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A B S T R A C T

The increasing access to brain signal data using electroencephalography creates new opportunities to study
electrophysiological brain activity and perform ambulatory diagnoses of neurological disorders. This work
proposes a pairwise distance learning approach for schizophrenia classification relying on the spectral properties
of the signal. To be able to handle clinical trials with a limited number of observations (i.e. case and/or control
individuals), we propose a Siamese neural network architecture to learn a discriminative feature space from
pairwise combinations of observations per channel. In this way, the multivariate order of the signal is used as a
form of data augmentation, further supporting the network generalization ability. Convolutional layers with
parameters learned under a cosine contrastive loss are proposed to adequately explore spectral images derived
from the brain signal. The proposed approach for schizophrenia diagnostic was tested on reference clinical trial
data under resting-state protocol, achieving 0.95 ± 0.05 accuracy, 0.98 ± 0.02 sensitivity and 0.92 ± 0.07
specificity. Results show that the features extracted using the proposed neural network are remarkably superior
than baselines to diagnose schizophrenia (+20pp in accuracy and sensitivity), suggesting the existence of non-
trivial electrophysiological brain patterns able to capture discriminative neuroplasticity profiles among in-
dividuals. The code is available on Github: https://github.com/DCalhas/siamese_schizophrenia_eeg.

1. Introduction

The recording of increasingly affordable and precise electro-
encephalography (EEG) data is creating unprecedented opportunities to
understand brain activity, aid personalized prognostics, and promote
health through wearable biofeedback systems [1]. Electro-
encephalography is non-invasive, safe, inexpensive, and shows rich
temporal content; in contrast with other brain imaging modalities, such
as magnetic resonances, entailing higher costs and restrictions on the
longitudinal periodicity of recordings [2]. EEG monitoring is widely
used to assess psychiatric disorders, and has shown to be a valuable
source to study schizophrenia, a disorder affecting about 1% of the
world population, largely susceptible to misdiagnoses [3]. Since 2017,
cases of individuals with schizophrenia able to regulate their brain
activity using real-time EEG neurofeedback in therapeutic settings have
been reported [4]. Comprehensive reviews of EEG-based studies of
schizophrenia from case-control populations reveal general spectral
deviations, including predisposition for decreased alpha power and an
increase of activity in the lower spectrum [5]. Slow wave abnormality
(mainly delta activity) can be primarily localized in frontal lobe

regions, and is suggested to be a relevant neurophysiological marker of
schizophrenia [5]. Connectionist and information theoretic features to
discriminate brain electrophysiology have been additionally proposed
[6,7]. Despite the inherent advantages of the spectral markers and
proposed scores, their use for schizophrenia diagnosis still results in
high false positive and false negative rates due to the extent of in-
dividual differences on the electrophysiological activity of the brain,
irrespective of clinical condition. In particular, when considering
resting-state protocols for EEG recordings – clinically deemed as de-
sirable in psychiatric settings against task-oriented and stimuli-induced
settings [8] –, state-of-the-art classifiers based on the aforementioned
features generally show diagnostic accuracy rates below 70%.

The difficulty of EEG-based diagnostics of neuronal diseases is
mainly driven by two major factors: the limited size of case-control
populations [9], and the intrinsic difficulties of mining brain signals.
Brain signal data is high-dimensional, multivariate, susceptible to
noise/artifacts, rich in temporal-spatial-spectral content, and highly
variable between individuals [10].

This work proposes a dedicated class of neural networks to extract
discriminative features of schizophrenia from electrophysiological
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brain data previous to the classification step. The proposed approach
combines principles from pairwise distance learning and spectral ima-
ging in order to address the aforementioned challenges, enabling su-
perior diagnostics. Accordingly, the proposed approach offers six major
contributions:

1. Ability to learn from small datasets by taking advantage of Siamese
network layering, inherently prepared to work in augmented data
spaces mapped from a limited number of observations. Specifically,
our approach is suggested for databases with dozens to hundreds of
EEG recordings [11]. The features produced by Siamese networks
have shown to be useful to perform classification as they rely on
either the homologous or discriminative properties of observation-
pairs in a pairwise distance domain [12];

2. Ability to deal with the rich and complex spectral and temporal
content of EEG data by processing the signal into spectral images
with a fine frequency and temporal resolution per electrode [13,14],
and by subsequently reshaping the Siamese network architecture
with adequate convolutional operations;

3. Robustness to noise and wave-instability by assessing distances on
the spectral content (frequency domain) under a cosine-loss.
Gathered evidence shows less susceptibility to artifacts and the in-
herent variability of electrophysiological potentials associated with
continuously changing overlapping electrical fields produced by
localized neurons [10];

4. Ability to deal with the multivariate nature of the signal (rich spatial
content) by capturing interdependencies between channels as their
content is simultaneously used to shape the learned classifiers;

5. Ability to handle the extremely high dimensional nature of the
gathered spectral content from brain signals (high-resolution spec-
tral image per electrode) under L1 regularization [15,16];

6. Applicability of the proposed EEG-based diagnostics to alternative
populations or diseases, motivated by the: (i) placed Bayesian op-
timization step [17] for hyperparameter tuning and fixing feature
space dimension; (ii) fully automated nature of the approach once
signals are recorded; and (iii) generalization ability of the learning
process on validation data.

