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Male and female politicians on Twitter: A machine learning approach
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Abstract. How does the language of male and female politicians differ when they communicate directly
with the public on social media? Do citizens address them differently? We apply Lasso logistic regression
models to identify the linguistic features that most differentiate the language used by or addressed to male
and female Spanish politicians. Male politicians use more words related to politics, sports, ideology and
infrastructure, while female politicians talk about gender and social affairs. The choice of emojis varies
greatly across genders. In a novel analysis of tweets written by citizens, we find evidence of gender-specific
insults, and note that mentions of physical appearance and infantilising words are disproportionately found
in text addressed to female politicians. The results suggest that politicians conform to gender stereotypes
online and reveal ways in which citizens treat politicians differently depending on their gender.
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Introduction

New social media, including Twitter, offer politicians an unprecedented opportunity to
communicate directly with large numbers of citizens. When politicians have full control
over the messages they send to the public, do they communicate in ways that conform to
gender stereotypes? This research note examines differences in the topics discussed and
the language used by male and female politicians on Twitter. Besides providing abundant
data on the messages written by politicians, social media data also offers novel but still
underutilised opportunities to study whether citizens communicate with male and female
politicians differently. Hence, we also ask whether citizens speak to politicians of both
genders in different ways and if so, how.

To address these questions, we collected around 121,000 messages written by Spanish
national and regional politicians on Twitter for 6 months and 207,000 messages addressed
to them. We use a machine learning algorithm to identify the tokens most associated with
gender. We refer to these tokens as ‘male linked’ or ‘female linked’ (Park et al. 2016).
Our findings suggest that when politicians communicate with the public, they reproduce
gender stereotypes in both content and style. Stems relating to ideology, transportation
and infrastructure and factual emojis are male linked, whereas emotional emojis and stems
relating to gender and social issues are female linked.

Our empirical approach, combined with data on responses to messages posted by
politicians, allows us to make new discoveries about how citizens address male and female
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politicians differently. The analysis reveals extensive evidence of sexist speech addressed
at female MPs: citizens are more likely to address them using infantilising words or words
about their physical appearance.Both genders receive insults and demeaning words, but the
insults addressed at women are disproportionately related to their appearance or to their
feminist positions.

This research note contributes to previous work on gender differences in candidates’
communication styles on Twitter (Evans & Clark 2016) and the integration of Twitter into
campaigns and its electoral effects (Wagner et al. 2017), which codes text manually. A
growing body of literature applies machine learning to analyse text from other sources such
as media portrayals (e.g., Aaldering & Van Der Pas 2018). Until now, however, in spite of
its obvious potential, the use of machine learning methods to analyse gendered political
communication on Twitter has been limited, as we discuss in more detail below.

Our work also adds to the growing political science literature that draws on Twitter data
to study topics like online racism (Munger 2017), homophily in political discussion (Barberá
2015; Barberá et al. 2015), the determinants of political protest (Jost et al. 2018) and vote
shifts across districts and electoral results (Beauchamp 2017). It is also closely related to the
recent studies byWu (2018),who analysed differences in the words used when talking about
male and female economists in the Econ Job Rumors forum using Lasso logistic models and
by Bohren et al. (2018), who studied whether comments posted on a mathematics forum
varied depending on the user’s gender. We use similar machine learning techniques but
apply them to a corpus that is much more relevant to the study of politics.

Finally, the majority of existing studies about politicians on Twitter have been conducted
in English-speaking countries and consequently the most widely used analytical tools are
also developed in English. We analyse political texts written in Spanish, the language with
the second-largest number of native speakers (after Chinese). By sharing the steps we took
to pre-process and analyse the text, we hope to help expand the use of machine learning
methods in political communication beyond English-speaking contexts.

Gender differences in political communication

Do male and female politicians talk differently when they communicate directly with the
public? If so, how? Previous studies about these questions using social media data mostly
confirmed that politicians talk about different issues and use different tones. Bailey and
Nawara (2018) conducted a content analysis of every tweet, Facebook post and Instagram
image posted by Donald Trump and Hillary Clinton in the run-up to the 2016 presidential
election.While Clinton posted more positive and negative content overall and talked more
about gender issues, race and immigration, Trump posted more about crime. Also focusing
on Twitter, Just and Crigler (2014) found that female candidates displayed emotions of
hope and enthusiasm in their messages, whereas men conveyed disgust and anger. Yarchi
and Samuel-Azran (2018) report that female politicians are more likely to use Facebook to
attack their opponents or to talk about gender issues and men are more likely to talk about
security, economy and welfare.

