
Lecture 1. The data stream model.
Counting. Probability tools

Ricard Gavaldà

MIRI Seminar on Data Streams, Spring 2015

1 / 49

Contents

1 Data streams everywhere

2 The data stream model

3 Approximate Counting

4 Probability and Sampling

2 / 49

Data streams everywhere

3 / 49

Data streams everywhere

Telcos - phone calls
Satellite, radar, sensor data
Computer systems and network
monitoring
Search logs, access logs
RSS feeds, social network activity
Websites, clickstreams, query streams
E-commerce, credit card sales
. . .

4 / 49

Example 1: Online shop

Thousands of visits / day

Is this “customer” a robot?
Does this customer want to buy?
Is customer lost? Finding what s/he wants?
What products should we recommend to this user?
What ads should we show to this user?
Should we get more machines from the cloud to handle
incoming traffic?

5 / 49

Example 2: Web searchers

Millions of queries / day

What are the top queries right now?
Which terms are gaining popularity now?
What ads should we show for this query and user?

6 / 49

Example 3: Phone company

Hundreds of millions of calls/day

Each call about 1000 bytes per switch
I.e., about 1Tb/month; must keep for billing

Is this call fraudulent?
Why do we get so many call drops in area X?
Should we reroute differently tomorrow?
Is this customer thinking of leaving us?
How to cross-sell / up-sell this customer?

7 / 49

Example 4: Network link

Several Gb /minute at UPC’s outlink
Really impossible to store

Detect abusive users
Detect anomalous traffic patterns
. . . DDOS attacks, intrusions, etc.

8 / 49

Others

Social networks: Planet-scale streams
Smart cities. Smart vehicles
Internet of Things
(more phones connected to devices than used by humans)
Open data; governmental and scientific

We generate far more data than we can store

9 / 49

Data Streams: Modern times data

Data arrives as sequence of items
At high speed
Forever
Can’t store them all
Can’t go back; or too slow
Evolving, non-stationary reality

10 / 49

In algorithmic words. . .

The Data Stream axioms:

1 One pass

2 Low time per item - read, process, discard

3 Sublinear memory - only summaries or sketches

4 Anytime, real-time answers

5 The stream evolves over time

11 / 49

Course outline

Part I:

The data stream model. Probability tools
Statistics on streams; frequent elements
Sketches for linear algebra and graphs
Dealing with change

Part II:

Predictive models
Evaluation
Clustering
Frequent pattern mining
Distributed stream mining

12 / 49

The data stream model

13 / 49

Computing in data streams

Approximate answers are often OK

Specifically, in learning and mining contexts

Often computable with surprisingly low memory, one pass

14 / 49

Main Ingredients: Approximation and Randomization

Algorithms use a source of independent random bits

So different runs give different outputs

But “most runs” are “approximately correct”

15 / 49

Randomized Algorithms

(ε,δ)-approximation
A randomized algorithm A (ε,δ)-approximates a function
f : X → R iff for every x ∈ X , with probability ≥ 1−δ

(absolute approximation) |A(x)− f (x)|< ε

(relative approximation) |A(x)− f (x)|< ε f (x)

Often ε, δ given as inputs to A
ε = accuracy; δ = confidence

16 / 49

Notation

a' b means “= up to lower order terms”, a' a(1 + o(1))

a∼ b means whatever I find convenient at that point

log is base 2 unless otherwise noted

Õ(.) hides “polylog” terms, e.g.
√

n log3 n ∈ Õ(
√

n)

17 / 49

Three problems on Data Streams

Four examples:

Counting distinct elements
Finding heavy hitters
Counting in a sliding window

18 / 49

Counting distinct elements

How many distinct IP addresses has the router seen?
An IP may have passed once, or many many times

Fact: Any algorithm must use Ω(n) memory to solve this
problem exactly on a data stream, where n is number of
different IPs seen
Fact: O(logn) suffices to approximate within 1%

19 / 49

Finding heavy hitters

Which IP’s have used over ε fraction of bandwidth (each)?
(Note: There can’t be more than 1/ε of these)

Fact: Any algorithm must use Ω(n) memory to solve this
problem exactly on a data stream, where n is number of
distinct IPs seen
Fact: O(1/ε) memory suffices if we allow a constant error
factor

20 / 49

Counts in a sliding window

Stream of bits; fixed n
Question: “how many 1’s were there among the last n”?
Fact: Any algorithm must use Ω(n) memory to solve this
problem exactly on a data stream
Fact: O(logn) suffices to approximate within 1%

21 / 49

My main argument for sketches

If we keep one count, it’s ok to use a lot of memory
If we have to keep many counts, they should use low memory

When learning / mining, we need to keep many counts
∴ Sketching is a good basis for data stream learning / mining

22 / 49

Approximate Counting

23 / 49

Counting

Most basic question?
How many items have we read so far in the data stream?

