C1C2, there are two
cases: if x occurs in wC1 , then qC ::= qC1 , and otherwise,
if x occurs in wC2 , then qC ::= posC1

qC2 . Finally, f T is
the nonterminal that defines T , the nonterminal qT defines
the position of the leftmost x in the constructed SCFG. 2

Lemma 4.13 Given an STG G, a nonterminal t, an SCFG
P encoding positions wth |P | ≤ |G|, and a nonterminal p in
P . Then it is possible in polynomial time to extend G to G′

such that (wt)|wp
is defined in G′, where the size increase

is as in Lemma 4.5.

Proof. It is sufficient to show that we can navigate to the
corresponding position in G, since the construction and size
increase is already treated in Lemma 4.5.
It is possible in polynomial time to compute the length of
all defined positions in P . The same can be done for the
positions in the SCFG Q defining the hole-positions of all
context nonterminals of G. Now we have to walk down the
structure of both grammars. A single step has as state a pair
(C, p), or (A, p), such that the position wp is in wC or wA,
respectively. Let p ::= p1p2 be the rule in G. We have
to look for the cases of rules of C, or A, respectively. If

5

C ::= C1C2, then we can construct the prefix p′ of p of
length |whp(C1)| in P in polynomial time, and then compare
it with hp(wC1), also in PTime. There are two cases:

1. If wp′ = hp(wC1), then we have to construct a nonter-
minal p′′ in P for the suffix of wp with wp′wp′′ = wp

and proceed with the pair (C2, p
′′). There is a size in-

crease of P .

2. Otherwise, wp is a posiiton within wC1 . Then proceed
with the pair (C1, p).

In a similar way, we proceed for the other rules. This may be
a polynomial number of steps and a corresponding size in-
crease of P , which is polynomial by Lemma 4.5 and Corol-
lary 4.9 Finally we obtain in polynomial time an extension
of G that defines (wt)|wp

. 2

Theorem 4.14 First-order matching where terms are com-
pressed using an STG can be done in polynomial time,
where the term and the grammar count as input.

Proof. Given a match equation s
.= t and an STG G, we

proceed as follows: For every first-order variable x, we first
construct a grammar for the leftmost position p of x, and
then extend G by constructing a non-terminal rx that rep-
resents t at position p. This can be done in polynomial
time according to Lemmas 4.12 and 4.13. Then add the
rule x ::= rx to the grammar G. This can be done for
all variables in s. The size increase of the final grammar is
polynomial due to the Lemmas 4.3, Lemma 4.5 and Lemma
4.6. Finally, we compare the non-terminals for s and t w.r.t,
to the final STG using Theorem 4.2. As a summary, all op-
erations can be done in polynomial time, hence the claim
holds. 2

Using the same constructions and a slight extension, it
is possible to show that first-order unification using STGs
is also polynomial. This does not follow from the results
in [12, 13], since the algorithm in these papers is non-
deterministic.

Theorem 4.15 First-order unification where terms are
compressed using an STG G can be done in polynomial time
and where the terms and the grammar G count as input.

Proof. The only two additions to the algorithm given for
first-order matching in the proof of Theorem 4.14 are:

1. It may not be possible to construct a corresponding
term rx for x, since the other term contains a first-order
variable y on the path. In this case, switch the role of
s, t, and compute the corresponding term ry . All the
checks and computations can be done in polynomial
time, using similar arguments as in the proofs above.

2. Check for an occurs-check-situation, which can also
be done in polynomial time.

2

5 A PTime algorithm for k-Context Match-
ing with Dags

The context matching problem is NP-complete. In this
section we reconsider this problem by introducing the ad-
ditional restriction stating that the maximum number k of
different context variables of a given instance is fixed for
the problem. We call k-context matching to this problem.
Hence, we have a family of problems indexed by k.

A polynomial time algorithm for k-context matching
(with uncompressed terms) can be easily obtained. Suppose
we are given an instance {s .= t} of the problem, where t
is a ground term and s contains at most k different context
variables. Any solution of {s .= t} instantiates any con-
text variable by a context occurring in t, and the number of
different contexts in t is bounded by |Pos(t)|2. This is be-
cause any context occurring in t can be defined by two po-
sitions of Pos(t): the root position and the hole position of
the context. Hence, it suffices to do at most k guessings of
contexts for the context variables, every one along |Pos(t)|2
possibilities, apply this partial substitution, and check if the
resulting first-order matching problem has a solution.