Most of this research has focused on electoral campaigns in the United States and
it is unclear if the findings extend to other contexts. Moreover, most studies with social
media data rely on hand coding and do not use automated processing of text and machine
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learning methods, which limits the amount of data that can be included in any given study.
We contribute to this body of research by focusing on regular communication outside the
campaign period on Twitter and in a context outside theUnited States, and by usingmachine
learning methods.

Other relevant evidence on gender differences in online language use comes fromoutside
the political domain. Research on gender differences in language use suggests that women
use more emotional, social and warmer language, whereas men use more descriptive and
impersonal language (Newman et al. 2008; Palomares 2008; Park et al. 2016). Studies on
computer-mediated communication have found strong gender differences in the use of
emojis (Chen et al. 2018;Hwang 2014;Wolf 2000),which motivates us to retain emojis when
pre-processing text.

The second question we ask is whether citizens address male and female politicians
differently on social media.Research into this issue is much scarcer.Previous studies suggest
that voters view and evaluate candidates from the perspective of gender stereotypes (e.g.,
Bauer 2015; 2018; Cassese & Holman 2018; Ditonto et al. 2014; Dolan & Lynch 2014;
Herrnson et al. 2003; Jamieson 1995; Lawless 2004; Teele et al. 2018), but they focus on
attitudes and voting behaviour rather than actual communication from citizens to politicians.
Actual communication is interesting because politicians experience it directly and it can
possibly affect their communication decisions. Text data obtained from Twitter are a novel
way to explore how citizens communicate with politicians.

Besides observing which issues and emotion-related words are linked to the gender of
the receiver, one particular concern relates to studying the hostile experiences of politicians
online, and whether these experiences vary by gender. The anonymity of Twitter may be
particularly conducive to uncivil behaviour (Munger 2017).There is evidence that politicians
frequently receive hostile messages (Bystrom Theocharis et al. 2016) and that violence
against women in politics is manifested through online threats (Krook 2017). We thus
pay particular attention to differences in hostile, aggressive and demeaning language. Such
messages may or may not be disproportionately addressed to women politicians. Recent
evidence on media coverage does not, in fact, support the view that women face a more
hostile campaign environment than men (Lawless 2015; Rheault et al. 2019).An alternative
possibility, one that is consistent with theories of benign sexism, is that women politicians
may be less likely to be taken seriously andmore likely to be addressed using condescending
and infantilising language.

Data and method

Text corpus

To investigate gender differences in political speech, we searched for the Twitter profiles of
all national and regional member of parliaments (MPs) in Spain and found 1,221 Twitter
accounts, which represent 85% of the MPs for the Spanish parliament (Congreso de los
Diputados) and 79% of regional parliamentarians. We then collected two corpora of text.
First, we gathered 121,316 tweets posted by legislators between 18 December 2017 and 4
June 2018. Second, we collected 207,574 tweets that replied to these politicians during the
same period through the Standard Search API.We ran the search weekly for 24 weeks.
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Table 1. Descriptive statistics about the corpus of text by gender of the politician

Males Females All

Number of politicians with Twitter accounts 684 537 1,221

Number of tweets published by politicians 76,345 44,971 121,316

Average number of followers per politician 23,067 9,493 17,098

Average number of tweets per politician 112 84 99

Average number of words used 14 13 13

Average number of retweets obtained 85 42 69

Average number of likes obtained 147 68 118

We identified the gender of all politicians from their names. Table 1 shows descriptive
statistics about the politicians included in this study and their tweets, grouped by the
politicians’ gender.

The data collection process was complicated by the fact that Spanish is not the only
language spoken in Spain. But because multilingual interactions are extremely common
(e.g., a Catalan parliamentary speaking in Catalan and an individual answering in Spanish)
and because Spanish, Catalan and Galician have plenty of common features, we decided to
include all the tweets in our analysis.

Data processing

Wepre-processed the text to reduce variability and transformed it into a database (Grimmer
& Stewart 2013;Wilkerson&Casas 2017).This pre-processing used theNLTK library,which
provides tools for processing Spanish.We first applied a tokenizer that splits tweets into a list
of tokens.We then applied stemming to transform the tokens obtained into linguistic stems.
Reducing the complexity of text is important when dealing with Spanish, where gender,
number and verbal mode, among other features, modify the stem of the word. For this
step, we used the Snowball Stemmer from NLTK. We discarded certain types of tokens,
namely Twitter mentions, hashtags, hyperlinks and words that occur infrequently. Because
the complexity of the model is proportional to the number of words represented in it, we
only kept the 5,000 most frequent stemmed tokens.We did not remove stop words from this
list because they can be informative of gender differences.