In contrast with the currently established views on neural in-
formation processing systems, this manuscript explores whether we can
go deep on highly dimensional spatiotemporal data in the presence of a
very limited number of data observations. This stance is much-needed
in healthcare given the limited size of trials (cohort studies), often
driven by disease rarity, capped size of control population, trial elig-
ibility requirements, or the facultative nature of EEG assessments.
Experimental results confirm this possibility.

This work is validated on the clinical trial conducted by
Gorbachevskaya and Borisov [11], a reference database for the resting-
state analysis of schizophrenia. Further, details can be found in Section
3.1. The proposed learning approach achieves 0.95 ± 0.05 accuracy,
0.98 ± 0.02 sensitivity on schizophrenia diagnostics, remarkably at-
taining an improvement of over 20pp against peer approaches.

The features extracted from the proposed spectral and pairwise
distance space further suggest the presence of discriminative electro-
physiological patterns linked to neuroplasticity aspects of the in-
dividuals. This observation is in accordance with findings from previous
studies that established statistically significant relationships between
variations in the frequency band spectrum and neuroplasticity condi-
tions [18,19].

The manuscript is organized as follows. After formalizing the pro-
blem, Section 2 surveys existing contributions to the diagnosis of in-
dividuals from brain signal data. Section 3 describes the proposed so-
lution. Section 4 shows extended evidence of its relevance for
diagnosing schizophrenia. Finally, concluding remarks are drawn in
Section 5.

1.1. Problem formulation

1.1.1. Problem
A EEG recording or brain signal observation is a multivariate time

series = ∣ ∈ … ∈ …X x j M t T{ {1, , }, {1, , }}t
j , where xt

j is a measure of the
electrophysiological activity in scalp channel j and instant t, T is the
number of time points, and M is the multivariate order (number of
channels). Given brain signal dataset, {(Xi, ci) ∣ i=1, …, N}, where N is
the number of EEG recordings and each recording Xi is annotated with a
label ci∈ Σ, our task is to identify a discriminative feature space to
classify (unlabeled) observations. Specifically, we are interested in
classifying schizophrenia given case-control populations.

1.1.2. Essential background
The electrophysiological signal produced by a specific channel in

the cerebral cortex is a univariate time series that can be decomposed
into a frequency time series using a discrete Fourier transform. The
analysis of the frequency domain of a signal, generally referred as
spectral analysis, determines the predominant waves monitored at a
certain location. A short-time discrete Fourier transform can be alter-
natively applied along a sliding window of the raw signal to capture
potentially relevant changes on the spectral activity of the brain
throughout the EEG recording. The spectral content produced by this
time-varying form of spectral analysis is here informally referred as a
spectral image since it measures brain activity along two contiguous
axes: frequency and time.

2. Related work

Recent works on deep learning provide principles to attemptively
learn from small datasets [20,21], a critical requirement if we want to
guarantee their applicability for most cohort studies available world-
wide. The use of surrogate data analysis in the context of regresssion
tasks [20], or data augmentation procedures for image recognition [22]
are paradigmatic cases. Despite their relevance, they either tackle dif-
ferent tasks or assume a substantial higher amount of data observations
than the ones commonly available in clinical trials; leave aside the need
to handle the high dimensionality, spectral variability, and rich spa-
tiotemporal content of EEG data.

To form a comprehensive picture of relevant contributions, sections
below provide a state-of-the-art views on EEG classification (irrespec-
tive of clinical condition), EEG-driven analysis of schizophrenia, and
relevant advances on deep learning.

2.1. EEG classification

EEGNet [23], EEGNet-SSVEP [23], DeepConvNet [24] and Shal-
lowConvNet [24] are considered state-of-the-art EEG classification built
models that make use of convolutional operations directly on the raw
EEG data. These convolutions are placed along time and channels.
Approaches like these rely on the properties of its models to extract
discriminative features from EEG signals. These models have been
primarily validated in the context of stimuli-induced recording sessions.
One can see directly that these networks learn event related potentials
from the EEG signal, which makes the EEG recording session depend-
able of a task environment for evoking potentials. In contrast, we aim at
extracting neuroplasticity-related features from resting state EEG data,
for which effective deep learning methods are still in demand. Section 4
confirms the limited relevance of existing methods to learn from resting
state EEG data.

