
Kalman Filters and Adaptive Windows for
Learning in Data Streams ?

Albert Bifet and Ricard Gavaldà

Universitat Politècnica de Catalunya, Barcelona, Spain
{abifet,gavalda}@lsi.upc.edu

July 12th, 2006

Abstract. We study the combination of Kalman filter and a recently
proposed algorithm for dynamically maintaining a sliding window, for
learning from streams of examples. We integrate this idea into two well-
known learning algorithms, the Näıve Bayes algorithm and the k-means
clusterer. We show on synthetic data that the new algorithms do never
worse, and in some cases much better, than the algorithms using only
memoryless Kalman filters or sliding windows with no filtering.

1 Introduction

We deal with the problem of distribution and concept drift when learning from
streams of incoming data. We study the combination of a classical estimation
method in automatic control theory, the Kalman filter, with the also classical idea
in machine learning of using a window of recently seen data items for learning.
Many of the previous works in the machine learning area use windows of a fixed
length. We use instead an algorithm that we proposed recently [3] for adaptively
changing the size of the window in reaction to changes observed in the data.

In automatic control theory, many modern complex systems may be classed
as estimation systems, combining several sources of (often redundant) data in
order to arrive at an estimate of some unknown parameters. Among such systems
are terrestrial or space navigators for estimating such parameters as position,
velocity, and altitude, and radar systems for estimating position and velocity.

Estimation is often characterized as prediction, filtering or smoothing, de-
pending on the intended objectives and the available observational information.
Prediction usually implies the extension in some manner of the domain of va-
lidity of the information. Filtering usually refers to the extraction of the true
signal from the observations. Smoothing usually implies the elimination of some
noisy or useless component in the observed data.

One of the most widely used estimation algorithms is the Kalman filter, an
algorithm that generates estimates of variables of the system being controlled by
? Partially supported by the 6th Framework Program of EU through the integrated

project DELIS (#001907), by the EU PASCALNetwork of Excellence, IST-2002-
506778, and by the DGICYT MOISES-BAR project, TIN2005-08832-C03-03.



2

processing available sensor measurements. Kalman filtering and related estima-
tion algorithms have proved tremendously useful in a large variety of settings.
Automatic machine learning is but one of them; see [17, 10] among many oth-
ers. There is however an important difference in the control theory and machine
learning settings: In automatic control, we assume that system parameters are
known or easily detectable; these parameters are physical properties of devices,
and therefore fixed. In contrast, in most machine learning situations the distribu-
tion that generates the examples is totally unknown, and there is no obvious way
to measure any of its statistics, other than estimating them from the data. In
addition, these statistics may vary impredictably over time, either continuously
at a slow rate, or abruptly from time to time.

Besides the occasional use of filtering, most previous work on learning and
time change has used variations of the sliding-window idea: at every moment,
one window (or more) is kept containing the most recently read examples, and
only those examples are considered relevant for learning. A critical point in
this approach is the choice of a window size, and several strategies have been
proposed.

The first and easiest strategy is deciding (or asking the user for) a window
size W and keeping it fixed through the execution of the algorithm (see e.g. [6,
7, 18]). In order to detect change, one can keep a reference window with data
from the past, also of some fixed size, and decide that change has occurred if
some statistical test indicates that the distributions in the reference and current
windows differ.

This strategy can work well if information on the time scale of change is
available – which may be too much too ask in many contexts, and especially too
much to ask from the user. Furthermore, there may be no “right” time scale:
a single data source may experience periods of sudden changes, periods with
slow but continuous change, and periods where the distribution remains almost
stationary.

In general, the fixed-size approach is caught in the following trade-off, dis-
cussed explicitly in [6]: we would like to choose a “large” value for W so that
in periods with little change we accumulate many examples to work on, which
leads to more accurate learning; on the other hand, we would like a “small” W ,
so that we can react quickly to changes. Conversely, too large a W will make
algorithms insensitive to change, and too small a W will lead to large variance,
hence inaccuracy in the learned model.

A second approach [8, 12] uses windows of variable length, and monitors the
evolution of the model’s error to decide whether change has occurred. In this
case, the a-priori assumption on the rate of change is usually hidden in the way
that the decision is made. E.g., one maintains a fixed-size window of most recent
examples on which the “current error rate” is measured. Still another approach
is to consider that examples “decay” over time [4]: in this case, the a-priori
assumption on the time-scale of change is the choice of a “decay constant” or
“decay function” to weight the examples.



3

We have recently proposed another strategy [3]: keeping a window whose
length is adjusted dynamically to reflect changes in the data. When change seems
to be occurring, as indicated by some statistical test, the window is shrunk to
keep only data items that still seem to be valid. When data seems to be sta-
tionary, the window is enlarged to work on more data and reduce variance. Our
algorithm, called ADWIN for Adaptive Windowing, can be implemented with a
low amount of memory and time per data item, and experimentally outperforms
every window of a fixed size S when the time scale of change is either much
smaller or much larger than S. In a way, ADWIN adjusts its window size to “best”
one for the data it is seeing.

