
Ricard Gavaldà

MIRI Seminar on Data Streams, Spring 2015
Sampling
At time t, process element t with probability $\alpha(t)$
Compute your query on the sampled elements only

Example: computing an average

- $\alpha(t) = \alpha$, constant: error $\simeq 1/\sqrt{\alpha t} \to 0$
- $\alpha(t) \simeq 1/(\varepsilon^2 t)$: error $\simeq \varepsilon$, constant over time

But a sampled element remains in the sample forever
Uniform sampling

Fix k. We want to keep a sample of size k such that after t steps, each of the first t elements in the stream is in the sample with equal probability k/t

Reservoir Sampling [Vitter85]

- Add first k stream elements to the sample
- Choose to sample t-th item with probability k/t
- If sampled, replace any element in the sample with same probability
Reservoir Sampling: why does it work?

Claim: for every t, for every $i \leq t$,

$$P_{i,t} = \Pr[s_i \text{ in sample at time } t] = \frac{k}{t}$$

Suppose true at time t. At time $t + 1$,

$$P_{t+1,t+1} = \Pr[s_{t+1} \text{ sampled}] = \frac{k}{t + 1}$$

and for $i \leq t$, s_i is in the sample if it was before, and not (s_{t+1} sampled and it kicks out exactly s_i)

$$P_{i,t+1} = \frac{k}{t} \cdot \left(1 - \frac{k}{t + 1} \cdot \frac{1}{k}\right) = \frac{k}{t} \cdot \left(1 - \frac{1}{t + 1}\right)$$

$$= \frac{k}{t} \cdot \frac{t}{t + 1} = \frac{k}{t + 1}$$
Instead of deciding whether or not to sample each x_t

- suppose we sample x_t
- compute randomly $m = f(t, k)$
- skip next m records without any processing, process $(m + 1)$-th

The distribution of m is computed so that it matches the equations in the previous page (somewhat tricky)

Avoids computation at each step, e.g. random number generation

Observation: $m \to \infty$ as t grows
Finding heavy hitters
Finding Frequent Elements

Heavy Hitters, Elephants, Hotlist analysis, Iceberg queries
Finding frequent elements

Given a sequence S of t elements, threshold θ,

- **Heavy hitters**: Find all elements with frequency $> \theta t$
- **Top-k**: Find the k most frequent elements

Good sources: [Berinde+09], [Cormode+08]
Finding Frequent Elements

Approximate versions:

- Find a list of elements including all those with frequency $> \theta t$ and none with frequency $< (1 - \epsilon) \theta t$

- Find a list of L of k elements such that if $i \in L$ and $j \not\in L$ then $f_i > (1 - \epsilon)f_j$
Intuition: Frequencies in sample \(\approx \) frequencies in stream

Use e.g. reservoir sampling to keep uniform sample

Problems:

- Doesn’t work for top-\(k \) queries
- For \(\theta \)-heavy hitters, sample size \(\approx 1/\theta^2 \) is required
 (try it, using Hoeffding)

We present 3 solutions for \(\theta \)-heavy hitters with memory \(O(1/\theta) \)
KPS, a simple algorithm for heavy hitters

[Karp-Papadimitriou-Shenker03]

generalizing [Boyer-Moore80, Fischer-Salzberg82, Boyer-Moore82, Misra-Gries82]

- **Def:** x is a heavy hitter at time t if $f_{x,t} > \theta t$
- There are at most $1/\theta$ of these
- Producing them exactly in 1 pass requires (the obvious) large memory

- **Fact:** A list containing all θ-heavy hitters of size at most $1/\theta$ can be produced using $O(1/\theta)$ words
- No *false negatives*; maybe *false positives*
A Simple Two-Pass Algorithm

Init(k):

Create associative table (K, count):
- K = the empty set of keys
- count is a vector of size k, indexed by K, initially 0

Update(x):

if (x is in K) count[x]++
else
 insert x in K with count 1
if (|K| = k+1) // K full; discount all items
 for (a in K) do
 count[a]--
 if (count[a] = 0) delete a from (K, count)

Query:

return the set K
Why Does This Work?