2.2. EEG on schizophrenia

Dvey-Aharon et al. [25] claim mostly changes in functional con-
nectivity are seen in patients with schizophrenia, as well as differences
in theta-frequency activity. A classification approach was applied on 1-
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min signals recorded by a single electrode. The developed system
consists of four stages: performing preprocessing tasks and breaking the
raw signals into relevant intervals; transformation of the EEG signal
into a time-frequency representation via the Stockwell transformation;
feature extraction from the time-frequency representation; and dis-
crimination of stimuli-induced responses between features gathered
from healthy and schizophrenia subjects. A K-nearest neighbor classi-
fier under a Euclidean distance is suggested to diagnose individuals
from the extracted time-frequency features. Despite its promising re-
sults, the approach requires the performance of cognitive tasks by the
individuals under assessment throughout the recording. More recently,
the authors introduced another way of looking at the EEG signal using
connectivity maps derived from the brain activity [6]. In order to build
these maps, a similarity function needs to be chosen, so one can check
which nodes are more similar to which ones. Results showed that the
degradation of connectivity is being accelerated within schizophrenia
individuals. And that information relay changes in an abnormal manner
primarily in the prefrontal area. This gives a good insight on how
connectivity maps can be applied to discriminate schizophrenia. And
most important, that one should take into account that a change in a
certain region can influence other regions in the brain.

Sabeti et al. [7] introduced another approach to classify schizo-
phrenia based on entropy and complexity measures of the EEG signal.
The features extracted from the signal were: Shannon entropy, spectral
entropy, approximate entropy, Lempel-Ziv complexity and Higuchi
fractal dimension. Genetic programming was used for feature selection.
With these features, adaptive boost (AdaBoost) and linear discriminant
analysis (LDA) classifiers were validated, showing performance im-
provements against peer approaches. The recordings were done with
eyes open, a setting easily biased by environmental effects. Zhang et al.
[5] provided a status overview on EEG abnormalities in individuals
with schizophrenia. To this end, they examined the status of develop-
ment of spectral EEG deviations. In the gathered studies, the meta
analysis was limited to those works comparing spectral power between
one group of schizophrenia patients and one group of healthy control
subjects. The presence of two groups (or populations), one with the
pathology and a healthy control group, is essential to identify dis-
criminative features from the gathered signals. The hypothesized dif-
ferences of schizophrenia individuals were increased delta, increased
theta, decreased alpha, and increased beta power. A number of sub-
sequent studies suggested that an increase of activity in the lower
spectrum (slow waves) is significantly higher in schizophrenia popu-
lations. It is also noted that slow wave abnormality (mainly delta in-
crease) is mainly localized in frontal lobe regions. One of the conclu-
sions, is that the delta excess (and to a lesser extent the theta excess) is a
strong biological marker of schizophrenia [5].

The therapeutic utility of EEG based assessments has been recently
shown in the context of a neurofeedback training on a female patient,
who suffered from schizophrenia for more than 7 years and experienced
several psychotic episodes [4]. Along the neurofeedback training, in-
creased amplitude in alpha waves and decreased amplitude in beta
waves were observed. The patient was able to successfully identify the
most effective mental strategies and learnt how to regulate her brain
activity (mental strategies were induced with the help of a psy-
chotherapist). Event-related EEG stems suggest that neural oscillations
and their synchronization represent important mechanisms for inter-
neuronal communication and binding of information that is processed
in distributed brain regions [26]. Despite their relevance, frequency-
based analysis is generally encouraged when performing EEG-based
studies of schizophrenia. This can be experimentally shown when
comparing the performance of frequency models against models based
on event related potentials [27,23,24], i.e. models that purely process
the signal in a time domain not taking into account the frequency do-
main (results in Section 4).

In summary, notable examples of connectionist and spectral ap-
proaches were introduced to discriminate and characterize

schizophrenia. Nevertheless, there is still a research gap on how to si-
multaneously explore the rich spectral, temporal and spatial nature of
brain signals to perform classification.

2.3. Deep learning from EEG data

In spite of the indisputable role of neural network learning for the
analysis of complex spatiotemporal signal data, its role for EEG-based
diagnostics of psychiatric disorders remains largely unexplored due to
the absence of large clinical trials [28]. A few recent studies counteract
previous observations, offering principles on how to apply deep
learning over EEG data [29–31].

Ieracitano et al. [29] specifies principles to apply deep learning to
discriminate Alzheimer's disease and mild cognitive impairment from
cognitively normal individuals. The EEG recording session was setup
with 19 channels, and 189 recordings were collected (63 individuals
from each class). As stated by [29], standard machine learning methods
are unable to adequately deal with the high dimensionality of EEG data
(when taking into account channels and frequency bands). To address
this problem, and focus on relevant patterns from EEG data, convolu-
tional operations were employed to extract features from the power
spectrum density, using rectified linear unit (ReLU) as activation
functions. In contrast with this study, our work takes into account the
raw frequency time series (instead of the overall magnitude of each
frequency) and proposes a pairwise schema to improve the ability to
learn from small datasets. Note that the analysis of the raw frequency
time series is useful as it has been previously correlated with neuro-
plasticity properties of the brain [18].