1.1 Proposal and Results of this Paper

In this paper, we combine ADWIN and Kalman filter and compare experimentally
the performance of the resulting algorithm, K-ADWIN, with other estimator algo-
rithms. The intuition why this combination should be better than ADWIN alone
or the Kalman filter alone is as follows.

The Kalman filter is a memoryless algorithm, and it can benefit from having
a memory aside. In particular, running a Kalman filter requires knowledge of at
least two parameters of the system, named state covariance and measurement
covariance, that should be estimated a priori. These are generally difficult to
measure in the context of learning from a data stream, and in addition they can
vary over time. The window that ADWIN maintains adaptively is guaranteed to
contain up-to-date examples from which the current value of these covariances
can be estimated and used in the Kalman filter.

On the other hand, ADWIN is somewhat slow in detecting a gradual change,
because it gives the same weight to all examples in the window – it is what we
will call a linear estimator. If there is a slow gradual change, the most recent
examples should be given larger weight. This is precisely what the Kalman filter
does in its estimation.

As in [3], we test K-ADWIN on two well-known learning algorithms where it is
easy to observe the effect of distribution drift: the Näıve Bayes classifier and the
k-means clusterer. We also perform experiments that directly compare the ability
of different estimators to track the average value of a stream of real numbers
that varies over time. We use synthetic data in order to control precisely the
type and amount of distribution drift. The main conclusions are:

– In all three types of experiments (tracking, Näıve Bayes, and k-means),
K-ADWIN either gives best results or is very close in performance to the best
of the estimators we try. And each of the other estimators is clearly out-
performed by K-ADWIN in at least some of the experiments. In other words,
no estimator ever does much better than K-ADWIN, and each of the others is
outperformed by K-ADWIN in at least one context.

– More precisely, for the tracking problem, K-ADWIN and ADWIN automatically
do about as well as the Kalman filter with the best set of fixed covariance
parameters (parameters which, in general, can only be determined after a



4

good number of experiments). And these three do far better than any fixed-
size window.

– In the Näıve Bayes experiments, K-ADWIN does somewhat better than ADWIN
and far better than any memoryless Kalman filter. This is, then, a situation
where having a memory clearly helps.

– In the k-means case, again K-ADWIN performs about as well as the best (and
difficult to find) Kalman filter, and they both do much better than fixed-size
windows.

The paper is structured as follows: In Section 2 we describe a general frame-
work for discussing estimator algorithms, as made of three modules: Memory,
Estimator, and Change detector. In Section 3 we describe the Kalman filter (an
example of Estimator) and the CUSUM test (an example of Change Detector).
In Section 4 we review the ADWIN algorithm and its theoretical guarantees of
performance. In Section 5 we describe how ADWIN and the Kalman filter can
be combined, and describe the tracking experiments. In Sections 6 and 7 we
describe the experiments with Näıve Bayes and k-means, respectively.

2 Time Change Detectors and Predictors: A General
Framework

Most approaches for predicting and detecting change in streams of data can
be discussed in the general framework: The system consists of three modules:
a Memory module, an Estimator Module, and a Change Detector or Alarm
Generator module. These three modules interact as shown in Figure 1, which is
analogous to Figure 8 in [16].

-
xt

Estimator

- -
Alarm

Change Detector

-
Estimation

Memory
-

6

6
?

Fig. 1. General Framework

In general, the input to this algorithm is a sequence x1, x2, . . . , xt, . . . of data
items whose distribution varies over time in an unknown way. The outputs of
the algorithm are, at each time step



5

– an estimation of some important parameters of the input distribution, and
– a signal alarm indicating that distribution change has recently occurred.

In this paper we consider a specific, but very frequent case, of this setting:
that in which all the xt are real values. The desired estimation is usually the
expected value of the current xt, and less often another distribution statistics
such as the variance. The only assumption on the distribution is that each xt is
drawn independently from each other.

Memory is the component where the algorithm stores all the sample data or
summary that considers relevant at current time, that is, that presumably shows
the current data distribution.

The Estimator component is an algorithm that estimates the desired statis-
tics on the input data, which may change over time. The algorithm may or may
not use the data contained in the Memory. The simplest Estimator algorithm
for the expected is the linear estimator, which simply returns the average of
the data items contained in the Memory. Other examples of run-time efficient
estimators are Auto-Regressive, Auto Regressive Moving Average, and Kalman
filters.

The change detector component outputs an alarm signal when it detects
change in the input data distribution. It uses the output of the Estimator, and
may or may not in addition use the contents of Memory.

In Table 1 we classify these predictors in four classes, depending on whether
Change Detector and Memory modules exist:

Table 1. Types of Time Change Predictor and some examples

No memory Memory

Type I Type III
No Change Detector Kalman Filter Adaptive Kalman Filter

Type II Type IV
Change Detector Kalman Filter + CUSUM ADWIN

Kalman Filter + ADWIN

– Type I: Estimator only. The simplest one is modelled by

x̂k = (1− α)x̂k−1 + α · xk.