When the input is compressed with dags, the problem
becomes more difficult.

5.1 Inferring the context

One of the key points for obtaining a polynomial time
algorithm is the fact that, in some cases, the context solu-
tion for a context variable can be inferred. Consider the
simple case where we have two matching equations of the
form F (s) .= u and F (t) .= v, and suppose that u and v
are different. Suppose also that we know the existence of
a solution σ for these equations, but the only known infor-
mation for σ is |hp(σ(F))|, i.e. just the length to the hole
position of σ(F) and nothing else. It can be proved that this
information suffices to obtain the whole σ(F). With this
aim we define below InfCon(u, v, l) for any rooted dags u
and v, and natural number l, which intuitively corresponds
to the supposed |hp(σ(F))|.

Definition 5.1 Let u and v be two different ground
rooted dags with u 6=t v, and let l be a natural.
We define InfCon(u, v, 0) to be the empty context [·].
We also define InfCon(f(u1, . . . , um), g(v1, . . . , vm), l +
1) = f(u1, . . . , ui−1, InfCon(ui, vi, l), ui+1, . . . , um) in
the case where f = g and there exists a natural number
i ∈ [m] such that uj =t vj for all j 6= i. Otherwise,
InfCon(f(u1, . . . , um), f(v1, . . . , vm), l +1) is undefined.

Note that in the second case of the previous definition, if
f = g and such an i exists, then it is unique. This is because
f(u1, . . . , um) and g(v1, . . . , vm) are different, and hence,
uj =t vj for all j 6= i implies that ui 6=t vi.

6

Example 5.2 Let u, v, w be f(a, g(h(a, a), c), b),
f(a, g(h(b, b), c), b), g(f(a, b, c), b), respectively.
Then, InfCon(u, v, 0) = InfCon(u, w, 0) = [·],
InfCon(u, v, 1) = f(a, [·], b), InfCon(u, w, 1) is
undefined, InfCon(u, v, 2) = f(a, g([·], c), b), and
InfCon(u, v, 3) is undefined.

Lemma 5.3 Let u, v be ground rooted dags with u 6=t v.
Let s, t be dags. Let σ be a solution of {F (s) .= u, F (t) .=
v}. Then σ(F) = InfCon(u, v, |hp(σ(F))|).

Proof. We prove the claim by induction on |hp(σ(F))|.
If |hp(σ(F))| is 0, then σ(F) is [·], which coincides with
InfCon(u, v, |hp(σ(F))|). Now, suppose that |hp(σ(F))|
is l + 1 for some natural number l. This implies that
σ(F) is of the form f(w1, . . . , wi−1, C[·], wi+1, . . . , wm)
for some function symbol f and some i ∈ [m]. Since
σ is a solution of {F (s) .= u, F (t) .= v}, the dags u
and v are of the form f(u1, . . . , um) and f(v1, . . . , vm),
respectively. For the same reason, wj =t uj =t vj for all
j 6= i, and moreover, σ(C[s]) =t ui and σ(C[t]) =t vi,
and ui 6=t vi. Consider a new context variable F ′ and the
extension of σ as σ(F ′) = C[·]. Then, σ is also a solution
of {F ′(s) .= ui, F

′(t) .= vi}. Note that |hp(σ(F ′))| is l,
which is smaller than |hp(σ(F))|. By induction hypothesis,
σ(F ′) = InfCon(ui, vi, |hp(σ(F ′))|). Now, we can
conclude that σ(F) is equal to:

=t f(w1, . . . , wi−1, C[·], wi+1, . . . , wm)
=t f(w1, . . . , wi−1, F

′, wi+1, . . . , wm)
=t f(w1, . . . , wi−1,

InfCon(ui, vi, |hp(σ(F ′))|), wi+1, . . . , wm)
=t InfCon(u, v, |hp(σ(F))|) 2

5.2 The k-CMD Algorithm

Definition 5.4 The rules of the matching algorithm for
dags are in figure 1.

Initially, we compact the right hand sides, such that
equal subterms are represented by the same dag. L is the
maximum height of the initial right-hand-sides t1, . . . , tn.
We write the match-equations as si

.= ti, assuming that
the right-sides ti are a ground rooted dags. As notation
for several instantiations of context variables we also allow
F 7→ AllCon(s1, s2), if s1, s2 are dags and s2 is a subdag
of s1. The semantics is that AllCon(s1, s2) is the set of all
contexts C, such that C[s2] =t s1.