To count up to t elements exactly, log t bits are necessary

Next is an approximate solution using log log t bits

24 / 49

Approximate counting

Saving k bits

Init: c ← 0;

Update:
draw a random number x ∈ [0,1];
if (x ≤ 2−k) c++;

Query: return 2k c;

E [c] = t/2k , σ [c]'
√

t/2k

Space log t−k → we saved k bits!

25 / 49

Morris’ approximate counter [Morris 77]

Morris’ counter

Init: c ← 0;

Update:
draw a random number x ∈ [0,1];
if (x ≤ 2−c) c++;

Query: return 2c−2;

E [c]' log t
E [2c] = t + 2
σ [2c]' t/

√
2' 0.7 t

26 / 49

Morris’ approximate counter

Memory = memory used to keep c = logc = log log t

Can count up to 1 billion with log log109 = 5 bits

Problem: large variance, O(t)

27 / 49

Reducing the variance, method I

Use basis b < 2 instead of basis 2:

Places t in the series 1,b,b2, . . . ,bi , . . . (“resolution” b)

E [bc]' t , σ [bc]' t ·
√

(b−1)/2

Space log log t− log logb (> log log t , because b < 2)

For b = 1.2, 20% of original variance, 2 extra bits

28 / 49

Reducing the variance, method II

Run r parallel, independent copies of the algorithm

On Query, average their estimates

E [Q]' t , σ [Q]' t/
√

2r (why?)

Space r log log t

Time per item multiplied by r

Worse performance, but more generic technique

29 / 49

Morris’ counter: A non-streaming application

In [VanDurme+09]

Counting k -grams in a large text corpus

Number of k -grams grows exponentially with k

Highly diverse frequencies

Use Morris’ counters (5 bits) instead of standard counters

30 / 49

Morris’ counter: An improvement?

Exercise 1
Suppose in the Morris’ counter I change

if (x ≤ 2−c) c++;

to

if (x ≤ 2−2c
) c++;

I claim this gives an algorithm using log log log t bits between
updates (plus temporary log log t memory during an update)
1) do you believe this?
2) if you do, think why this algorithm is not very useful, anyway
Hint: resolution

31 / 49

Probability and Sampling

32 / 49

Probability and Sampling

33 / 49

Probabilities

A, B events
Pr[A|B] = Pr[A∧B]/Pr[B]

A and B independent iff Pr[A∧B] = Pr[A] ·Pr[B]

equivalently, iff Pr[A|B] = Pr[A]

Union bound:
Pr[A∨B] = Pr[A] + Pr[B]−Pr[A∧B]≤ Pr[A] + Pr[B]

More in general, Pr[
∨

i∈I Ai]≤ ∑i∈I Pr[Ai]

34 / 49

Expectation

(Discrete distributions)

X real-valued random variable
Expectation of X = E [X] = ∑x Pr[X = x] ·x

E [X −E [X]] = 0
Linearity of expectation:

E [X + Y] = E [X] + E [Y], E [α ·X] = α ·E [X]

More in general, E [∑i∈I αi ·Xi] = ∑i∈I αi ·E [Xi]

If X and Y independent, E [X ·Y] = E [X] ·E [Y]

35 / 49

Variance

Variance: Var(X) = E [(X −E [X])2] = E [X 2]−E [X]2

Var(α ·X + β) = α2 ·Var(X)

If X and Y independent, Var(X + Y) = Var(X) + Var(Y)

In general, if Xi are all independent and Var(Xi) = σ2,

Var(
1
n

n

∑
i=1

Xi) =
1
n2 (nσ

2) =
σ2

n

Equivalently,

σ(
1
n

n

∑
i=1

Xi) =
σ√
n
.

36 / 49

Deviation Bounds

Markov’s inequality
For a non-negative random variable X and every k

Pr[X ≥ k E [X]]≤ 1/k

Proof:

E [X] = ∑
x

Pr[X = x] ·x ≥ ∑
x≥k

Pr[X = x] ·x

≥ ∑
x≥k

Pr[X = x] ·k = k Pr[X ≥ k]

37 / 49

Deviation Bounds

Markov does not mention variance
But small variance implies concentration, no?