The linear estimator corresponds to using α = 1/N where N is the width
of a virtual window containing the last N elements we want to consider.



6

Otherwise, we can give more weight to the last elements with an appropriate
constant value of α. The Kalman filter tries to optimize the estimation using
a non-constant α (the K value) which varies at each discrete time interval.

– Type II: Estimator with Change Detector. An example is the Kalman Filter
together with a CUSUM test change detector algorithm, see for example [10].

– Type III: Estimator with Memory. We add Memory to improve the results
of the Estimator. For example, one can build an Adaptive Kalman Filter
that uses the data in Memory to compute adequate values for the process
variance Q and the measure variance R. In particular, one can use the sum
of the last elements stored into a memory window to model the Q parameter
and the difference of the last two elements to estimate parameter R.

– Type IV: Estimator with Memory and Change Detector. This is the most
complete type. Two examples of this type, from the literature, are:
• A Kalman filter with a CUSUM test and fixed-length window memory,

as proposed in [16]. Only the Kalman filter has access to the memory.
• A linear Estimator over fixed-length windows that flushes when change is

detected [11], and a change detector that compares the running windows
with a reference window.

In [3], we proposed another Type IV algorithm called ADWIN, which is a new
Memory+Change detector module together with a linear estimator. We showed
it performs advantageously with respect to strategies that maintain a fixed-
length window and linear estimators. The goal of this paper is to propose an
even better Type IV algorithm by combining the best of both worlds: a Kalman
filter as a “good” Estimation module and ADWIN as “good” Memory+Change
detector modules.

3 The Kalman Filter and the CUSUM Test

One of the most widely used Estimation algorithms is the Kalman filter. We give
here a description of its essentials; see [19] for a complete introduction.

The Kalman filter addresses the general problem of trying to estimate the
state x ∈ <n of a discrete-time controlled process that is governed by the linear
stochastic difference equation

xk = Axk−1 + Buk + wk−1

with a measurement z ∈ <m that is

Zk = Hxk + vk.

The random variables wk and vk represent the process and measurement noise
(respectively). They are assumed to be independent (of each other), white, and
with normal probability distributions

p(w) ∼ N(0, Q)



7

p(v) ∼ N(0, R).

In essence, the main function of the Kalman filter is to estimate the state vector
using system sensors and measurement data corrupted by noise.

The Kalman filter estimates a process by using a form of feedback control:
the filter estimates the process state at some time and then obtains feedback in
the form of (noisy) measurements. As such, the equations for the Kalman filter
fall into two groups: time update equations and measurement update equations.
The time update equations are responsible for projecting forward (in time) the
current state and error covariance estimates to obtain the a priori estimates for
the next time step.

x−k = Axk−1 + Buk

P−k = APk−1A
T + Q

The measurement update equations are responsible for the feedback, i.e. for in-
corporating a new measurement into the a priori estimate to obtain an improved
a posteriori estimate.

Kk = P−k HT (HP−k HT + R)−1

xk = x−k + Kk(zk −Hx−k )

Pk = (I −KkH)P−k .

There are extensions of the Kalman filter (Extended Kalman Filters, or EKF)
for the cases in which the process to be estimated or the measurement-to-process
relation is nonlinear. We do not discuss them here.

In our case we consider the input data sequence of real values z1, z2, . . . , zt, . . .
as the measurement data. The difference equation of our discrete-time controlled
process is the simpler one, with A = 1,H = 1, B = 0. So the equations are
simplified to:

Kk = Pk−1/(Pk−1 + R)

Xk = Xk−1 + Kk(zk −Xk−1)

Pk = Pk(1−Kk) + Q.

The performance of the Kalman filter depends on the accuracy of the a-priori
assumptions:

– linearity of the difference stochastic equation
– estimation of covariances Q and R, assumed to be fixed, known, and follow

normal distributions with zero mean.

When applying the Kalman filter to data streams that vary arbitrarily over
time, both assumptions are problematic. The linearity assumption for sure, but
also the assumption that parameters Q and R are fixed and known – in fact,
estimating them from the data is itself a complex estimation problem.

The cumulative sum (CUSUM algorithm), which was first proposed in [15],
is a change detection algorithm that gives an alarm when the mean of the input



8

data is significantly different from zero. The CUSUM input can be any filter
residual, for instance the prediction error from a Kalman filter.

The CUSUM test is as follows:

g0 = 0

gt = max (0, gt−1 + εt − υ)

if gt > h then alarm and gt = 0

The CUSUM test is memoryless, and its accuracy depends on the choice of
parameters υ and h.

4 The ADWIN Algorithm

In this section we review ADWIN, an algorithm for estimating, detecting change,
and dynamically adjusting the length of a data window. For details see [3].