Oh et al. [30] performs schizophrenia classification using principles
of deep learning from EEG recordings. EEG recordings were gathered
from 14 healthy controls and 14 schizophrenic individuals. A total of 19
electrodes were used and the signal was sampled at 250Hz. Convolu-
tional operations on the time domain, which is not encouraged when
following a resting state protocol. The target EEG dataset had segments
with a naming activity (task-oriented), and we hypothesize this is the
reason for the observed competitive results (81.26% accuracy).

Previous works [29,30] have an additional downside: the chosen
architectures were manually tuned and can bring discussion on the
nature of the selected hyperparameters. In contrast, our work does not
attempt to manually tune the hyperparameters of the network, leaving
hyperparameterization to a Bayesian optimizer. The goal is to easily
bridge the research done to a real-world setting, where irrespective of
the application domain: two populations of individuals are gathered
and the proposed SNN architecture is tuned using a Bayesian optimi-
zation algorithm. After this training procedure, the model is able to
diagnose patients in a few seconds.

2.4. Siamese neural network

Siamese neural networks (SNNs), first introduced by Bromley et al.
[32] to distinguish signature forgeries from real ones, are deep learning
architectures with two sub-networks that consist on the same instance,
hence being called “Siamese networks”. This architecture receives as
input a pair of samples. Subsequently, the outputs of the pairs used as
input to these “Siamese networks” are joined in a distance function. The
proposed distance function between the output of the SNNs is the cosine
similarity (for signatures from the same person the output should be 1,
and −1 for forged ones). This model had outstanding results at the
time, detecting 80.0% of the forged signatures and 95.5% of the gen-
uine signatures. More recently, Kock et al. [12] successfully used a SNN
architecture for one shot learning (meaning the model only sees each
class once in an epoch). This approach reached 92.8% accuracy in the
test set. These results were achieved through a Siamese convolutional
architecture. Once this kind of network is trained, its learned re-
presentations via a supervised metric-based approach with SNNs are
useful to perform tasks like classification, relying on the discriminative
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properties of these features.
Medicine has its roots on statistics [33], as it purely compares ob-

servations with history archives when making diagnosis. In contrast
with Siamese neural networks, traditional CNNs for EEG classification
identify features able to discriminate between case and control in-
dividuals, yet there is no direct comparison necessarily being done. A
SNN learns by comparison, a learning mechanism quite similar to the
way medicine diagnoses are operated by humans. This observation,
together with the need to learn from small datasets, offers the pre-
liminary motivation for the application of SNNs in the target medical
task: schizophrenia diagnosis.

3. Our approach

The proposed architecture is inspired by the architecture formerly
introduced by Kock et al. [12]. An advantage of this type of architecture
is the ability to augment the original dataset from an instance-based
data space to a pair-based one. Our approach has two main steps: (1)
feature extraction; and (2) classification. In step 1, the internal re-
presentations obtained from the SNN architecture model are extracted
after training. In step 2, a classification task is performed using these
extracted features. Previous to both steps, we perform hyperparameter
optimization for every model using Bayesian optimization (BO) [17].

3.1. Dataset description

Approaches based on induced stimuli or task performance, followed
by the analysis of event related potentials, are not considered in this
work. Instead, a resting state setup is considered to monitor the un-
derlying brain patterning at the brain cortex, independently of the
surrounding environment/undertaken task. Resting-state protocols are
clinically deemed as having inherent advantages in psychiatric settings.
The resting-state protocol minimizes electrophysiological differences
associated with the individuals’ subjective perception and elicited re-
sponse to the applied stimuli or task. Finally, it prevents additional
interference on the recorded EEG signal, and lowers the number of
visual artifacts in the EEG signal. Howells et al. [8] findings support the
use of this setup, claiming that differences on the spectral activity –
such as higher delta and a lower alpha synchronization in psychotic
disorders – can be optimally detected in resting state protocols with
both open and closed eyes.

Table 1 shows the content of EEG datasets containing healthy
control individuals and schizophrenic individuals. Dvey-Aharon et al.
[6,25] and Sabeti et al. [7] works were introduced and discussed in
Section 2. Unfortunately, the considered datasets have a strictly low
number of observations, and are not made publicly available. None-
theless, Gorbachevskaya and Borisov [11] performed a broader resting
state recording on a total of 84 individuals (45 regarded as schizo-
phrenic and 39 as healthy controls). This dataset is used to thoroughly
assess the proposed contributions. By being publicly available, it allows
the reproducibility of the presented results. This population consists of
adolescents who had been screened by a psychiatrist and got either a
positive or negative diagnostic for the schizophrenia neuropathology.
EEG recordings were sampled at 128 Hz with 1min duration. In-
dividuals were set in a resting state with eyes closed. In accordance
with the 10–20 system of electrode placement, the topographical

positions of the placed EEG channels are: F7, F3, F4, F8, T3, C3, Cz, C4,
T4, T5, P3, Pz, P4, T6, O1, O2. Given the properties of the recording
protocol, as well as the subsequent application of spectral analysis and
convolutional operations, the raw signal was not subjected to artifact
removal or bandpass filters of frequencies below 1Hz.

