Lecture 1. The data stream model.

Counting. Probability tools

Ricard Gavalda

MIRI Seminar on Data Streams, Spring 2015

1/49

@ Data streams everywhere
e The data stream model
e Approximate Counting

@ Probability and Sampling

2/49

Data streams everywhere

49

Data streams everywhere

] D .

<0
] i

W
@ Telcos - phone calls R
@ Satellite, radar, sensor data (8 G
@ Computer systems and network () ﬁ%

monitoring
@ Search logs, access logs
@ RSS feeds, social network activity
@ Websites, clickstreams, query streams

@ E-commerce, credit card sales

o ...
4/49

Example 1: Online shop

Thousands of visits / day

@ Is this “customer” a robot?

@ Does this customer want to buy?

@ |s customer lost? Finding what s/he wants?

@ What products should we recommend to this user?
@ What ads should we show to this user?

@ Should we get more machines from the cloud to handle
incoming traffic?

Example 2: Web searchers

Millions of queries / day

@ What are the top queries right now?
@ Which terms are gaining popularity now?
@ What ads should we show for this query and user?

6/49

Example 3: Phone company

Hundreds of millions of calls/day

@ Each call about 1000 bytes per switch
@ l.e., about 1Tb/month; must keep for billing

@ s this call fraudulent?

@ Why do we get so many call drops in area X?
@ Should we reroute differently tomorrow?

@ Is this customer thinking of leaving us?

@ How to cross-sell / up-sell this customer?

Example 4: Network link

Several Gb /minute at UPC’s outlink
Really impossible to store

@ Detect abusive users
@ Detect anomalous traffic patterns
@ ...DDOS attacks, intrusions, etc.

8/49

@ Social networks: Planet-scale streams

@ Smart cities. Smart vehicles

@ Internet of Things

@ (more phones connected to devices than used by humans)
@ Open data; governmental and scientific

@ We generate far more data than we can store

9/49

Data Streams: Modern times data

@ Data arrives as sequence of items
@ At high speed

@ Forever

@ Can’t store them all

@ Can’t go back; or too slow

@ Evolving, non-stationary reality

10/49

In algorithmic words. . .

The Data Stream axioms:

@ One pass

© Low time per item - read, process, discard

© Sublinear memory - only summaries or sketches
© Anytime, real-time answers

@ The stream evolves over time

11/49

Course outline

Part I:

@ The data stream model. Probability tools
@ Statistics on streams; frequent elements
@ Sketches for linear algebra and graphs
@ Dealing with change

Part Il:

@ Predictive models
@ Evaluation

@ Clustering

@ Frequent pattern mining
@ Distributed stream mining

12/49

The data stream model

13/49

Computing in data streams

@ Approximate answers are often OK
@ Specifically, in learning and mining contexts

@ Often computable with surprisingly low memory, one pass

14/49

Main Ingredients: Approximation and Randomization

@ Algorithms use a source of independent random bits
@ So different runs give different outputs

@ But “most runs” are “approximately correct”

15/49

Randomized Algorithms

(g,6)-approximation

A randomized algorithm A (&, §)-approximates a function
f: X — Riff for every x € X, with probability >1— 0

@ (absolute approximation) |A(x)—f(x)| <&

@ (relative approximation) |A(x)—f(x)| < ef(x)

Often ¢, 6 given as inputs to A
€ = accuracy; 8 = confidence

16/49

a~ b means “= up to lower order terms”, a~ a(1+ o(1))
a~ b means whatever | find convenient at that point

log is base 2 unless otherwise noted
O(.) hides “polylog” terms, e.g. v/nlog® n € O(v/n)

17/49

Three problems on Data Streams

Four examples:

@ Counting distinct elements
@ Finding heavy hitters
@ Counting in a sliding window

18/49

Counting distinct elements

@ How many distinct IP addresses has the router seen?
@ An IP may have passed once, or many many times

@ Fact: Any algorithm must use Q(n) memory to solve this
problem exactly on a data stream, where nis number of
different IPs seen

@ Fact: O(log n) suffices to approximate within 1%

19/49

Finding heavy hitters

@ Which IP’s have used over ¢ fraction of bandwidth (each)?
(Note: There can’t be more than 1/¢ of these)

@ Fact: Any algorithm must use (n) memory to solve this
problem exactly on a data stream, where n is number of
distinct IPs seen

@ Fact: O(1/¢) memory suffices if we allow a constant error
factor

20/49

Counts in a sliding window

0110000111000 0C01010

el
]

past data future data

@ Stream of bits; fixed n
@ Question: “how many 1’s were there among the last n”?