4.1 Maintaining Updated Windows of Varying Length

The inputs to the algorithm are a confidence value δ ∈ (0, 1) and a (possibly
infinite) sequence of real values x1, x2, x3, . . . , xt, . . . The value of xt is available
only at time t. Each xt is generated according to some distribution Dt, indepen-
dently for every t. We denote with µt the expected value of xt when it is drawn
according to Dt. We assume that xt is always in [0, 1]; by an easy rescaling, we
can handle any case in which we know an interval [a, b] such that a ≤ xt ≤ b
with probability 1. Nothing else is known about the sequence of distributions
Dt; in particular, µt is unknown for all t.

Algorithm ADWIN uses a sliding window W with the most recently read xi.
Let n denote the length of W , µ̂W the (known) average of the elements in W ,
and µW the (unknown) average of µt for t ∈ W . Note that these quantities
should be indexed by t, but in general t will be clear from the context.

The idea behind ADWIN is simple: whenever two “large enough” subwindows
of W exhibit “distinct enough” averages, one can conclude that the correspond-
ing expected values are different, and the older portion of the window is dropped.
Formally, “large enough” and “distinct enough” translate into the computation
of a cut value εc (which depends on δ, the length of the subwindows, and the
averages of their contents). In other words, W is kept as long as possible while
the null hypothesis “µt has remained constant in W” is sustainable up to confi-
dence δ.

The computation of this εc (not discussed here) is crucial to the performance
of the algorithm. In particular, the main technical result in [3] about the perfor-
mance of ADWIN is:

Theorem 1. [3] At every time step we have:

1. (Few false positives guarantee) If µt remains constant within W , the proba-
bility that ADWIN shrinks the window at this step is at most δ.



9

2. (Few false negatives guarantee) If for any partition W in two parts W0W1

(where W1 contains the most recent items) we have |µW0 − µW1 | > ε, and if

ε ≥ 4 ·

√
3 max{µW0 , µW1}

min{n0, n1}
ln

4n

δ

then with probability 1− δ ADWIN shrinks W to W1, or shorter.

Thus, ADWIN is in a sense conservative: it is designed to sustain the null hypothesis
“no change” for as long as possible. This leads to a very good false positive rate
(essentially 0 in all experimental settings) but a somewhat slow reaction time
to slow, gradual changes. Abrupt changes, on the other hand, are detected very
quickly.

4.2 Improving Time and Memory Requirements

This first version of ADWIN is computationally expensive, because it checks ex-
haustively all “large enough” subwindows of the current window for possible
cuts. Furthermore, the contents of the window is kept explicitly, with the corre-
sponding memory cost as the window grows. To reduce these costs we presented
in [3] a new version, ADWIN2 that uses ideas developed in data stream algorith-
mics [1, 13, 2, 5] to find a good cutpoint quickly. We summarize the behavior of
this policy in the following theorem.

Theorem 2. The ADWIN2 algorithm maintains a data structure with the follow-
ing properties:

– It can provide the exact counts of 1’s for all the subwindows whose lengths
are of the form b(1 + ε)ic, for some design parameter ε, in O(1) time per
point.

– It uses O( 1
ε log W ) memory words (assuming a memory word can contain

numbers up to W ).
– The arrival of a new element can be processed in O(1) amortized time and

O(log W ) worst-case time.

Since ADWIN2 tries O(log W ) cutpoints, the total processing time per example
is O(log W ) (amortized) and O(log2 W ) (worst-case). The choice of the internal
parameter ε controls the amount of memory used and the desired density of
checkpoints. It does not reflect any assumption about the time scale of change.
Since points are checked at a geometric rate anyway, this policy is essentially
scale-invariant.

In the sequel, whenever we say ADWIN we really mean its efficient implemen-
tation, ADWIN2.



10

5 K-ADWIN = ADWIN + Kalman Filtering

ADWIN is basically a linear Estimator with Change Detector that makes an ef-
ficient use of Memory. It seems a natural idea to improve its performance by
replacing the linear estimator by an adaptive Kalman filter, where the parame-
ters Q and R of the Kalman filter are computed using the information in ADWIN’s
memory.

We have set R = W 2/50 and Q = 200/W , where W is the length of the
window maintained by ADWIN. While we cannot rigorously prove that these are
the optimal choices, we have informal arguments that these are about the “right”
forms for R and Q, on the basis of the theoretical guarantees of ADWIN.

Let us sketch the argument for Q. Theorem 1, part (2) gives a value ε for
the maximum change that may have occurred within the window maintained
by ADWIN. This means that the process variance within that window is at most
ε2, so we want to set Q = ε2. In the formula for ε, consider the case in which
n0 = n1 = W/2, then we have

ε ≥ 4 ·

√
3(µW0 + ε)

W/2
· ln 4W

δ

Isolating from this equation and distinguishing the extreme cases in which µW0 �
ε or µW0 � ε, it can be shown that Q = ε2 has a form that varies between c/W
and d/W 2. Here, c and d are constant for constant values of δ, and c = 200
is a reasonable estimation. This justifies our choice of Q = 200/W . A similar,
slightly more involved argument, can be made to justify that reasonable values
of R are in the range W 2/c to W 3/d, for somewhat large constants c and d.