Note that after applying any rule on a set ∆ producing a
set ∆′, any right-hand side t′i of an equation in ∆′ is a sub-
dag of some right-hand side tj of an equation in ∆. Hence,
L is also a bound for the height of the dags at the right-hand
sides of equations of ∆′.

Lemma 5.5 The set of rules is sound.

Proof. Let ∆ be a set of equations, and let ∆′ be a re-
sulting set from applying an inference step on ∆. We show
that every solution of ∆′ is also a solution of ∆′.

This is easy for all the rules. Note that rules
Var-ElimF1, Var-ElimF3 and Var-ElimF4 give an
instantiation σ(∆) of the original set ∆ as result. Hence,
from any solution θ of σ(∆) we derive a solution θ(σ) for
∆. This argument is analogous for the rule Var-Elimx.
The rule Decompose gives a set ∆′ as result satisfying that
if σ is a solution of ∆′ then σ is also a solution of ∆. For
rule Fail, it is obvious that the assumption of a solution σ
for the resulting set ∆′ can not be satisfied. 2

Our set of rules represents, in fact, a family of algo-
rithms, parameterized by the strategy for deciding the ap-
plied rule at every step. On the other side, any of the possi-
ble strategies produces a non-deterministic algorithm, since
some rules require guessings.

Lemma 5.6 The set of rules is complete. Moreover, any
sequence of rule applications computes a representation of
all solutions, by gathering all guesses in the rules.

Proof. Let ∇ be a set of equations with a solution σ. It
suffices to show that after applying any applicable rule to
∇, one of the resulting sets of equations among the possible
guesses also has σ as solution. We distinguish the cases
depending on which inference step is applied.

• For the Decompose- and Var-Elimx-rules this is
trivial, and for the Fail rule it is clear that the as-
sumption on the existence of a solution is not possible.
We treat the rest of cases as follows.

• Suppose that we apply Var-ElimF1 rule. We as-
sume the existence of a solution σ for the initial set
of equations ∆ ∪ {F (s1)

.= t1, F (s2)
.= t2}. By

the conditions for this rule application, t1 6=t t2. By
Lemma 5.3, σ(F) is InfCon(t1, t2, |hp(σ(F))|). It
is obvious that |hp(σ(F))| is smaller than or equal
to L. Hence, |hp(σ(F))| ∈ [0, L], and we can con-
sider the case where l is guessed to |hp(σ(F))| in
this rule application. Since σ is a ground substitu-
tion, σ(u) =t σ({F 7→ σ(F)}(u)) =t σ({F 7→
InfCon(t1, t2, |hp(σ(F))|)}(u)) holds for any dag
u, and hence, σ is also a solution of {F 7→
InfCon(t1, t2, l)}(∆ ∪ {F (s1)

.= t1, F (s2)
.= t2}).

• Suppose that we apply the Var-ElimF2 rule. We
assume the existence of a solution σ for the set of
equations ∆ ∪ {F (s1)

.= t, F (s2)
.= t, . . . , F (sn) .=

t}. In particular, σ(F (s1)) =t t, σ(F (s2)) =t

t, . . . , σ(F (sn)) =t t, and hence, there exists a sub-
dag t′ of t with t′ =t σ(s1) =t . . . =t σ(sn). There-
fore, σ is also a solution of ∆∪{s1

.= t′, . . . , sn
.= t′}.

Also, σ(F) is represented by AllCon(t, t′), since it is
one of the contexts in AllCon(t, t′).

7

Decompose:
∆ ∪ {f(s1, . . . , sm) .= f(t1, . . . , tm)}

∆ ∪ {s1
.= t1, . . . , sm

.= tm}
where f is a function symbol (n = arity(f)).

Fail:
∆ ∪ {f(t1, . . . , tn) .= g(u1, . . . , um)}

⊥
where f 6= g.

Var-Elimx:
∆ ∪ {x .= t}
{x 7→ t}(∆)

where x is a first-order variable.

Var-ElimF1:
∆ ∪ {F (s1)

.= t1, F (s2)
.= t2}

{F 7→ InfCon(t1, t2, l)}(∆ ∪ {F (s1)
.= t1, F (s2)

.= t2})
if t1 6=t t2. The number l is guessed over [0, L], where InfCon(t1, t2, l) must be defined.