@ Fact: Any algorithm must use Q(n) memory to solve this
problem exactly on a data stream

@ Fact: O(log n) suffices to approximate within 1%

21/49

My main argument for sketches

If we keep one count, it's ok to use a lot of memory
If we have to keep many counts, they should use low memory

When learning / mining, we need to keep many counts
.. Sketching is a good basis for data stream learning / mining

22/49

Approximate Counting

23/49

Most basic question?
How many items have we read so far in the data stream? J

To count up to t elements exactly, logt bits are necessary

Next is an approximate solution using loglog t bits

24/49

Approximate counting

Saving k bits

Init: ¢ < 0;

Update:
draw a random number x € [0,1];
if (x <27K) c++;

Query: return 2k ¢;

Elc] =t/2X, ofc] ~\/1/2F

Space logt — k — we saved k bits!

25/49

Morris’ approximate counter [Morris 77]

Morris’ counter
Init: ¢ < O;

Update:
draw a random number x € [0,1];
if (x <27°) c++;

Query: return 2¢ —2;

E[c] ~logt
E[l2°]=t+2
o[2° ~t/v/2~0.7t

26/49

Morris’ approximate counter

@ Memory = memory used to keep ¢ = logc = loglogt
@ Can count up to 1 billion with loglog 10° = 5 bits

@ Problem: large variance, O(t)

27749

Reducing the variance, method |

Use basis b < 2 instead of basis 2:

@ Places tin the series 1,b,b?,...,b/,... (“resolution” b)

@ E[b°|~t, o[b’|~t-\/(b—1)/2
@ Space loglogt—loglogb (> loglogt, because b < 2)

@ For b=1.2, 20% of original variance, 2 extra bits

28/49

Reducing the variance, method Il

@ Run r parallel, independent copies of the algorithm
@ On Query, average their estimates

@ E[Q]~t, o[Q]~t/V2r (why?)

@ Space rloglogt

@ Time per item multiplied by r

Worse performance, but more generic technique

29/49

Morris’ counter: A non-streaming application

In [VanDurme+09]

@ Counting k-grams in a large text corpus
@ Number of k-grams grows exponentially with k
@ Highly diverse frequencies

@ Use Morris’ counters (5 bits) instead of standard counters

30/49

Morris’ counter: An improvement?

Exercise 1
Suppose in the Morris’ counter | change

if (x <27°) c++;
to
if (x <272°) ct+;

| claim this gives an algorithm using logloglog t bits between
updates (plus temporary loglogt memory during an update)

1) do you believe this?
2) if you do, think why this algorithm is not very useful, anyway

Hint: resolution

31/49

Probability and Sampling

32/49

Probability and Sampling

33/49

Probabilities

@ A, Bevents
@ Pr[A|B] = Pr[AA B]/Pr[B]

@ A and B independent iff Pr[AA B] = Pr[A] - Pr[B]
@ equivalently, iff Pr[A|B] = Pr[A]

@ Union bound:
Pr[AvV B] = Pr[A] + Pr[B] — Pr[AA B] < Pr[A] + Pr[B]
@ More in general, Pr[\V/c,; Al < Y/ Pr[A]]

34/49

Expectation

(Discrete distributions)

@ X real-valued random variable

@ Expectation of X = E[X] =Y, Pr[X =x]-x

o E[X-E[X]]=0

@ Linearity of expectation:
E[X+Y]=E[X]+E[Y], Ela-X]=a-E[X]
More in general, E[Yic; ;- Xi] = Yic; ;- E[X]]
If X and Y independent, E[X - Y] = E[X]- E[Y]

35/49

Variance

@ Variance: Var(X) = E[(X — E[X])?] = E[X?] — E[X]?

@ Var(o- X+)= a?- Var(X)

e If X and Y independent, Var(X + Y) = Var(X)+ Var(Y)
@ In general, if X; are all independent and Var(X;) = 62,

2

1 o
Xi):?(”cz)zj

Il
N

S
.M:

Var(

Equivalently,
c
=

o LX) =

36/49

Deviation Bounds

Markov’s inequality
For a non-negative random variable X and every k

PrIX > k E[X]] < 1/k

Proof:

EIX] = Y PriX=x]-x> Y PriX=x]-x
X x>k
Y PriX =x]-k=kPr[X > K]

x>k

Y

37/49

Deviation Bounds

Markov does not mention variance
But small variance implies concentration, no?