- Let $k = 1/\theta - 1$
- Consider an item x not in K at the end of the algorithm
- Each occurrence of x was discounted together with k occurrences of other items
- So at least $(k + 1) \cdot f_{x,t}$ items discounted in total
- But number of discounted items at time t can’t exceed t
- Therefore $f_{x,t}/\theta = (k + 1) \cdot f_{x,t} \leq t$, i.e., x is not θ-heavy hitter
- Contrapositive: all θ-heavy hitters are in K
- k keys, k counts
- with some care, $O(k)$ words for hashing, lists, bookeeping

- $O(1)$ operations per update when no discounting
- there can be at most t/k discounting rounds up to time t (think why)
- and each one takes time $O(k)$
- so $O(1)$ time on average
The Space Saving sketch [Metwally+05]

- KPS followed by many other counter-based methods
 - Lossy Counter, Frequent, Sticky Sampling, GroupTest, . . .

- Space-saving:
 - Good update time
 - Some guarantee on count error
 - No false negatives; may have false positives
The Space Saving sketch

Init(k): Create

- set of keys $K := \emptyset$
- vector $count$, indexed by K

Update(x):

- if x is in K then $count[x]++$;
- else, if $|K| < k$, add x to K and set $count[x] = 1$;
- else, replace an item with lowest count with x
 and increase its count by 1

Query:

- return the set K;
Claims:

1. If $f_t(x) \geq t/k$, then $x \in K$ at time t
2. For every $x \in K$, $f_t(x) \leq count_t[x] \leq f_t(x) + t/k$

In particular, all items with frequency over t/k are in K
And non-heavy-hitters will have count at most $2t/k$
The bound is most meaningful for frequencies $\gg t/k$
Why Does This Work?

Proof:

- At all times t, $\sum_x count_t[x] = t$
- The minimum count at time t is $\leq t/k$
- Now suppose x not in K a time t
- Either x was never in K (so not frequent)
- Or it was in K but was removed from K. Let $t' \leq t$ the last time it was removed
- Because it was removed, $count_{t'}[x] \leq t'/k \leq t/k$
- I.e. part 1: x not $1/k$-frequent at time t
- For 2, distinguish whether x was in K at time $t - 1$ or not and assume (by induction) that 1, 2 true at time $t - 1$

Exercise 1

Understand this proof, particularly completing the proof of 2. Not to be delivered.
More on Space Saving

- We omit discussion of efficient implementation - StreamSummary data structure
- Appropriate for very skewed distributions
- Very frequent elements large counters; unfrequent elements low counters
- \(\rightarrow\) good approximation of frequent element frequencies
- Paper contains space analysis for powerlaw - Zipf distributions

Exercise 2

Without looking into the paper, propose a data structure to have fast update & query time. Should still use \(O(k) = O(1/\theta)\) words, pointers, etc.
Top-k Elements

[Charikar-Chen-(Farach-Colton)04]

- Hash-based (like CM-sketch), not count-based (like Space-Saving)
- Assume $f_1 \geq f_2 \geq f_3 \geq \cdots \geq f_n$
- Given (k, ϵ), finds a list of k elements such that
 \[
 \text{if } i \in L \text{ then } f_i \geq (1 - \epsilon) f_k
 \]
- Memory
 \[
 O\left(k \log \frac{t}{\delta} + \frac{\sum_{i=k+1}^{n} f_i^2}{\epsilon^2 f_k^2} \log \frac{t}{\delta} \right)
 \]
- I.e., depends on tail. Better for more skewed distributions
The CM-Sketch
The Count-Min Sketch

[Cormode-Muthukrishnan 04]
Like Space Saving:

- Provides an approximation f'_x to f_x, for every x
- Can be used (less directly) to find θ-heavy hitters
- Uses memory $O(1/\theta)$

Unlike Space Saving:

- It is randomized - hash functions instead of counters
- Supports additions and deletions
- Can be used as basis for several other queries
Vector $F[n]$. Assumes $F[i] \geq 0$ for all i, at all times