Var-ElimF2:
∆ ∪ {F (s1)

.= t, F (s2)
.= t, . . . , F (sm) .= t}

∆ ∪ {s1
.= t′, . . . , sm

.= t′}
where F is a context variable not occurring in ∆ ∪ {s1

.= t′, . . . , sm
.= t′}. The dag t′ is

guessed over Subdags(t). The instantiation for F is F 7→ AllCon(t, t′).

Var-ElimF3:
∆ ∪ {F (s) .= t}

{F 7→ [·]}(∆ ∪ {F (s) .= t}) | {F 7→ InfCon(t, t′, l)}(∆ ∪ {F (s) .= t})
where F occurs in s. The dag t′ is guessed over Subdags(t) \ {t}, l is guessed over [0, L],
where InfCon(t, t′, l) must be defined.

Var-ElimF4:
∆

{F2 7→ [·]}(∆) | {F1 7→ InfCon(t1, t′2, l)}(∆)
if no other rule can be applied. Select (don’t care) two equations F1(s1)

.= t1, F2(s2)
.= t2

in ∆ with F1 6= F2, F1 occurs in s2 and height(t1) ≥ height(t2). The dag t′2 is guessed
over Subdags(t2) \ {t1}, and l is guessed over [1, L], where InfCon(t1, t′2, l) must be
defined.

Figure 1. Rules of the Dag-Context-Matching Algorithm

• Suppose that we apply the Var-ElimF3 rule. We as-
sume the existence of a solution σ for the set of equa-
tions ∆∪{F (s) .= t}. Since F occurs in s, there exists
a subdag of F (s) of the form F (s′). Since σ(F (s)) =
t holds, there exists a proper subdag t′ of t such that
σ(F (s′)) = t′. The case σ(F) = [·] is covered by the
first alternative of the rule. Now assume that σ(F) 6=
[·]. Then t′ 6=t t. Hence, by Lemma 5.3, σ(F) is
InfCon(t, t′, |hp(σ(F))|). In this case |hp(σ(F))| ≥
1, and also |hp(σ(F))| ≤ L. Hence, |hp(σ(F))| ∈
[1, L], and we can consider the case where l is guessed
to |hp(σ(F))| in this rule application. Since σ is a
ground substitution, σ(u) = σ({F 7→ σ(F)}(u)) =
σ({F 7→ InfCon(t, t′, |hp(σ(F))|)}(u)) holds for
any dag u, and hence, σ is also a solution of {F 7→
InfCon(t, t′, l)}(∆ ∪ {F (s) .= t}).

• Suppose that we apply the Var-ElimF4 rule. We
assume the existence of a solution σ for the set ∆ of
equations. By the conditions for this rule application,

no other rule can be applied. Since rules Decompose,
Fail, Var-Elimx, can not be applied, every equa-
tion in ∆ is of the form F (s) .= t for some con-
text variable F . Moreover, since rule Var-ElimF2
and Var-ElimF3 can not be applied, every context
variable F occurring in ∆ satisfies that there exists
an equation G(s) .= t in ∆, such that G is differ-
ent from F , and F occurs in s. Since the set ∆ is
finite, there exist equations F1(s1)

.= t1, F2(s2)
.=

t2, . . . , Fn(sn) .= tn with n ≥ 2 satisfying that
F1 occurs in s2, F2 occurs in s3, . . . , Fn−1 occurs
in sn, and Fn occurs in s1, and where the Fi’s are
pairwise different. Therefore, there are dags of the
form Fn(s′1), F1(s′2) . . . , Fn−1(s′n) which are subdags
of s1, s2, . . . , sn, respectively. Since σ is a solution
of ∆, it holds that σ(F1(s1)) =t t1, σ(F2(s2)) =t

t2, . . . , σ(Fn(sn)) =t tn. We select the index i such
that ti has maximal height among the t1, . . . , tn. With-
out loss of generality we can assume i = 1. The

8

rule now focusses on the two equations F1(s1))
.=

t1, F2(s2))
.= t2 If σ(F2) = [·], we apply the first

alternative of the rule, and then it is easy to see that σ
is also a solution of the resulting set of equations.
Now assume that σ(F2) 6= [·]. Then there exists a
proper subdag t′2 of t2, such that σ(F1(s′2)) = t′2.
Since height(t1) ≥ height(t2) > height(t′2), it
holds that t1 6=t t′2. Hence by Lemma 5.3, σ(F1)
is the same context as InfCon(t1, t′2, |hp(σ(F1))|).
Also, 0 ≤ |hp(σ(F1))| ≤ L. Hence we can con-
sider the case where l is guessed to |hp(σ(F1))| in
this rule application. Since σ is a ground substitu-
tion, σ(u) = σ({F 7→ σ(F)}(u)) = σ({F 7→
InfCon(t1, t′2, |hp(σ(F))|)}(u)) holds for any dag
u, and hence, σ is also a solution of {F 7→
InfCon(t1, t′2, l)}(∆).