Chebyshev’s inequality
For every X and every k

Pr[|X — E[X]| > k] < Var(X)/k?

Equivalently, Pr[| X — E[X]| > ko(X)] < 1/k?

Proof:

PrIX — E[X]| > k] = Pr[(X—E[X])?> k?] < (Markov)
< E[(X - E[X])?]/k? = Var(X)/k?

38/49

Chebyshev gives (&, 6)-approximations

Pr{|X — E[X]| > ko]

=1 k=2 k=3 k=4
1 <0.25 <0.11 <0.07

IN|

But if X is normally distributed,

k=2 k=3 k
< 3

0.05 | <0.003 | <

39/49

Sums of Independent Variables

exp(—x?) vs. 1/x2:

0.4

0.081

0.05-

0.044

0.03

0.024

0.014

40/49

Sums of Independent Variables

@ Suppose X =Y, X;, E[Xi] = p, Var(X;) = 62, all X;
independent and bounded

@ By the Central Limit Theorem, Z, = (X — np)/v no? tends
to normal N(0,1) as n — eo,

@ And approximating by the normal gives
Pr[Z, > o] ~ exp(—0a?/2)

@ Chebyshev only gives

1
Pr[ana]gﬁ

41/49

Bernstein Bound

Let:
@ Xi, Xo, ... X, be independent random variables,
@ X;c[0,1], Var(X;) = o2,
° X=1Y1X

Bernstein bound
For every € > 0,

€2n
Pri|X — E[X]| > €] <2exp <_202+28/3>

42/49

Chernoff-Hoeffding bounds

@ Xi, Xo, ... X, be independent random variables,
® X;€[0,1], E[Xi]] = p,
® X=Y7,X,s0 E[X]=pn

Hoeffding bound (absolute deviation)

Pr[X — pn > en] < exp(—2¢€2n)
Pr[X —pn < —en] < exp(—2¢2 n)

Chernoff bound (relative deviation)
For e €[0,1],

Pr[X — pn > epn] < exp(—e2pn/3)
Pr[X —pn < —epn] < exp(—€2pn/2)

43/49

Example: Approximating the Mean

Input: €, 8, random variable X € [0,1]
Output: (€, 0)-approximation of E[X]

Algorithm A(e,)

1 2 .
@ Drawn= g2 In 5 copies of X

@ Output their average Y

44/49

Example: Approximating the Mean

@ Let X; be ith copy of X
® Then Y =1Y[X and E[Y] = E[X]
@ By Hoeffding,

Pr[|Y —E[X]| > €] = Pr[iX,-—E[i Xi] > €n]
i—1 f

< 2exp(—2e2n) =2exp(—In(2/8)) =&

@ A different, sequential, algorithm gets (&,) relative
approximation using

1 1
(2ep"s)
samples of X

[Dagum-Karp-Luby-Ross 95, Lipton-Naughton 95]

45/49

Example: Approximating the Median

Input: €, 8, set SC [0,1]

Output:
an element s € Swhose rank in Sisin (1/2+¢)|S|
Algorithm A(e,)

@ Draw n= i In E random elements from S
2e2 8

@ Output the median of these n elements

46/49

Example: Approximating the Median

@ Let X; be 1 if ith sample has rank < (1/2—¢€)|S|, 0
otherwise

@ F[X]=1/2—¢
@ By Hoeffding,

Pr[> n/2 draws give elements with rank < (1/2 —¢€)|S]|]

< PHY X > n/2] = P Y. X > E[Y. X +en

i=1 i=1 i=1

< exp(—2e2n)=5/2

@ Therefore, with probability < §/2 we draw > n/2 elements
of rank < (1/2—¢)|S|. Implies median of sample
>(1/2-¢)|S]

@ Similarly the other side

47/49

Example use in Data Streams: Sampling rate

Exercise 2.

Understand the algorithm and proof for the median
(You don’t have to deliver this exercise, but you have to do it)

48/49

Example use in Data Streams: Sampling rate

@ Suppose items arrive at so high speed that we have to skip
some
@ Sample randomly:
e Choose to process each element with probability o
e Ignore each element with prob. 1 —«
@ At any time ¢, if queried for the median, returned the
median of the elements chosen so far

Exercise 3.
Given a, 0, determine the probability & such that at time t the
output of the algorithm above is an (&;, 6)-approximation of the
median on the first t elements of the stream

49/49

	Data streams everywhere
	The data stream model
	Approximate Counting
	Probability and Sampling