When there is no change, ADWIN window’s length increases, so R increases
too and K decreases, reducing the significance of the most recent data arrived.
Otherwise, if there is change, ADWIN window’s length reduces, so does R, and K
increases, which means giving more importance to the last data arrived.

5.1 Experimental Validation of K-ADWIN

We compare the behaviours of the following types of estimators:

– Type I: Kalman filter with different but fixed values of Q and R. The values
Q = 1, R = 1000 seemed to obtain the best results with fixed parameters.

– Type I: Exponential filters with α = 0.1, 0.25, 0.5. This filter is similar to
Kalman’s with K = α, R = (1− α)P/α.

– Type II: Kalman filter with a CUSUM test Change Detector algorithm. We
tried initially the parameters υ = 0.005 and h = 0.5 as in [10], but we
changed to h = 5 which systematically gave better results.

– Type III: Adaptive Kalman filter with R as the difference of xt − xt−1 and
Q as the sum of the last 100 values obtained in the Kalman filter. We use a
fixed window of 100 elements.



11

– Types III and IV: Linear Estimators over fixed-length windows, without and
with flushing when changing w.r.t. a reference window is detected. Details
are as in [3].

– Type IV: ADWIN and K-ADWIN. K-ADWIN uses a Kalman filter with R = W 2/50
and Q = 200/W , where W is the length of the ADWIN window.

We build a framework with a stream of synthetic data consisting of some
triangular wavelets, of different periods, some square wavelets, also of different
periods, and a staircase wavelet of different values. We generate 106 points and
feed all them to all of the estimators tested. We calculate the mean L1 distances
from the prediction of each estimator to the original distribution that generates
the data stream. Finally, we compare these measures for the different estimators.

Table 2 shows the results for δ = 0.3 and L1. In each column (a test), we
show in boldface the result for K-ADWIN and for the best result.

A summary of the results is as follows: The results for K-ADWIN, ADWIN, the
Adaptive Kalman filter, and the best fixed-parameter Kalman filter are the best
ones in most cases. They are all very close to each other and they outwin each
other in various ways, always by a small margin. They all do about as well
as the best fixed-size window, and in most cases they win by a large amount.
The exception are wavelets of very long periods, in which a very large fixed-size
window wins. This is to be expected: when change is extremely rare, it is best
to use a large window. Adaptivity necessarily introduces a small penalty, which
is a waste in this particular case.

6 Example 1: Näıve Bayes Predictor

Let x1,. . . , xk be k discrete attributes, and assume that xi can take ni different
values. Let C be the class attribute, which can take nC different values. Recall
that upon receiving an unlabelled instance I = (x1 = v1, . . . , xk = vk), the Näıve
Bayes predictor computes a “probability” of I being in class c as:

Pr[C = c|I] ∼=
k∏

i=1

Pr[xi = vi|C = c]

= Pr[C = c] ·
k∏

i=1

Pr[xi = vi ∧ C = c]
Pr[C = c]

.

The values Pr[xi = vj ∧ C = c] and Pr[C = c] are estimated from the training
data. Thus, the summary of the training data is simply a 3-dimensional table
that stores for each triple (xi, vj , c) a count Ni,j,c of training instances with
xi = vj , together with a 1-dimensional table for the counts of C = c. This
algorithm is naturally incremental: upon receiving a new example (or a batch of
new examples), simply increment the relevant counts. Predictions can be made
at any time from the current counts.

It is then extremely easy to incorporate our time-change management: simply
add an instance of an estimator for each count Ni,j,c, and one for each value c



12

Table 2. Comparative of different estimators using L1 and δ = 0.3.

Stair Triangular Square
5000 128 512 2048 8192 32768 128 512 2048 8192 32768 131072

ADWIN 0.04 0.16 0.09 0.05 0.03 0.03 0.16 0.07 0.03 0.02 0.02 0.02
Kalman Q = 1, R = 1000 0.05 0.14 0.08 0.06 0.05 0.05 0.22 0.10 0.05 0.04 0.04 0.04
Kalman Q = 1, R = 100 0.08 0.11 0.09 0.08 0.08 0.08 0.13 0.09 0.08 0.07 0.07 0.07
Kalman Q = .25, R = .25 0.28 0.27 0.27 0.27 0.27 0.27 0.22 0.22 0.22 0.22 0.22 0.22

Exp. Estim. α = .1 0.09 0.11 0.09 0.09 0.09 0.09 0.13 0.09 0.08 0.07 0.07 0.07
Exp. Estim.α = .5 0.23 0.23 0.23 0.23 0.23 0.23 0.19 0.19 0.19 0.19 0.19 0.19

Exp. Estim. α = .25 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.13 0.12 0.12 0.12 0.12
Adaptive Kalman 0.03 0.16 0.11 0.06 0.04 0.03 0.28 0.17 0.06 0.04 0.03 0.03
CUSUM Kalman 0.08 0.15 0.12 0.08 0.06 0.05 0.24 0.18 0.11 0.06 0.04 0.04