Provides estimations F' of F such that

1. $F[i] \leq F'[i]$ for all i
2. $F'[i] \leq F[i] + \varepsilon |F|_1$ for all i, with probability $\geq 1 - \delta$

where $|F|_1 = \sum_i F[i]$

Note: $|F|_1$ may be \ll stream length, if subtractions allowed

Uses $O\left(\frac{1}{\varepsilon} \ln \frac{n}{\delta}\right)$ memory words, $O(\ln \frac{n}{\delta})$ update time
The Count-Min Sketch

source: A. Bifet,
The Count-Min Sketch

- d independent hash functions $h_1 \ldots h_d : [1..n] \to [1..w]$
- one “memory cell” for each $h_j(i)$
- On instruction “$F[i] += v$”, do $h_j(i) += v$ for all $j \in 1 \ldots d$
- Estimation:
 \[
 F'[i] = \min \{ h_j(i) \mid j = 1..d \}
 \]
The Count-Min Sketch

\[F'[i] = \min \{ h_j(i) \mid j = 1..d \} \]

- \(F'[i] \geq F[i] \)
 For each instruction involving \(i \), we update all counts \(h_j(i) \)
 \(F[i] \geq 0 \) at all times for all \(i \)

- \(F'[i] = F[i] \)?
 No: cell \(h_j(i) \) is also incremented by \(k \neq i \) if \(h_j(k) = h_j(i) \)
 But it is unlikely that this occurs very often
 \(\min \) instead of average \(\rightarrow \) Markov instead of Chebyshev or Hoeffding
Fix j. Define random variable $l_{ijk} = 1$ if $h_j(i) = h_j(k)$, 0 otherwise.

If h is a good hash function,

$$E[l_{ijk}] \leq 1 / \text{range}(h_j) = 1 / w$$

Define $X_{ij} = \sum_k l_{ijk} F[k]$. Then

$$E[X_{ij}] = \sum_k E[l_{ijk}] F[k] \leq |F|_1 / w$$
Then by Markov’s inequality and pairwise independence:

$$\Pr[X_{ij} \geq \varepsilon | F_1] \leq E[X_{ij}] / (\varepsilon | F_1|) \leq (|F_1|/w) / (\varepsilon | F_1|) \leq 1/2$$

if \(w = 2/\varepsilon \). Then:

$$\Pr[F'[i] \geq F[i] + \varepsilon | F_1]$$

$$= \Pr[\forall j : F[i] + X_{ij} \geq F[i] + \varepsilon | F_1]$$

$$= \Pr[\forall j : X_{ij} \geq \varepsilon | F_1]$$

$$\leq (1/2)^d = \delta \quad \text{if} \quad d = \log(1/\delta)$$

for one fixed \(i \). To have good estimates for all \(i \) simultaneously, use \(d = \log(n/\delta) \) and use union bound.
The Count-Min Sketch: Summary

- Memory is $\frac{2}{\varepsilon} \log \frac{1}{\delta}$ words
- Update time $O(\log \frac{1}{\delta})$
- Replace $\log(1/\delta)$ with $\log(n/\delta)$ if the bound needs to hold for all i simultaneously

 “$\Pr[\text{for all } i, \ldots] \leq \delta$” instead of “for all i, $\Pr[\ldots] \leq \delta$”
- Error for $F[i]$ is ε relative to $|F|_1$, not to $F[i]$
- This is bad for counts $F[i]$ small w.r.t. $|F|_1$

Any problem where we care about large $F[i]$’s only?
Applications of the CM-sketch
Heavy Hitters, revisited

- i is a θ-heavy hitter if $F[i] \geq \theta t$
- The CM-sketch with width θ guarantees
 \[F[i] \leq F'[i] \leq F[i] + \theta t \]

- So: If we output all i s.t. $F'[i] \geq \theta t$, we output all heavy hitters; no false negatives

But we can’t cycle through all n candidates one by one!
Range-Sum queries

Range-sum query

Given a, b, return $\sum_{i=a}^{b} F[i]$

Example: how many packets received came from the IP range 172.16.xxx.xxx?