3.2. Siamese neural network architecture

The SNN architecture contains two sub networks that correspond to
the same instance (twin networks). Both of these twin networks are
referred to as the base network (BN). The input and output of the BN
are an example and a feature vector, respectively. The output feature
vector corresponds to the features extracted in the aforementioned step
1.

In our case, the BN receives as input a discrete short-time Fourier
transform (DSTFT) representation of the EEG signal, that is extracted
from the 1-min recording of a channel of an individual. The DSTFT is
taken with 2 s length windows in order to capture frequencies as low as
0.5 Hz, corresponding to the delta wave frequencies (Howells et al. [8]
points out that frequencies lower than 2 Hz are relevant to differentiate
schizophrenia) and as high as 50 Hz. This image is processed through
two convolutional layers, followed by a fully connected layer. The ac-
tivation function used in the convolutional layers is the rectified linear
function [34], while the fully connected layer uses the softmax acti-
vation function, normalizing the domain of the feature representations,
f∈ Rq, i∈ [1, q] : fi∈ [0, 1].

Once the BN network (Fig. 1) is built, a replication of it is made,
producing its twin and sharing their weights. The SNN layout is
achieved joining these twins and computing a distance metric between
their outputs, as shown in Fig. 2. In our case, the inputs to the SNN are
pairs of DSTFT representations and the outputs are the computed dis-
tance between the representations obtained by the BN.

The SNN tries to solve what is known as a neighbor separation
problem, consisting on the separation of instances in a dataset that
contains different classes. In our case we have two classes: schizo-
phrenic and healthy control individuals. In this neighbor separation
problem, pairs of individuals of the same class (schizophrenic with
schizophrenic or healthy with healthy) are called neighbors and pairs of
individuals of different classes (schizophrenic with healthy) are called
non-neighbors. The network learns a transformation with the objective
of assigning small distance to neighbors and large distance to non-
neighbors.

With the previously described architecture, the neighbor separation
problem can be posed as a minimization problem of a certain loss
function that depends on such distance. In [35], the contrastive loss
function is introduced to that end, defined as:

= + − −L W Y X X YD Y m D( , , , ) (1 ) max(0, )W W1 2
2 2 (1)

where (X1, X2) is the input pair, Y=1 if X1 and X2 are neighbors and 0
otherwise, DW is the distance between the predicted values of X1 and X2,
and m is the margin value of separation. Minimizing the contrastive loss
function leads to a scenario where neighbors are pulled together and
non-neighbors are pushed apart, according to a certain distance metric.
The margin value is sensitive. High values of m increase the separation
between non-neighbors (pairs of different class), impacting positively
the accuracy although making the training slower. In contrast, low
values of m may cause the model not to learn the desired behavior.

3.2.1. Loss and regularization
The suggested contrastive loss function to measure the correlation

between two feature vectors is the cosine loss. This metric generally
shows reasonable performance improvements, suggesting that the co-
herence of spectral variations between spectral images (cosine loss) is
more relevant than the actual absolute differences between images
(Euclidean loss), an observation corroborated in other recent studies
[21]. This observation also sheds light on how the schizophrenia

Table 1
Schizophrenia EEG datasets.

Dataset reference Healthy
controls

Schizophrenic
individuals

Access

Dvey-Aharon et al. [6,25] 20 20 Private
Sabeti et al. [7] 25 25 Private
Gorbachevskaya and Borisov

[11]
39 45 Public
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pathology is expressed in the EEG.
In addition to the layering of the proposed network and the applied

distance metrics, the following transformations are further applied to
the target network: L1 regularization and dropout layers. The L1 reg-
ularization is useful as it helps removing features and/or associations
that are not useful for the targeted task. Dropout layers are introduced
to improve generalization. Regularization is applied at the kernel of all
layers. The dropout probability used is 0.5, as suggested by [36], and is
applied after each convolutional layer. Adam [37] is used to optimize
the network during the training session.