2 2

6 Complexity of the k-CMD Algorithm

First we summarize our assumptions on the implemen-
tation of dags and the algorithm. For the right hand sides
we assumed that in a first compaction step, different nodes
represent also different terms. For the left hand sides, we
leave the dags as they are inputted. Let K be the number
of context variables in the input, let N be the size of the
input, and let L be as defined above, the maximal height or
right-hand dags.

The algorithm may change the left hand side dags by two
operations:

• A substitution {x 7→ t} in the rule Var-Elimx. This
is implemented as redirecting the edges that point to x
to edges that point to the dag t. Assuming an appropri-
ate data structure, this can be performed in linear time.
In particular, it does not increase the number of nodes.

• a substitution F 7→ C in the VarElimF-rules, where
C is a ground context. For the ground context C, it
holds that |hp(C)| ≤ L. Since the arity of function
symbols is O(1), this will add at most L new nodes in
the global dag. The rules can perform at most K times.

Hence we have argued that the following holds:

Lemma 6.1 The algorithm increases the size of the input
by at most K ∗ L nodes, which is less than K ∗N .

Lemma 6.2 There are at most K applications of
VarElimF-rules, and at most N applications of the
Decompose and of the Var-Elimx-rules.

Proposition 6.3 The number of final representations of so-
lutions is at most (K ∗ N ∗ L)K , which is smaller than
(K ∗N ∗N)K ,

Proof. The maximal contribution of the different rules are

Var-ElimF1 Var-ElimF2
L K ∗N

Var-ElimF3 Var-ElimF4
K ∗N ∗ L K ∗N ∗ L

This holds, since the possibilities for guessing a dag are
at most K ∗N , and the possibilities for guessing a height is
bounded by L. 2

All the computations during the application of rules, like
computing the height, the subdags, or the InfCon are poly-
nomial, hence:

Theorem 6.4 If the number of context variables is a con-
stant K at the start of the algorithm, then an explicit rep-
resentation of all solutions of size at most O(N2K) can be
computed in polynomial time. In particular, solvability can
be decided in polynomial time.

Example 6.5 An example for an exponential number of
matches is the dag corresponding to a complete binary tree
tn of depth n, built with binary function symbol f , and the
constant a, and the single equation F (a) .= tn. There are
exponentially many solutions, but they are represented as
AllCon(tn, a).

7 Conclusion

We analyzed the complexity of context matching under
different compression techniques like dags and STGs. We
showed that context matching using STGs is NP-complete
and constructed a polynomial context matching algorithm
with dags if the number of context variables is fixed. We
left open the complexity of the linear context matching with
STGs.

References

[1] F. Baader and W. Snyder. Unification theory. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reason-
ing, volume I, chapter 8, pages 445–532. Elsevier Science
and MIT Press, 2001.

[2] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández,
M. Kay, J. Robie, and J. Siméon, editors. XML
Path Language (XPath) Version 2.0. W3C, 2007.
http://www.w3.org/TR/2007/REC-xpath20-20070123/.

[3] G. Busatto, M. Lohrey, and S. Maneth. Efficient memory
representation of XML documents. In Proceedings of DBPL
2005, volume 3774 of LNCS, pages 199–216, 2005.

[4] H. Comon. Completion of rewrite systems with member-
ship constraints. Part I: Deduction rules. Journal of Symbolic
Computation, 25(4):397–419, 1998.

[5] H. Comon. Completion of rewrite systems with membership
constraints. Part II: Constraint solving. Journal of Symbolic
Computation, 25(4):421–453, 1998.

9

[6] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree au-
tomata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997. release
1.10.2002.

[7] M. Garey and D. Johnson. Computers and Intractability.
W.H. Freeman, 1979.

[8] G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive queries
over trees. J. ACM, 53(2):238–272, 2006.

[9] S. Gulwani and A. Tiwari. Computing procedure summaries
for interprocedural analysis. In Proc. European Symp. on
Programming, ESOP 2007, volume 4421 of LNCS, pages
253–267. Springer, 2007.