K-ADWIN 0.05 0.14 0.10 0.06 0.04 0.04 0.17 0.09 0.05 0.04 0.03 0.03
Fixed-sized W = 32 0.07 0.13 0.08 0.07 0.07 0.07 0.18 0.09 0.06 0.06 0.06 0.06
Fixed-sized W = 128 0.04 0.17 0.12 0.06 0.04 0.03 0.30 0.16 0.06 0.04 0.03 0.03
Fixed-sized W = 512 0.06 0.16 0.16 0.11 0.04 0.02 0.30 0.30 0.16 0.05 0.02 0.02
Fixed-sized W = 2048 0.17 0.16 0.16 0.16 0.11 0.04 0.30 0.30 0.30 0.15 0.04 0.02
Fixed-sized W = 8192 0.16 0.16 0.16 0.16 0.16 0.11 0.30 0.30 0.30 0.30 0.15 0.04
Fix. flushing W = 32 0.07 0.14 0.09 0.07 0.07 0.07 0.20 0.09 0.07 0.06 0.06 0.06
Fix. flushing W = 128 0.04 0.17 0.12 0.06 0.04 0.03 0.30 0.13 0.05 0.03 0.03 0.03
Fix. flushing W = 512 0.05 0.16 0.16 0.08 0.04 0.02 0.30 0.30 0.07 0.03 0.02 0.01
Fix. flushing W = 2048 0.10 0.16 0.16 0.16 0.05 0.02 0.30 0.30 0.30 0.04 0.01 0.01
Fix. flushing W = 8192 0.15 0.16 0.16 0.16 0.16 0.03 0.30 0.30 0.30 0.30 0.02 0.01

of C. When a labelled example is processed, add a 1 to the window for Ni,j,c

if xi = v ∧ C = c, and a 0 otherwise, and similarly for Nc. When the value
of Pr[xi = vj ∧ C = c] is required to make a prediction, use the output of the
estimator associated to Ni,j,c; this will be simply the average of the corresponding
window, if the estimator is linear, or a more elaborate value if it incorporates
e.g. a Kalman filter.

The experiments with synthetic data use a changing concept based on a
rotating hyperplane explained in [9]. A hyperplane in d-dimensional space is the
set of points x that satisfy

d∑
i=1

wixi ≥ w0

where xi, is the ith coordinate of x. Examples for which
∑d

i=1 wixi ≥ w0 are
labeled positive, and examples for which

∑d
i=1 wixi < w0 are labeled negative.

Hyperplanes are useful for simulating time-changing concepts because we can
change the orientation and position of the hyperplane in a smooth manner by
changing the relative size of the weights.

We test our algorithms on a classical Näıve Bayes predictor. We use 2 classes,
8 attributes, and 2 values per attribute. The different weights wi of the hyper-
plane vary over time, at different moments and different speeds for different



13

Table 3. Näıve Bayes benchmark

Width %Static %Dynamic % Dynamic/Static

ADWIN 83,36% 80,30% 96,33%
Kalman Q = 1, R = 1000 83,22% 71,13% 85,48%

Kalman Q = 1, R = 1 83,21% 56,91% 68,39%
Kalman Q = .25, R = .25 83,26% 56,91% 68,35%

Exponential Estimator α = .1 83,33% 64,19% 77,03%
Exponential Estimator α = .5 83,32% 57,30% 68,77%
Exponential Estimator α = .25 83,26% 59,68% 71,68%

Adaptive Kalman 83,24% 76,21% 91,56%
CUSUM Kalman 83,30% 50,65% 60,81%

K-ADWIN 83,24% 81,39% 97,77%
Fixed-sized Window 32 83,28% 67,64% 81,22%
Fixed-sized Window 128 83,30% 75,40% 90,52%
Fixed-sized Window 512 83,28% 80,47% 96,62%
Fixed-sized Window 2048 83,24% 82,19% 98,73%

Fixed-sized flushing Window 32 83,28% 67,65% 81,23%
Fixed-sized flushing Window 128 83,29% 75,57% 90,73%
Fixed-sized flushing Window 512 83,26% 80,46% 96,64%
Fixed-sized flushing Window 2048 83,25% 82,04% 98,55%

attributes i. All wi start at 0.5 and we restrict to two wi’s varying at the same
time, to a maximum value of 0.75 and a minimum of 0.25.

To test the performance of our Näıve Bayes predictor we do the following:
At every time t we build a static Näıve Bayes model Mt using a data set of
1000 points generated from the distribution at time t. Model Mt is taken as a
“baseline” of how well a Näıve Bayes model can do on this distribution. Then
we generate 2000 fresh points, and compute the error rate of both this static
model Mt and the different sliding-window models built from the t points seen
so far. The ratio of these error rates is averaged over all the run.

Table 3 shows accuracy results. The “%Static” column shows the accuracy of
the statically built model – it is the same for all rows, except for small variance.
The “%Dynamic” column is the accuracy of the dynamically built model, using
the estimator in the row. The last column in the table shows the quotient of
columns 1 and 2, i.e., the relative accuracy of the estimator-based model Näıve
Bayes model with respect that of the statically computed one. Again, in each
column (a test), we show in boldface the result for K-ADWIN and for the best
result.