3.2.2. Hyperparameter tuning
The number of layers, as well as their type, are fixed. The rest of

hyperparameters (regularization factor, margin value, learning rate,
kernel size and output dimension of the BN) are susceptible to opti-
mization. As previously mentioned, we apply BO to that end. BO is set
to run with a maximum of 50 acquisitions and starts with 5 iterations to
perform an initial exploration. In each iteration and acquisition, a K-
fold Cross Validation with K=5 is done with the training set of a leave-
one-subject-out cross validation (LOOCV) partition. The combination of
hyperparameters that has the best average validation accuracy across
the 5-folds is chosen to perform the feature extraction. Each of the
hyperparameters are assigned the following value domains to explore:
regularization factor ∈[10−3, 10−1], margin value ∈[1.0, 2.0], learning
rate ∈[10−6, 10−3], kernel size t× f with t= f={3, 4, 5, 6, 7, 8, 9, 10,
11, 12} (the same kernel size is used for both convolutional layers) and
final output dimension ∈{2, 4, 6, 8, 10, 12, 14}. The BO surrogate

model is a standard Gaussian process. Expected improvement is used as
an acquisition function and the limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm as the acquisition opti-
mizer.

The DSTFT magnitudes are normalized, under the hypothesis that
there exists a threshold from which there is no additional information
to identify the schizophrenia pathology. With this, the values are nor-
malized by an upper value, U. Values of f smaller than U are divided by
U and magnitudes bigger than U are set to 1.0. This allows every
magnitude of the frequencies to be within the interval [0, 1] after the
normalization is performed. We take advantage of the BO exploration to
obtain U, by introducing it in the same optimization process made for
the SNN hyperparameters. The domain assigned to be explored for U is
[100.0, 500.0].

3.2.3. Pairwise dataset structure
To guarantee that the target network is able to learn valid trans-

formation for all channels, the pairs are set such that only same chan-
nels are paired (Fig. 4). Pairs of different channels are not considered,
since different channels are seen as correlated spaces with different
properties. Fortunately, the SNN is capable of learning different spaces/
classes, as shown in [12], where the proposed system is able to learn a
similar setup. The pairwise schema brings a new optimization space to
the classifier and consequently more observations versus a traditional
classifier, which is one of the strongest motivations to use the SNN
architecture. The main difference is that, by bringing the problem from
an instance-based problem to a relation-based one (class agreement),

Fig. 1. Base network from the SNN.

Fig. 2. SNN architecture.
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much more data is available to learn from. In other words, the feature
variance is the same, but the optimization space has more information
available. This pairwise scheme is not a classic data augmentation
scheme, such as the ones achieved by oversampling, image data
transformations (scaling, rotations), and noise addition. Nevertheless,
as the number of available instances increases, the pairwise data space
can be informally seen as an augmented data space.

From our original EEG dataset, X1, …, XN spectral images are de-
rived with N=84 examples, and a pairwise dataset P is built. Formally,
P= P1, …, PO with = = =O c MC C 55, 776N

2 2
84 , where M=16 is the

number of EEG channels. The space complexity of the pair dataset is
c( C )N

2� . The SNN training session is done with a batch size multiple of
the number of channels. In particular, we use B=16 * c. Therefore,
there are 16 pairs of individuals in each batch and each pair of in-
dividuals has c=16 channel pairs. This scheme can only be applied in
small datasets, since the model does not scale well in terms of space
complexity, but our goal is precisely to tackle small datasets with the
creation of a whole new optimization space, where the variability
contained in the data can be exploited in a different way.

3.3. Validation

Once the SNN has been tuned and trained (in a 20 epochs session),
the outputs of the BN for every example were the result of our feature
extraction process. With these features, the following classifiers were
trained to identify schizophrenia: support vector machines (SVM),
random forest (RF), XGBoost (XGB), naive Bayes (NB) and k-nearest
neighbors (kNN). This process, illustrated in Fig. 3, was performed with
a LOOCV, where each fold consists on one subject (16 channels/in-
stances). For each of these classifiers, BO hyperparameter tuning is also
performed, setup with a maximum of 10 acquisitions and 5 iterations
for initial exploration. Algorithm 1 describes the validation schema.
The hyperparameter domains for each classifier were:

• SVM: type of kernel (linear or radial-basis function kernel), cost
C∈ [0.5, 5], and gamma coefficient γ∈ [0.00001, 1.0]

• RF: number of estimators Ne∈ {5, 10, 15, 20, 25}

• XGB: maximum depth d∈ {3, 4, 5, 6, 7}, learning rate λ∈ [0.001,
0.1], and number of estimators Ne∈ {10, 50, 100, 200}

• NB has no hyperparameters

• kNN: number of neighbors k∈ {2, 3, 4, 5, 6, 7, 8}
Algorithm 1. Leave one subject out cross validation.

predictions ⟵ {}
for each Xi∈ X do
train ⟵ X ∖ {Xi}
paired_train ⟵ pair_structure(train)
SNN.hyperparameters ⟵ SNN.BO(paired_train)
snn ⟵ SNN.fit(paired_train)

extracted_features_train ⟵ snn.BN.predict(train)
extracted_features_Xi ⟵ snn.BN.predict(Xi)
classifier.hyperparameters ⟵ classifier.BO(extracted_features_train)
clf ⟵ classifier.fit(extracted_features_train)
test_prediction ⟵ clf.predict(extracted_features_Xi)
predictions ⟵ predictions ∪ mean(test_prediction)

end for
return predictions

The hyperparameter tuning optimization for the classifiers is also
performed in a K-fold cross validation setup (K=5), but instead of
using the whole dataset (as was the case for the SNN) only the training
set of the LOOCV partition was used. Similar to the BO for the SNN, the
combination of hyperparameters with the best average validation ac-
curacy is chosen for each classifier.