The resulting text, which is a sequence of stems, was transformed into a bag-of-
words representation as described by Grimmer and Stewart (2013). The whole corpus is
represented as a matrix where each stemmed token appearing in the corpus is a column
(a variable or feature) and each tweet is a row (an observation). The content of each cell
corresponds to the frequency of a stemmed token in a tweet.One limitation of this approach
is that the order in which the words appear in the text is lost. On the other hand, it allows
us to interpret the model clearly because the features coincide with the stemmed tokens
(including words and emojis). In order to evaluate the fit of our model, we reserved 20 per
cent (randomly sampled) of the corpus as a test set, and the rest is used for training the
models.
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Models

We fitted Lasso logistic regressions that regress the gender of the politician on the stemmed
tokens written by them (including words and emojis), and a second set of models regressing
gender on the tokens addressed to them. Intuitively, these models test if some words and
other features such as emojis are disproportionately used by male or female politicians, that
is, if they are relativelymore frequently used bymales.Thismeasure ismoremeaningful than
merely testing the words used most frequently by both genders, because these are generally
uninformative and ineffective in distinguishing between men and women. We choose to
analyse the data using Lasso models rather than the topic models that are used more
frequently in Political Science (Grimmer & Stewart 2013; Lucas et al. 2015; Roberts et al.
2014; Wilkerson & Casas 2017) because we are interested not only in the topics discussed,
but also in other features such as emojis and emotional expression. A focus on words and
other features allows us to examine nuances (e.g., the tone of insults addressed at male and
female politicians) that would be lost in topic models.

Lasso logistic regression is a probabilistic classifier that estimates a coefficient for each
of the words in the bag-of-words representation presented above.Unlike results from other
machine learning methods, these coefficients are easy to interpret: the words with the largest
coefficients are the most “predictive” words or are linked to the male or female categories,
depending on their sign.A regulariser is used to prevent overfitting,which is the tendency of
the classifier to be sample specific. The coefficients from Lasso logistic models are obtained
as follows:

θ̂ = argmin J (θ)

θ

J (θ) = 1
n

n∑
i=1

(
1
2

xiθ − yi

)2

+ 1
C

‖θ‖1

where C is a hyperparameter that controls the amount of regularization applied by Lasso.
It is proportional to the number of coefficients that Lasso sets to 0. To be clear, a
positive coefficient is not informative about the absolute frequency with which male or
female politicians use particular words (we examine absolute differences in the supporting
information), but implies that a word is used relatively more frequently by one gender.

We perform 10-fold cross-validation on our training set to find the value of C that
maximises the predictive score. The gender yi of tweet xi can be predicted as:

yi = σ(xi θ̂ + b) − 0.5

where σ is the logistic function and b is the intercept. Our evaluation score is the balanced
accuracy,which is the proportion of tweets correctly classified as male or female,weighted to
make them equally significant in themeasure.That is, if there aremoremale tweets,mistakes
classifying female tweets weigh more.

To train the Lasso logistic classifier, we used the Python 3 library Scikit-learn 0.20.2.
Training themodel is not completely deterministic, and different runs with the same training
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data may yield slightly different coefficients. We overcome this instability by running 30
models and averaging the values of the coefficients.

Results for text written by politicians

We first analysed a series of tweets published by politicians. To examine whether male and
female politicians communicate with the public in different ways, we regressed the gender
of politicians on the pre-processed words and emojis included in their texts. We fixed the
Lasso regularization parameter C at the value that yielded the best validation score. The
best results were for C equal to 5, which yielded a balanced accuracy of 62.97 per cent in the
validation set (see details about the choice of regularization parameters and the overfitting
curves in the Supporting Information). We report the words that were most linked to male
or female senders.

Figure 1 plots the 50 linguistic features that are most male and female linked, that is,
the words that are relatively more frequently used by each gender. The figure shows the
coefficients and the English translations. A list with the 100 most linked words in Spanish
and English, their coefficients and the topic suggested by the word can be found in the
Supporting Information.

The results suggest that the differences in text written by male and female politicians are
strongly consistent with gender stereotypes.The list of female-linked features includesmany
words relating to gender, including transsexual, patriarchal, feminist, reproduction, a form
of gender-neutral writing,1 woman, prostitute, LGBTI,mistreatment and so on. No gender-
related words appear in the list of male-linked words. The same is true of words about social
issues: words like human rights, dependant, or infancy are among the 50 most female-linked
words and public health, rent, racism, or poverty are among the 100 most female-linked
words. Gender and social issues are clearly associated with women MPs.

