
Lecture 3. Sampling. Finding frequent
elements. The CM-sketch

Ricard Gavaldà

MIRI Seminar on Data Streams, Spring 2015

1 / 45

Contents

1 Sampling

2 Finding heavy hitters

3 The CM-Sketch

4 Applications of the CM-sketch

2 / 45

Sampling

3 / 45

Sampling

At time t , process element t with probability α(t)
Compute your query on the sampled elements only

Example: computing an average

α(t) = α, constant: error ' 1/
√

αt → 0
α(t)' 1/(ε2t): error ' ε, constant over time

But a sampled element remains in the sample forever

4 / 45

Reservoir Sampling [Vitter85]

Uniform sampling
Fix k . We want to keep a sample of size k such that after t
steps, each of the first t elements in the stream is in the sample
with equal probability k/t

Reservoir Sampling [Vitter85]
Add first k stream elements to the sample
Choose to sample t-th item with probability k/t
If sampled, replace any element in the sample with same
probability

5 / 45

Reservoir Sampling: why does it work?

Claim: for every t , for every i ≤ t ,

Pi ,t = Pr[si in sample at time t] = k/t

Suppose true at time t . At time t +1,

Pt+1,t+1 = Pr[st+1 sampled] = k/(t +1)

and for i ≤ t , si is in the sample if it was before, and
not (st+1 sampled and it kicks out exactly si)

Pi ,t+1 =
k
t
·
(

1− k
t +1

· 1
k

)
=

k
t
·
(

1− 1
t +1

)
=

k
t
· t
t +1

=
k

t +1

6 / 45

Skip counting [Vitter85]

Instead of deciding whether or not to sample each xt

suppose we sample xt

compute randomly m = f (t ,k)
skip next m records without any processing, process
(m+1)-th

The distribution of m is computed so that it matches the
equations in the previous page (somewhat tricky)

Avoids computation at each step, e.g. random number
generation

Observation: m→ ∞ as t grows

7 / 45

Finding heavy hitters

8 / 45

Finding Frequent Elements

Heavy Hitters, Elephants, Hotlist analysis, Iceberg queries

9 / 45

Finding frequent elements

Given a sequence S of t elements, threshold θ ,

Heavy hitters: Find all elements with frequency > θ t

Top-k : Find the k most frequent elements

Good sources: [Berinde+09], [Cormode+08]

10 / 45

Finding Frequent Elements

Approximate versions:

Find a list of elements including all those with frequency
> θ t and none with frequency < (1− ε)θ t

Find a list of L of k elements such that if i ∈ L and j 6∈ L
then fi > (1− ε)fj

11 / 45

Sampling?

Intuition: Frequencies in sample ' frequencies in stream

Use e.g. reservoir sampling to keep uniform sample

Problems:
Doesn’t work for top-k queries
For θ -heavy hitters, sample size ' 1/θ 2 is required
(try it, using Hoeffding)

We present 3 solutions for θ -heavy hitters with memory O(1/θ)

12 / 45

KPS, a simple algorithm for heavy hitters

[Karp-Papadimitriou-Shenker03]
generalizing [Boyer-Moore80, Fischer-Salzberg82, Boyer-Moore82, Misra-Gries82]

Def: x is a heavy hitter at time t if fx ,t > θ t

There are at most 1/θ of these

Producing them exactly in 1 pass requires (the obvious)
large memory

Fact: A list containing all θ -heavy hitters of size at most
1/θ can be produced using O(1/θ) words

No false negatives; maybe false positives

13 / 45

A Simple Two-Pass Algorithm

Init(k):

Create associative table (K,count):
- K = the empty set of keys
- count is a vector of size k, indexed by K, initially 0

Update(x):

if (x is in K) count[x]++
else

insert x in K with count 1
if (|K| = k+1) // K full; discount all items

for (a in K) do
count[a]--
if (count[a] = 0) delete a from (K,count)

Query:

return the set K

14 / 45

Why Does This Work?

Let k = 1/θ −1

Consider an item x not in K at the end of the algorithm

Each occurrence of x was discounted together with k
occurrences of other items

So at least (k +1) · fx ,t items discounted in total
But number of discounted items at time t can’t exceed t

Therefore fx ,t/θ = (k +1) · fx ,t ≤ t , i.e., x is not θ -heavy
hitter

Contrapositive: all θ -heavy hitters are in K

15 / 45

KPS, memory and time

k keys, k counts
with some care, O(k) words for hashing, lists, bookeeping

O(1) operations per update when no discounting
there can be at most t/k discounting rounds up to time t
(think why)
and each one takes time O(k)
so O(1) time on average

16 / 45

The Space Saving sketch [Metwally+05]

KPS followed by many other counter-based methods
Lossy Counter, Frequent, Sticky Sampling, GroupTest, . . .

Space-saving:
Good update time
Some guarantee on count error
No false negatives; may have false positives

17 / 45

The Space Saving sketch

Init(k): Create
set of keys K := /0

vector count , indexed by K

Update(x):
if x is in K then count [x]++;
else, if |K |< k , add x to K and set count [x] = 1;
else, replace an item with lowest count with x

and increase its count by 1

Query:
return the set K ;

18 / 45

Why Does This Work?