The results can be summarized as follows: K-ADWIN outperforms plain ADWIN
by a small margin, and they both do much better than all the memoryless
Kalman filters. Thus, having a memory clearly helps in this case. Strangely
enough, the winner is the longest fixed-length window, which achieves 98.73%
of the static performance compared to K-ADWIN’s 97.77%. We have no clear
explanation of this fact, but believe it is an artifact of our benchmark: the way
in which we vary the attributes’ distributions might imply that simply taking the



14

average of an attribute’s value over a large window has best predictive power.
More experiments with other change schedules should confirm or refute this idea.

7 Example 2: k-means Clustering

We adapt in essence the incremental version from [14]. In that version, every
new example is added to the cluster with nearest centroid, and every r steps a
recomputation phase occurs, which recomputes both the assignment of points
to clusters and the centroids. To balance accuracy and computation time, r is
chosen in [14] to be the square root of the number of points seen so far. In our
case, the latter rule is extended to deal with distribution changes, as discussed
in [3].

We change this algorithm to deal with time change in the following way. We
create an estimator Eij for every attribute centroid i and every attribute j. The
algorithm still interleaves phases in which centroids are just incrementally mod-
ified with incoming points and phases where global recomputation of centroids
takes place. Recomputation phases occur for two reasons. First, when any of
the Eij shrinks its window (for ADWIN-type estimators), we take this as a signal
that the position of centroid i may have changed and recompute. In the case of
estimators that use windows of a fixed size s, we recompute whenever this win-
dow becomes full. Second, when the average point distance to closest centroid
has changed more than an ε factor, where ε is user-specified. This is taken as
an indication that a certain number of points might move to another cluster if
recomputation took place now.

The synthetic data used in our experiments consist of a sample of 105 points
generated from a k-gaussian distribution with some fixed variance σ2, and cen-
tered in our k moving centroids. Each centroid moves according to a constant
velocity. We try different velocities v and values of σ in different experiments.

On this data stream, we run one instance of the incremental k-means clusterer
with each of the estimator types we want to test. Each instance of the clusterer
uses itself an estimator for each centroid coordinate. At every time step, we feed
the current example to each of the clusterers, we generate a sample of points
from the current distribution (which we know) and use a traditional k-means
clusterer to cluster this sample. Then, we compute the sum of the distances
of each data point to each centroid assigned, for this statically built clustering
and for each of the clustering dynamically built using different estimators. The
statically built clustering is thus a baseline on how good the clustering could be
without distribution drift.

Table 4 shows the results of computing the distance from 100 random points
to their centroids. Again, in each column (a test), we show in boldface the result
for K-ADWIN and for the best result.

The results can be summarized as follows: The winners are the best fixed-
parameter Kalman filter and, for small variance, K-ADWIN. ADWIN follows closely
in all cases. These three do much better than any fixed-size window strategy, and
somewhat better than Kalman filters with suboptimal fixed-size parameters.



15

Table 4. k-means sum of distances to centroids, with k = 5, 105 samples and change’s
velocity of 10−3.

σ = 0.15 σ = 0.3 σ = 0.6
Width Static Dynamic Static Dynamic Static Dynamic

ADWIN 9,72 21,54 19,41 28,58 38,83 46,48
Kalman Q = 1, R = 1000 9,72 19,72 19,41 27,92 38,83 46,02
Kalman Q = 1, R = 100 9,71 17,60 19,41 27,18 38,77 46,16
Kalman Q = .25, R = .25 9,71 22,63 19,39 30,21 38,79 49,88

Exponential Estimator α = .1 9,71 21,89 19,43 27,28 38,82 46,98
Exponential Estimator α = .5 9,72 20,58 19,41 29,32 38,81 46,47
Exponential Estimator α = .25 9,72 17,69 19,42 27,66 38,82 46,18

Adaptive Kalman 9,72 18,98 19,41 31,16 38,82 51,96
CUSUM Kalman 9,72 18,29 19,41 33,82 38,85 50,38

K-ADWIN 9,72 17,30 19,40 28,34 38,79 47,45
Fixed-sized Window 32 9,72 25,70 19,40 39,84 38,81 57,58
Fixed-sized Window 128 9,72 36,42 19,40 49,70 38,81 68,59
Fixed-sized Window 512 9,72 38,75 19,40 52,35 38,81 71,32
Fixed-sized Window 2048 9,72 39,64 19,40 53,28 38,81 73,10
Fixed-sized Window 8192 9,72 43,39 19,40 55,66 38,81 76,90
Fixed-sized Window 32768 9,72 53,82 19,40 64,34 38,81 88,17