4. Results

Given the recording setting introduced in Section 3.1 consider the
two following sets of paired individuals:

• hc _ v s _ s cz – set of all pairs of non-neighbor individuals (healthy
controls paired with schizophrenic);

• hc _ a nd _ s cz – set of all pairs of neighbor individuals (healthy
controls paired with healthy controls and schizophrenic paired with
schizophrenic).

Fig. 5 shows the spectral differences using FFT between concordant
pairs of individuals (hc _ a nd _ s cz) and discordant pairs of individuals
(hc _ v s _ s cz). Delineate differences would indicate the possibility to
correctly group individuals. However, the gathered differences are re-
markably low – less than 1% for every channel –, confirming the dif-
ficulty of discriminating true pairs of individuals. Despite the nearly
absent differences, cosine distance achieves higher percentage differ-
ences than the Euclidean distance, motivating its choice for the con-
trastive loss.

To assess the proposed contributions, classification results were
collected using the extracted features from the developed SNN, and
compared with state-of-the-art classifiers developed by Schirrmeister
[24], Charles [27] and Lawhern et al. [23]. We further compare our
approach against classifiers able to learn directly from spectral/FFT
features extracted from each channel [39]. The EEG classifiers proposed
in previous works are referred to as: (vi) EEGNet, (vii) EEGNet-SSVEP,
(viii) Riemann, (ix) DeepConvNet, (x) ShallowConvNet. The FFT fea-
tures classifiers are referred to as: (i) FFT-kNN, (ii) FFT-NB, (iii) FFT-RF,
(iv) FFT-SVM, (v) FFT-XGB. The proposed classifiers based on the SNN
extracted features are referred to as: (xi) DSTFT-SNN-kNN, (xii) DSTFT-
SNN-NB, (xiii) DSTFT-SNN-RF, (ix) DSTFT-SNN-SVM, (x) DSTFT-SNN-
XGB. Fig. 2 provides the accuracy, sensitivity, specificity and the Mat-
thews correlation coefficient (MCC) collected for each approach under a
10-fold cross-validation scheme. The Matthews correlation coefficient
(MCC) [38] varies between [−1, 1] and offers a combined view of
sensitivity and specificity scores, measuring the significance of the re-
sults in face of the available number of data instances and the different
sizes of the case and control populations. In addition, all results were
statistically compared under a t-test in order to assess the statistical
significance of the improvements on performance. According to
Table 2, the SNN features outperform the baselines considered by an
average of 20pp both in accuracy, specificity and sensitivity. The dis-
tinctive performance of SNNs in terms of sensitivity and specificity,
respectively indicates that the proposed approach is able to simulta-
neously minimize false negatives (schizophrenia individuals diagnosed
as healthy) and false positives (healthy individuals diagnosed as schi-
zophrenic). All the collected differences are statistically significant
under significance thresholds below 1E−5.

The results observed when considering FFT features underline the
difficult nature of the problem at hands, showing that the use of spectral

Fig. 4. Pair structure between two individuals and the corresponding EEG
channels.
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features is not sufficient to capture discriminative electrophysiological
brain patterns.

As previously mentioned in Section 2, the previous work on EEG
data classification – referred in Table 2 as (vi), (vii), (viii), (ix) and (x) –

is unable to capture neuroplasticity differences between healthy and
schizophrenia individuals from resting state data. These approaches are
mainly prepared to detect evoked potentials in response to specific
stimuli, thus generally neglecting subtle, spontaneous

Fig. 3. Schematic representation of the proposed validation procedure: SNN feature extraction (Section 3.2.2) and classification (Section 3.3).

Fig. 5. Distance type comparison on hc _ a nd _ s cz and hc _ v s _ s cz sets.
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electrophysiological variations in the brain of individuals.
In contrast, the combined use of DSTFT representations with the

proposed SNNs are better prepared to detect neuroplasticity char-
acteristics on the EEG signal as motivated by the rich spectral content
inputted to the SNN, the properties of the entailed transformations, and
the discriminative power of the features outputted from the SNN. These
observations are experimentally demonstrated by the results presented
in Table 2, with a significant difference between our approach and the
previous work on EEG.