We show:

- A variant of CM-sketch supports range-sum queries efficiently
- Answering range-sum queries efficiently \rightarrow finding heavy hitters efficiently
For $p = 0 \ldots \log n$, for each $j = \ldots$, keep the value of $\text{sum}(j2^p \ldots (j + 1)2^p - 1)$

Any interval $[a, b]$ is the sum of $O(\log n)$ such values
Keep

- One CM-sketch for each 2^p to store $\sum(j2^p \ldots (j+1)2^p - 1)$ for each j
- *(Perhaps?)* Or a single CM-sketch whose set of items is the set of intervals indexed by pairs (p,j)
When receiving i, update the counts for ranges where i lies = ancestors of i in the tree

When queried $\text{sum}(a..b)$, decompose $[a..b]$ as sum of such intervals, retrieve and add their sums
Adaptively search for heavy hitters in the tree
if a node has count \(< \theta t\), do not explore its children: no heavy hitters below
if a node has count \(\geq \theta t\), explore both children
when reaching a leaf, we know whether it's a heavy hitter

the sum of counts at any one level of the tree is \(t\)
no more than \(1/\theta\) of them may have frequency \(\geq \theta t\)
Efficiency: no more than \(1/\theta\) nodes of each level are expanded
Exercise 3
Formalize the algorithms above:
- For computing range-sum queries given CM-sketch
- Form finding all heavy hitters using range-sum queries
and tell their memory usage and update time
Run CM-sketches for u and v using *same* hash functions

Estimate $IP(u, v) = \sum_i u_i v_i$ by

$$\min_j \sum_r \text{count}^u(j, r) \cdot \text{count}^v(j, r)$$
Inner product, revisited

- Observe that

\[u \cdot v = \sum_{i} u(i)v(i) = \sum_{r} \sum_{i:h_j(i)=r} u(i)v(i) \]

- Let \(\text{count}^u(j, r) \), \(\text{count}^v(j, r) \) be the cells for \(j \)-th function, \(r \)-th value in CM-sketches for \(u \) and \(v \). Intuitively,

\[\text{count}^u(j, r) \cdot \text{count}^v(j, r) \approx \sum_{i:h_j(i)=r} u(i)v(i) \]

- So we estimate \(u \cdot v \) by

\[\min_j \sum_r \text{count}^u(j, r) \cdot \text{count}^v(j, r) \]

in time \(O \left(\frac{1}{\varepsilon} \log \frac{1}{\delta} \right) \)

- Formally the proof is as in CM-sketch
Inner product, revisited

[AMS]
- $|AMS - IP(u, v)| \leq \varepsilon \cdot IP(u, v)$
- memory $O\left(\frac{1}{\varepsilon^2} \ln \frac{1}{\delta}\right)$ words
- update time $O\left(\frac{1}{\varepsilon^2} \ln \frac{1}{\delta}\right)$

[CountMin]
- $|CM - IP(u, v)| \leq \varepsilon |u|_1 |v|_1$
- memory $O\left(\frac{1}{\varepsilon} \ln \frac{1}{\delta}\right)$ words
- update time $O\left(\frac{1}{\varepsilon} \ln \frac{1}{\delta}\right)$

∴ CM-Sketch better memory and update time, but absolute instead of relative, approximation
Given \(i, \theta \), compute all the \(\theta \)-quantiles

I.e., find for all \(k \) the \(q(k) \) such that

\[
q(k) \sum_{i=1}^{n} F[i] = k \theta \sum_{i=1}^{n} F[i]
\]

- Can be done from the CM-sketch with \(O(n) \) estimation time
- Can be done faster using Range-Sum queries
We have asked the question
“given i, what is the frequency of i?”
Inverse question:
“given f, how many i’s have frequency f?”

Can be done in space $O\left(\frac{1}{\epsilon^2} \ln \frac{1}{\delta}\right)$
The plot for all f’s is a histogram
Sketches & random linear projections

- AMS, CM-Sketch, Cohen’s counter, . . . , sketch vector F as
 \[\sum_{i=1}^{n} F[i] h_j(i) \] for hash functions $h_j, j = 1 \ldots d$

- Equivalently, $S = HF$, $F \in \mathbb{R}^n$, $H \in \mathbb{R}^{d \times n}$, $S \in \mathbb{R}^d$
- A linear projection from dimension n to dimension d
- Vectors that are close remain close
- Vectors that are far most likely remain far
- More next week