[10] J. Levy, M. Schmidt-Schauß, and M. Villaret. Monadic
second-order unification is NP-complete. In Rewriting Tech-
niques and Applications (RTA-15), volume 3091 of LNCS,
pages 55–69. Springer, 2004.

[11] J. Levy, M. Schmidt-Schauß, and M. Villaret. Monadic
second-order unification is NP-complete. In RTA-15, vol-
ume 3091 of LNCS, pages 55–69. Springer, 2004.

[12] J. Levy, M. Schmidt-Schauß, and M. Villaret. Bounded
second-order unification is NP-complete. In Proc. RTA-17,
volume 4098 of LNCS, pages 400–414. Springer, 2006.

[13] J. Levy, M. Schmidt-Schauß, and M. Villaret. Stratified con-
text unification is NP-complete. In Proc. Third Intl. Joint
Conf. on Automated Reasoning, IJCAR 2006, volume 4130
of LNCS, pages 82–96. Springer, 2006.

[14] J. Niehren, M. Pinkal, and P. Ruhrberg. A uniform approach
to underspecification and parallelism. In Proceedings of
35th ACL’97, pages 410–417, Madrid, Spain, 1997.

[15] W. Plandowski. Testing equivalence of morphisms in
context-free languages. In J. van Leeuwen, editor, Proc.
of the 2nd ESA’94, volume 855 of LNCS, pages 460–470,
1994.

[16] W. Plandowski. The Complexity of the Morphism Equiva-
lence Problem for Context-Free Languages. PhD thesis, De-
partment of Mathematics, Informatics and Mechanics, War-
saw University, 1995.

[17] W. Plandowski and W. Rytter. Complexity of language
recognition problems for compressed words. In Jewels are
Forever, pages 262–272. Springer, 1999.

[18] M. Schmidt-Schauß. Polynomial equality testing for terms
with shared substructures. Frank report 21, Institut für In-
formatik. FB Informatik und Mathematik. J. W. Goethe-
Universität Frankfurt am Main, November 2005.

[19] M. Schmidt-Schauß and K. U. Schulz. Solvability of context
equations with two context variables is decidable. J. Symb.
Comput., 33(1):77–122, 2002.

[20] M. Schmidt-Schauß and J. Stuber. On the complexity of
linear and stratified context matching problems. Theory of
Computing Systems, 37:717–740, 2004.

A Proofs for STG-Extensions

The proofs are borrowed from a forthcoming journal ver-
sion of [11] and from [13].

Lemma A.1 Let G be an STG defining the contexts
D1, . . . , Dn for n ≥ 1. Then there exists an STG G′ ⊇ G
that defines the context D1 · · · · · Dn and satisfies |G′| ≤
|G|+ n− 1 and depth(G′) ≤ depth(G) + dlog ne.

Proof. Let Ai be the non-terminal symbol generating the
contexts Di, for any i = 1, . . . , n. We define G′ by adding
a set of rules to G of the form:

bi,j → bi, b i+j
2 c bb i+j

2 c+1, j

where bi,i is Ai. Then, b1,n generates D1 . . . Dn, and to
generate it we only need to add n − 1 of such rules. The
depth is increased by at most dlog ne. 2

Lemma A.2 Let G be an STG defining the context D. For
any n ≥ 1, there exists an STG G′ ⊇ G that defines
the context Dn and satisfies |G′| ≤ |G| + 2 blog nc and
depth(G′) ≤ depth(G) + dlog ne

Proof. Let a be the non-terminal symbol generating D,
m = blog nc, and n = k020 + k121 + · · · + km2m be a
binary representation satisfying ki ∈ {0, 1}. We add the
following set of rules to G:

a1 → a a
a2 → a1 a1

· · ·
am → am−1 am−1

b0 →
{

a if k0 = 1
[·] if k0 = 0

b1 →
{

a1 b0 if k1 = 1
b0 if k1 = 0

· · ·

bm →
{

am bm−1 if km = 1
bm−1 if km = 0

Then, the non-terminal symbol bm generates Dn, and it
is easy to see that this grammar satisfies the bounds stated
by the lemma. 2

Lemma A.3 Let G be an STG defining the context D and
the term t, respectively. Let D′ be a nontrivial prefix or
suffix of the context D, or let t′ be a subterm of the term t or
context D, respectively. Then there exists an STG G′ ⊇ G
that defines D′ or t′, respectively, and satisfies |G′| ≤ |G|+
depth(G) and depth(G′) = depth(G).