Claims:
1 If ft(x)≥ t/k , then x ∈ K at time t
2 For every x ∈ K , ft(x)≤ countt [x]≤ ft(x)+ t/k

In particular, all items with frequency over t/k are in K

And non-heavy-hitters will have count at most 2t/k

The bound is most meaningful for frequencies� t/k

19 / 45

Why Does This Work?

Proof:

At all times t , ∑x countt [x] = t
The minimum count at time t is ≤ t/k
Now suppose x not in K a time t
Either x was never in K (so not frequent)
Or it was in K but was removed from K . Let t ′ ≤ t the last
time it was removed
Because it was removed, countt ′ [x]≤ t ′/k ≤ t/k
I.e. part 1: x not 1/k -frequent at time t
For 2, distinguish whether x was in K at time t−1 or not
and assume (by induction) that 1, 2 true at time t−1

Exercise 1
Understand this proof, particularly completing the proof of 2.
Not to be delivered.

20 / 45

More on Space Saving

We omit discussion of efficient implementation -
StreamSummary data structure
Appropriate for very skewed distributions
Very frequent elements large counters; unfrequent
elements low counters
→ good approximation of frequent element frequencies
Paper contains space analysis for powerlaw - Zipf
distributions

Exercise 2
Without looking into the paper, propose a data structure to have
fast update & query time. Should still use O(k) = O(1/θ)
words, pointers, etc.

21 / 45

Top-k Elements

[Charikar-Chen-(Farach-Colton)04]

Hash-based (like CM-sketch), not count-based (like
Space-Saving)
Assume f1 ≥ f2 ≥ f3 ≥ ·· · ≥ fn
Given (k ,ε), finds a list of k elements such that

if i ∈ L then fi ≥ (1− ε)fk
Memory

O

(
k log

t
δ
+

∑
n
i=k+1 f 2

i

ε2f 2
k

log
t
δ

)
I.e., depends on tail. Better for more skewed distributions

22 / 45

The CM-Sketch

23 / 45

The Count-Min Sketch

[Cormode-Muthukrishnan 04]
Like Space Saving:

Provides an approximation f ′x to fx , for every x
Can be used (less directly) to find θ -heavy hitters
Uses memory O(1/θ)

Unlike Space Saving:

It is randomized - hash functions instead of counters
Supports additions and deletions
Can be used as basis for several other queries

24 / 45

The Count-Min Sketch

Vector F [n]. Assumes F [i]≥ 0 for all i , at all times

Provides estimations F ′ of F such that
1 F [i]≤ F ′[i] for all i
2 F ′[i]≤ F [i]+ ε|F |1 for all i , with probability ≥ 1−δ

where |F |1 = ∑i F [i]

Note: |F |1 may be� stream length, if subtractions allowed

Uses O(1
ε

ln n
δ
) memory words, O(ln n

δ
) update time

25 / 45

The Count-Min Sketch

source: A. Bifet,

http://albertbifet.com/comp423523a-2012-stream-data-mining/

26 / 45

http://albertbifet.com/comp423523a-2012-stream-data-mining/

The Count-Min Sketch

d independent hash functions h1. . . hd : [1..n]→ [1..w]

one “memory cell” for each hj(i)
On instruction “F [i] += v ”, do hj(i) += v for all j ∈ 1 . . .d
Estimation:

F ′[i] = min{hj(i) | j = 1..d }

27 / 45

The Count-Min Sketch

F ′[i] = min{hj(i) | j = 1..d }

F ′[i]≥ F [i]
For each instruction involving i , we update all counts hj(i)
F [i]≥ 0 at all times for all i

F ′[i] = F [i]?
No: cell hj(i) is also incremented by k 6= i if hj(k) = hj(i)
But it is unlikely that this occurs very often
min instead of average→ Markov instead of Chebyshev or
Hoeffding

28 / 45

The Count-Min Sketch: Proof of main bound

Fix j . Def random var Iijk = 1 if hj(i) = hj(k), 0 otherwise
If h good hash function

E [Iijk]≤ 1/range(hj) = 1/w

Def Xij = ∑k IijkF [k]. Then

E [Xij] = ∑
k

E [Iijk]F [k]≤ |F |1/w

29 / 45

The Count-Min Sketch: Proof of main bound (2)

Then by Markov’s inequality and pairwise independence:

Pr[Xij ≥ ε|F |1]≤ E [Xij]/(ε|F |1)≤ (|F |1/w)/(ε|F |1)≤ 1/2

if w = 2/ε. Then:

Pr[F ′[i]≥ F [i]+ ε|F |1]
= Pr[∀j : F [i]+Xij ≥ F [i]+ ε|F |1]
= Pr[∀j : Xij ≥ ε|F |1]
≤ (1/2)d = δ if d = log(1/δ)

for one fixed i . To have good estimates for all i simultaneously,
use d = log(n/δ) and use union bound

30 / 45

The Count-Min Sketch: Summary

Memory is 2
ε

log 1
δ

words

Update time O(log 1
δ
)

Replace log(1/δ) with log(n/δ) if the bound needs to hold
for all i simultaneously

“Pr[for all i , . . .]≤ δ ” instead of “for all i , Pr[. . .]≤ δ ”
Error for F [i] is ε relative to |F |1, not to F [i]
This is bad for counts F [i] small w.r.t. |F |1

Any problem where we care about large F [i]’s only?