Chebyshev’s inequality
For every X and every k

Pr[|X −E [X]|> k]≤ Var(X)/k2

Equivalently, Pr[|X −E [X]| ≥ k σ(X)]≤ 1/k2

Proof:

Pr[|X −E [X]|> k] = Pr[(X −E [X])2 > k2]≤ (Markov)
≤ E [(X −E [X])2]/k2 = Var(X)/k2

38 / 49

Chebyshev gives (ε,δ)-approximations

Pr[|X −E [X]|> kσ]

k = 1 k = 2 k = 3 k = 4
≤ 1 ≤ 0.25 ≤ 0.11 ≤ 0.07

But if X is normally distributed,

k = 1 k = 2 k = 3 k = 4
≤ 0.32 ≤ 0.05 ≤ 0.003 ≤ 3 ·10−5

39 / 49

Sums of Independent Variables

exp(−x2) vs. 1/x2:

40 / 49

Sums of Independent Variables

Suppose X = ∑
n
i=1 Xi , E [Xi] = p, Var(Xi) = σ2, all Xi

independent and bounded
By the Central Limit Theorem, Zn = (X −np)/

√
nσ2 tends

to normal N(0,1) as n→ ∞,
And approximating by the normal gives

Pr[Zn ≥ α]≈ exp(−α
2/2)

Chebyshev only gives

Pr[Zn ≥ α]≤ 1
α2

41 / 49

Bernstein Bound

Let:
X1, X2, . . . Xn be independent random variables,
Xi ∈ [0,1], Var(Xi) = σ2,
X = 1

n ∑
n
i=1 Xi

Bernstein bound
For every ε > 0,

Pr[|X −E [X]|> ε] < 2exp
(
− ε2 n

2σ2 + 2ε/3

)

42 / 49

Chernoff-Hoeffding bounds

X1, X2, . . . Xn be independent random variables,
Xi ∈ [0,1], E [Xi] = p,
X = ∑

n
i=1 Xi , so E [X] = pn

Hoeffding bound (absolute deviation)

Pr[X −pn > εn] < exp(−2ε2 n)
Pr[X −pn <−εn] < exp(−2ε2 n)

Chernoff bound (relative deviation)
For ε ∈ [0,1],

Pr[X −pn > εpn] < exp(−ε2 pn/3)
Pr[X −pn <−εpn] < exp(−ε2 pn/2)

43 / 49

Example: Approximating the Mean

Input: ε, δ , random variable X ∈ [0,1]

Output: (ε,δ)-approximation of E [X]

Algorithm A(ε,δ)

Draw n =
1

2ε2 ln
2
δ

copies of X

Output their average Y

44 / 49

Example: Approximating the Mean

Let Xi be i th copy of X
Then Y = 1

n ∑
n
i=1 Xi , and E [Y] = E [X]

By Hoeffding,

Pr[|Y −E [X]|> ε] = Pr[
n

∑
i=1

Xi −E [
n

∑
i=1

Xi] > εn]

< 2exp(−2ε
2 n) = 2exp(− ln(2/δ)) = δ

A different, sequential, algorithm gets (ε,δ) relative
approximation using

O
(

1
ε2E [X]

ln
1
δ

)
samples of X
[Dagum-Karp-Luby-Ross 95, Lipton-Naughton 95]

45 / 49

Example: Approximating the Median

Input: ε, δ , set S ⊆ [0,1]

Output:
an element s ∈ S whose rank in S is in (1/2± ε)|S|

Algorithm A(ε,δ)

Draw n =
1

2ε2 ln
2
δ

random elements from S

Output the median of these n elements

46 / 49

Example: Approximating the Median

Let Xi be 1 if i th sample has rank ≤ (1/2− ε)|S|, 0
otherwise

E [Xi] = 1/2− ε

By Hoeffding,

Pr[≥ n/2 draws give elements with rank ≤ (1/2− ε)|S|]

≤ Pr[
n

∑
i=1

Xi ≥ n/2] = Pr[
n

∑
i=1

Xi ≥ E [
n

∑
i=1

Xi] + εn]

≤ exp(−2ε
2n) = δ/2

Therefore, with probability < δ/2 we draw ≥ n/2 elements
of rank ≤ (1/2− ε)|S|. Implies median of sample
> (1/2− ε)|S|
Similarly the other side

47 / 49

Example use in Data Streams: Sampling rate

Exercise 2.
Understand the algorithm and proof for the median
(You don’t have to deliver this exercise, but you have to do it)

48 / 49

Example use in Data Streams: Sampling rate

Suppose items arrive at so high speed that we have to skip
some
Sample randomly:

Choose to process each element with probability α

Ignore each element with prob. 1−α

At any time t , if queried for the median, returned the
median of the elements chosen so far

Exercise 3.
Given α, δ , determine the probability εt such that at time t the
output of the algorithm above is an (εt ,δ)-approximation of the
median on the first t elements of the stream

49 / 49

	Data streams everywhere
	The data stream model
	Approximate Counting
	Probability and Sampling