10

Proof. Let C be the non-terminal symbol defining the
context D = wC . By induction on depthG(C), we will
prove a stronger result: for any nontrivial prefix D′ of
wC , there exists a grammar G′ ⊇ G and a nonterminal
C ′ defining D′, and satisfying depth(C ′) ≤ depth(C),
|G′| ≤ |G|+ depthG(C) and depth(G′) = depth(G).

The base case is trivial since depthG(C) = 1 implies
that the rule for C is of the form C ::= (A1, . . . , An). For
the induction case, assume that D′ 6= D and that D′ is not
trivial, otherwise we are done. Let C ::= C1C2 be the rule
for C. If D′ is a prefix of wC1 , then we can use induction
and obtain |G′| ≤ |G|+depthG(C1) < |G|+depthG(C).
Let wC1 be a proper prefix of D′. Then D′ = wC1D

′′

and D′′ is a prefix of wC2 . By induction hypothesis, there
exists a grammar G′′ deriving D′′ from some C ′′ with
depth(C ′′) ≤ depth(C2), depth(G′) = depth(G) and
size |G′′| ≤ |G|+ depth(C ′′) ≤ |G|+ depth(C)− 1. We
add C ′ ::= C1C

′′ to get the grammar G′ from G′′ such that
wC′ = D′. Notice that |G′| = |G′′|+ 1, and depth(G′) =
depth(G′′) because depth(C ′′) ≤ depth(C2) implies
depth(C ′) ≤ depth(C).
For suffixes the proof is very similar. 2 2

Lemma A.4 covers the case that the hole path of the de-
sired prefix context of a term t (or subcontext of a context)
deviates from the paths as given in the STG.

Lemma A.4 Let G be an STG defining the term t. For
any nontrivial prefix context D of the term t, there ex-
ists an STG G′ ⊇ G that defines D and satisfies |G′| ≤
|G|+2 depth(G) (log(depth(G))+1) and depth(G′) ≤
depth(G) + 2 + log(depth(G)),

Proof.
Let A be the non-terminal symbol defining the term

t = wA and let p be a position in wA that is the position
of the hole of the desired context D. First we show by in-
duction that we can generate a list of context nonterminals
that can be concatenated to construct D. The induction is
on depth(A).

The base case is that |p| = 0 at some depth. In this case
the empty context is the result, which is omitted in the list.
For the induction step we consider the different possibilities
for rules:

1. The rule is A ::= f(A1, . . . , An) and p = kp′.
Then we return the context defined by the rule C1 ::=
f(A1, . . . , [·]k, . . . , An), and the list for Ak, p′.

2. The rule is A ::= C[A2]. There are some subcases:
If p is a prefix of mp(C), then return C1, constructed
such that p = mp(C1) using Lemma A.3.
If p is within A2, and p = p1p2, where p1 = mp(C),
then we return C, and the list of contexts generated for
A2, p2.
The position p is within C. Then let p = p1p2p3,

where p1 is the maximal common prefix of p and
mp(C), and |p2| = 1. Then construct C1 for the pre-
fix of wC with p1 = mp(C1) by Lemma A.3. Let
p1k with k ∈ N be a prefix of mp(C). Let C3 be
a new symbol defining the subcontext of wC start-
ing at position p1k using Lemma A.3. Moreover,
there is a defined rule C2 ::= f(B1, . . . , [·]k, . . . Bn),
corresponding to the subcontext of wC for position
p1, whose existence can be verified by induction.
Since p2 6= k, we have to define the following
new symbols and rules: A3 ::= C3[A2], C4 ::=
f(B1, . . . , [·]p2 , . . . , Bk−1, A3, Bk+1, . . . , Bn). Then
return C1, C4 and the list generated for Bp2 , p3.

Summarizing, we obtain a list of contexts of length at most
2depth(G), which can be concatenated defining a new
symbol CD. An upper bound on the total number of new
rules is (2 log(depth(G))+2)∗depth(G), since the induc-
tion hypothesis in case 2 is called for depth(A)−2. Notice
that the depth of all the contexts that we build up is bounded
by depth(G) + 1 because of the construction of C4, hence
the depth of CD is at most depth(G)+2+log(depth(G)),
which is the depth contribution of the final concatenation. 2

2

11