31 / 45

Applications of the CM-sketch

32 / 45

Heavy Hitters, revisited

i is a θ -heavy hitter if F [i]≥ θ t
The CM-sketch with width θ guarantees

F [i]≤ F ′[i]≤ F [i]+θ t

So: If we output all i s.t. F ′[i]≥ θ t , we output all heavy
hitters; no false negatives

But we can’t cycle through all n candidates one by one!

33 / 45

Range-Sum queries

Range-sum query

Given a,b, return ∑
b
i=a F [i]

Example: how many packets received came from the IP range
172.16.xxx.xxx?

We show:

A variant of CM-sketch supports range-sum queries
efficiently
Answering range-sum queries efficiently −→ finding heavy
hitters efficiently

34 / 45

Fom CM-sketch to range-sum queries

For p = 0 . . . logn, for each j = ..., keep the value of
sum(j2p . . .(j +1)2p−1)

Any interval [a,b] is the sum of O(logn) such values

35 / 45

From CM-sketch to range-sum queries

Keep

One CM-sketch for each 2p to store
sum(j2p . . .(j +1)2p−1) for each j
(Perhaps?) Or a single CM-sketch whose set of items is
the set of intervals indexed by pairs (p, j)

36 / 45

From CM-sketch to range-sum queries

When receiving i , update the counts for ranges where i lies =
ancestors of i in the tree

When queried sum(a..b), decompose [a..b] as sum of such
intervals, retrieve and add their sums

37 / 45

From Range-sum queries to heavy hitters

Adaptively search for heavy hitters in the tree
if a node has count < θ t , do not explore its children: no
heavy hitters below
if a node has count ≥ θ t , explore both children
when reaching a leaf, we know whether it’s a heavy hitter

the sum of counts at any one level of the tree is t
no more than 1/θ of them may have frequency ≥ θ t
Efficiency: no more than 1/θ nodes of each level are
expanded

38 / 45

From Range-sum queries to heavy hitters

Exercise 3
Formalize the algorithms above:

For computing range-sum queries given CM-sketch
Form finding all heavy hitters using range-sum queries

and tell their memory usage and update time

39 / 45

Inner product, revisited

Run CM-sketches for u and v using same hash functions

Estimate IP(u,v) = ∑i uivi by

min
j

∑
r

countu(j , r) ·countv (j , r)

40 / 45

Inner product, revisited

Observe that

u ·v = ∑
i

u(i)v(i) = ∑
r

∑
i:hj (i)=r

u(i)v(i)

Let countu(j , r), countv (j , r) be the cells for j-th function,
r -th value in CM-sketches for u and v . Intuitively,

countu(j , r) ·countv (j , r)∼= ∑
i:hj (i)=r

u(i)v(i)

So we estimate u ·v by

min
j

∑
r

countu(j , r) ·countv (j , r)

in time O(1
ε

log 1
δ
)

Formally the proof is as in CM-sketch
41 / 45

Inner product, revisited

[AMS]

|AMS− IP(u,v)| ≤ ε IP(u,v)
memory O(1

ε2 ln 1
δ
) words

update time O(1
ε2 ln 1

δ
)

[CountMin]

|CM− IP(u,v)| ≤ ε |u|1|v |1
memory O(1

ε
ln 1

δ
) words

update time O(1
ε

ln 1
δ
)

∴ CM-Sketch better memory and update time, but absolute
instead of relative, approximation

42 / 45

Quantile computation

Given i , θ , compute all the θ -quantiles
I.e., find for all k the q(k) such that

q(k)

∑
i=1

F [i] = kθ

n

∑
i=1

F [i]

Can be done from the CM-sketch with O(n) estimation time
Can be done faster using Range-Sum queries

43 / 45

Histogram Computation. Inverse distributions

We have asked the question
“given i , what is the frequence of i?”

Inverse question:
“given f , how many i ’s have frequence f?”

Can be done in space O(1
ε2 ln 1

δ
)

The plot for all f ’s is a histogram

44 / 45

Sketches & random linear projections

AMS, CM-Sketch, Cohen’s counter, . . . , sketch vector F as

n

∑
i=1

F [i]hj(i) for hash functions hj , j = 1 . . .d

Equivalently, S = HF , F ∈ Rn, H ∈ Rd×n,S ∈ Rd

A linear projection from dimension n to dimension d
Vectors that are close remain close
Vectors that are far most likely remain far
More next week

45 / 45

	Sampling
	Finding heavy hitters
	The CM-Sketch
	Applications of the CM-sketch