Themale-linked words are about classic political and ideological issues, such as extremist,
liberal, separatist, plurinational and bipartisan. Some sport-related words also appear on the
list, such as basketball or athlete, as do words about infrastructure and transportation, such
as vehicle,water transfer, airport or the steam locomotive emoji.2

Emojis are present in both lists, but especially in the women’s list. There are very
clear differences in the tone and emotions expressed by these emojis. Men’s are generally
factual, such as the film projector, data chart, camera and printed page. When they include
faces, these tend to be emoticons, that is, visual representations of facial expressions using
keyboard characters such as :) and ;). On the other hand, women’s emojis show many faces
reflecting a variety of both positive and negative emotions. Hearts in several colours also
appear, as do roses.

Results for texts addressed at politicians

In this section, we examine tweets that are written by citizens in reply to politicians on
Twitter in order to examine if the public address male and female politicians differently
on social media. We repeat the same procedures as in the previous section but using the
second dataset. Figure 2 shows the list of 50 words that are most predictive of the gender of
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Figure 1. Male- and female-linked words written by politicians [Colour figure can be viewed at
wileyonlinelibrary.com]
Note: The figure presents the results of Lasso logistic models regressing the gender of the politicians that
write a message on the stems and features that it contains.

the receiver. Again, the best model is found at C = 5, with a balanced accuracy of 59.83%.
Results for the rest of the models are available in the Supporting Information.

Two results stand out: first, there is some overlap between the words most associated to
male or female politician authors and the words that the public addresses to them. The list
of male-linked words estimated from the replies to politicians contains several words about
politics, such as minister, president and monarchy, words about sports, such as referee and
soccer, and about infrastructure, such as train, toll, highway or bridge. Many female-linked
words are related to gender, such as patriarchy, feminist,woman or rapist and to social issues,
such as xenophobic.
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Figure 2. Male- and female-linked words addressed to politicians [Colour figure can be viewed at
wileyonlinelibrary.com]
Note: The figure presents the results of Lasso logistic models regressing the gender of the politicians that
receives a reply on the stems and features written in the messages.

Second, the results about the words used in replies reveal the insults or demeaning words
that are most commonly addressed at male and female politicians. Some offensive words are
more associated with men, such as clown, foolish, or stupid. The list of the 100 most male-
linked words includes other insults like brownnoser and puppet. It also contains other words
that can have critical or insulting connotations in Spanish depending on the context, such as
nice,champion or streetwise.And it contains a number of informal ways of addressing people
such as kid or guy. Male-linked words also contain terms clearly associated with corruption
such as black and embezzlement.

By contrast, two clearly offensive terms that appear in the list of female-linked words
are the words Hitlerian and totalitarian, which can be an insult depending on who they are
addressed to. In Spain, these two words are sometimes addressed to feminists (the word
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‘feminazi’ is frequently used to discredit feminists), which would suggest that female-linked
insults are specifically used to address women who defend gender issues. This interpretation
is reinforced by the appearance of the words fascist and intolerant among the 100 most
female-linked words. In addition, the female-linked words contain words that are clearly
sexist, especially ones that are related to appearance and sexual objectification such as pretty
(which appears in two forms, ‘guapa’ and the more informal ‘guapi’), cute and blonde. The
list of the 100 most female-linked words contains the quintessentially sexist insults ugly,
bitch and stupid. The contrast between the lack of emoticons in these sets of results about
the text addressed to politicians and the abundance of gender-linked emoticons in the text
written by politicians suggests that emoticons are predictive of the gender of the writer but
not of the receiver.

Conclusions

This research note employs a large sample of tweets to study differences in the language
used by male and female politicians when communicating on Twitter, as well as by citizens
when addressing them. In both sets of analyses, we document significant gender differences
in both content and style.

The results suggest that politicians play an active role in reproducing gender stereotypes
when they can directly communicate with the public online, and they are not treated by the
public equally but in discriminatory ways. It would be beyond the scope of this research
note to examine the causes driving gendered communications on Twitter. Male and female
politicians may make different use of language because they adhere to cultural norms,
have different preferences or because they fear that communicating anti-stereotypically
would attract hostility or indifference from users. Gendered communication from citizens
to politicians could be driven by different audiences self-selecting to follow male and
female politicians, by the different content initiated by those politicians, or by differential
treatment due to gender. In any case, our descriptive results contribute to studies of
gendered communication in politics in several respects.

First, the approach based on social media data used here can easily be extended to the
study of other contexts. It is particularly useful when studying countries with proportional
systems and closed party lists,where there are limited opportunities for establishing whether
male and female politicians prioritise different issues in office due to the strong role of
parties and party discipline in other observable behaviour, such as roll-call votes, and
because other data about the speech of male and female politicians are limited. Posting on
social media is less constrained by political parties than other activities in which politicians
engage.