Fixed-sized flushing Window 32 9,72 35,62 19,40 47,34 38,81 65,37
Fixed-sized flushing Window 128 9,72 40,42 19,40 52,03 38,81 70,47
Fixed-sized flushing Window 512 9,72 39,12 19,40 53,05 38,81 72,81
Fixed-sized flushing Window 2048 9,72 40,99 19,40 56,82 38,81 75,35
Fixed-sized flushing Window 8192 9,72 45,48 19,40 60,23 38,81 91,49
Fixed-sized flushing Window 32768 9,72 73,17 19,40 84,55 38,81 110,77

8 Conclusions and Future Work

The experiments on synthetic data give strong indications that the combina-
tion of Kalman filtering and a system that dynamically manages a window of
examples has good potential for learning from data streams. More precisely, it
seems to give better results than either memoryless Kalman Filtering or sliding
windows with linear estimators. Furthermore, it tunes itself to the data stream
at hand, with no need for the user to hardwire or precompute parameters that
describe how the data stream changes over time.

Because of lack of space we have not discussed the time and memory used
by K-ADWIN. These are comparable to those of ADWIN2, reported in [3], and quite
reasonable. For example, the experiments using 106 sample points and about a
dozen estimators take the order of 20 seconds to execute on a standard PC.

There are two features of the Kalman filter that we have not discussed here
and can be important in the future. One is that it filters noise in the signal very
well – that is in fact one of the main motivations for its use. This could help in
dealing with attribute or class noise, in the learning context. Another feature is
that it can continue to give reasonable predictions even if the input signal (e.g.,



16

from sensors) is temporarily not available. This could help in various learning
situations: for example if there may be delays in the arrival of examples or, on
the other extreme, if examples are arriving too fast and some of them have to
be skipped.

Other future work goes in two directions: on the one hand, these ideas should
be tested on real-world, not only synthetic data. This is a notoriously difficult
evaluation problem, since it is generally difficult to assess the real drift present in
a real-world data set, hence compare meaningfully the performance of different
strategies. On the other hand, other learning algorithms should be tried; clear
candidates are algorithms for induction of decision trees.

References

1. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues
in data stream systems. In Proc. 21st ACM Symposium on Principles of Database
Systems, 2002.

2. B. Babcock, M. Datar, and R. Motwani. Sampling from a moving window over
streaming data. In Proc. 13th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 2002.

3. A. Bifet and R. Gavaldà. Learning from time-changing data with adaptive win-
dowing. Technical report, Universitat Politècnica de Catalunya, 2006. Available
from www.lsi.upc.edu/~abifet.

4. E. Cohen and M. Strauss. Maintaining time-decaying stream aggregates. In Proc.
22nd ACM Symposium on Principles of Database Systems, 2003.

5. M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over
sliding windows. SIAM Journal on Computing, 14(1):27–45, 2002.

6. G. Dong, J.H., Laks V.S. Lakshmanan, J.P., H. Wang, and P.S. Yu. Online mining
of changes from data streams: Research problems and preliminary results. In ACM
SIGMOD Workshop on Management and Processing of Data Streams, 2003.

7. Wei Fan. Streamminer: A classifier ensemble-based engine to mine concept-drifting
data streams. In Proc. 30th VLDB Conf., Toronto, Canada, 2004.

8. J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning with drift detection.
In SBIA Brazilian Symposium on Artificial Intelligence, pages 286–295, 2004.

9. G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In
7th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, pages
97–106, San Francisco, CA, 2001. ACM Press.

10. K. Jacobsson, N. Möller, K.-H. Johansson, and H. Hjalmarsson. Some modeling
and estimation issues in control of heterogeneous networks. In 16th Intl. Symposium
on Mathematical Theory of Networks and Systems (MTNS2004), 2004.

11. D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data streams. In Proc.
30th VLDB Conf., Toronto, Canada, 2004.

12. R. Klinkenberg and T. Joachims. Detecting concept drift with support vector
machines. In Proc. 17th Intl. Conf. on Machine Learning, pages 487 – 494, 2000.

13. S. Muthukrishnan. Data streams: Algorithms and applications. In Proc. 14th
Annual ACM-SIAM Symposium on Discrete Algorithms, 2003.

14. C. Ordonez. Clustering binary data streams with k-means. In ACM SIGMOD
Workshop on Research Issues on Data Mining and Knowledge Discovery, 2003.

15. E. S. Page. Continuous inspection schemes. Biometrika, 41(1/2):100–115, 1954.



17

16. T. Schön, A. Eidehall, and F. Gustafsson. Lane departure detection for improved
road geometry estimation. Technical Report LiTH-ISY-R-2714, Dept. of Electrical
Engineering, Linköping University, SE-581 83 Linköping, Sweden, Dec 2005.

17. M. Severo and J. Gama. Change detection with Kalman Filter applied to apnoeas
disorder. In 2nd. Intl. Workshop on Knowledge Discovery from Data Streams,
Porto (Portugal), 2005.

18. H. Wang, W. Fan, P. Yun, and J. Han. Mining concept-drifting data streams using
ensemble classifiers. In ACM SIGKDD, 2003.

19. G. Welch and G. Bishop. An introduction to the Kalman Filter. Technical report,
University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 1995.