Second, Lasso logistic regression are based on linguistic features and reveal more subtle
gender differences in the content and the tone of political communication than other
approaches appropriate for usage with big data. Although the more frequently used topic
models obtain a small number of topics from the text, our approach identifies differences in
other respects as well, such as the gendered usage of insults or emoticons.

Third, we have broken new ground by focusing on the words that are addressed
disproportionately to male and female politicians by other Twitter users. We find that they
face different treatment online. A result that stands out is that both male and female
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politicians encounter hostile language that is more often addressed specifically at their
gender (in addition to the hostile content which is addressed at both men and women and
hence is not captured in our lists). We confirm the suspicion that the hostile talk addressed
specifically at women is often related to criticisms of feminist positions and female MPs are
more likely to receive words that are apparently positive but are in fact sexist as they relate
to their physical appearance, along with condescending words that infantilise them.

The study has similar limitations to other studies using social media data. One common
criticism is sample selection bias. In this case, a large majority of MPs do have a Twitter
account, but they differ greatly in how active they are.We are not attempting to characterise
all political communication between politicians and citizens, but only to describe differences
on Twitter. Another limitation concerns the fact that it focuses on Spain, which may differ
from other countries. In spite of these limitations, this study is an example of the possibilities
of machine learning and natural language processing techniques to study classic political
communication and gender issues.

Substantively, our results support the view that descriptive representation is relevant
because politicians with different individual characteristics are likely to discuss different
issues and have different communication styles. The claim that descriptive and substantive
representation are linked is one of the most important arguments in support of the political
inclusion of women and other politically under-represented groups in proportion to their
numbers in the population, and consequently for the design of measures such as gender
quotas that foster progress toward this goal.Our finding thatmale and female politicians talk
differently online supports the view that the gender composition of legislatures is relevant
for the content of political communication as well.

Finally, the finding that male and female politicians have different experiences online
has practical implications. An intriguing possibility is that the differential treatment from
citizens to male and female politicians is an understudied mechanism that produces
substantive representation. Words related to feminism are more likely to be addressed to
female politicians, which may motivate female politicians to specialise on gender issues,
creating a growing divergence over time in the topics discussed by male and female
politicians. Second, some forms of differential treatment may constitute a barrier in
the progress toward equal representation. Female politicians are more likely to receive
comments related to their physical appearance, which may be uncomfortable in a culture
that values beauty and may motivate some women to withdraw to avoid public exposure.
The impact of such gendered online experiences on the decision to run as a politician is
difficult to counteract because of the impossibility to mandate equal treatment from citizens
to politicians, or technical solutions, such as moderating words linked to the gender of the
receiver, would collide with the principle of free speech.

Online Appendix

Additional supporting information may be found in the Online Appendix section at the end
of the article.

Figure A1: Words used most frequently by male and female politicians
Figure A2: Relative differences between words used most frequently by male and female
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Figure A3: Words addressed most frequently to male and female politicians
FigureA4:Relative differences between words addressedmost frequently tomale or female
Figure A5: Overfitting curves for different amounts of Lasso regularization in the analyses
of tweets sent by politicians
Figure A6: Overfitting curves for different amounts of Lasso regularization in the analyses
of tweets addressed to politicians
Table A.1: List of the 100 stemmed tokens most associated with males from the tweets
written by politicians, with their coefficient in the Lasso logistic model and a classification
into topics
Table A.2: List of the 100 words most associated with females from the tweets written by
politicians, with their coefficient in the Lasso logistic model and a classification into topics
Table A.3: List of the 100 stemmed tokens most associated with males from the tweets
addressed to politicians, with their coefficient in the Lasso logistic model and a classification
into topics.
Table A.4: List of the 100 words most associated with females from the tweets addressed to
politicians, with their coefficient in the Lasso logistic model and a classification into topics
Supplementary Material

Notes

1. In Spanish, the grammatical gender is present in nouns, adjectives, articles and some pronouns (for
instance,hijomeans son and hijameans daughter). The plural form is masculine when the group contains
both males and females (for instance, a son and a daughter are hijos). To avoid this masculine form, some
people use alternative letters or symbols to create a gender-neutral ending, like @ or x (hij@s, hijxs).

2. The list of the 100mostmale-linked terms contains additional sports-relatedwords such as football,coach,
goal, player, league (see Supporting Information) and words related to infrastructures such as train, the
name of the public rail company, RENFE and railway.
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