Among the classifiers applied to the SNN features, XGBoost yields
the better performance, followed by RFs, SVMs with sparse kernel and
kNNs. We hypothesize that this observation is primarily driven by the
compositional value of the extracted features and the heterogeneity of
individual profiles. Understandably, since only a part of the overall
features have discriminative value for a given subject due to profile
heterogeneity, NB and kNN have an understandable lower performance
due to their inherent inability to discard non-relevant features.
Similarly, when we compare performance of the classifiers from FFT
features, FFT-kNN and FFT-NB have a slightly inferior performance
against FFT-XGB and FFT-SVM. Among the five classifiers, all were
slightly better at discriminating schizophrenic individuals (sensitivity)
than discriminating healthy controls (specificity) due to an inherent
ability to avoid false negatives.

Fig. 6a and b complements this analysis by offering a view on the
discriminative power of the features produced by the SNN right before
the remaining classification step. To this end, under a stratified 80/20
training-testing split, we trained a SNN and then used the learned SNN
to assess the discriminative power the extracted features for both the
individuals used to train the SNN and for the individuals in the testing
set. We further show the distribution of values for healthy controls and
schizophrenic individuals, as well as the statistical significance of the
differences for each feature.

The provided results in Fig. 6a and b confirm the ability of the
proposed SNNs to learn a discriminative feature space. 10 out 12 fea-
tures hold statistically significant differences between the case and
control individuals used to train the neural network. The same SNN
further shows a distinctive ability to diagnose unseen individuals from a
testing set, as 8 out of the 12 features are able to discriminate schizo-
phrenic from healthy individuals with statistical significance
(α < 0.05).

Despite the highlighted discriminative power of features, note that
the subsequent classification step is an essential part of the proposed
approach since it is during this step that cross-channel dependencies are
detected to capture information transmission among different cortical
regions. The analysis of the of propagation of values from the input

nodes of the SNN can be used to inquiry neuroplasticity aspects.
Illustrating, the analysis of input neurons corresponding to areas of the
spectral image that encode high-frequency beta activity can be further
used to assess whether deep learning is sensitive to desynchronized beta
activity, a condition associated to individuals with genetic predisposi-
tions to schizophrenia [40].

In addition, the learned classification models from the SNN features
produced for each channel can be analyzed to inquiry aspects of in-
formation transmission between different cortical regions. The re-
levance of multi-channel dependencies in the context of schizophrenia
has been previously highlighted [41]. In line with previous findings
[41], our classifiers generally attribute higher importance to features
collected from the T5 and C3 electrodes. The analysis of the classifi-
cation models can be further considered testing whether left hemi-
spheric hypotemporality and the increased interhemispheric informa-
tion transmission in temporal lobe is present, as it underlines a
neuroplasticity deficit found in schizophrenic patients [41,42].

Considering an i7-8550U CPU @ 1.88GHz processor with 8GB RAM,
the computational time for performing a diagnostic (testing a new in-
dividual) was found to be below 0.01 s. Once hyperparameters are
fixed, training the top-performing DSTFT-SNN-XGB classifier from
scratch on the target population is achieved in less than 60 s.

In summary, the gathered results confirm the relevance of working
in a pairwise distance space to guarantee a good generalization ability.
In addition, the applied convolution transformations guarantee a sen-
sitivity to the inherently rich spatial, temporal and spectral nature of
the EEG signal. We hypothesize that these aspects, together with the use
of regularization and the cosine loss function (able to favor variations
over absolute differences in the spectral content), explain the ability to
learn extremely discriminative features.

5. Conclusion

The rich nature of the electrophysiological data measured at the
cerebral cortex makes deep learning a natural candidate to study dis-
orders disrupting the normal brain activity. Nevertheless, the limited
size of case-control populations, together with the inherent variability
of the spectral content within and among individuals, has left the value
of neural network approaches largely unexplored. This manuscript
stresses the relevance of revisiting this problem, showing that ade-
quately reshaped neural networks with proper loss and regularization
criteria can increase the accuracy of schizophrenia diagnostics by
15–20 percentage points against peer alternatives (without hampering
sensitivity or specificity).

Two master principles underlie these results: (1) the mapping of the

Table 2
Comparison of classifiers based on discriminative spectral features, state-of-the-art EEG data classifiers, and the proposed SNN-based classifiers. Sensitivity (spe-
cificity) refers to the proportion of actual schizophrenic (healthy control) individuals correctly classified. Accuracy refers to the proportion of schizophrenic and
healthy controls correctly classified. MCC refers to the Matthews correlation coefficient [38], which allows us to analyze the significance of our results based on the
number of available data instances and the different sizes of the case and control populations. Bold results are the best performers.

Classifier Accuracy Sensitivity Specificity MCC

(i) FFT-kNN 0.60 ± 0.31 0.56 ± 0.33 0.64 ± 0.30 0.17
(ii) FFT-NB 0.57 ± 0.32 0.33 ± 0.38 0.85 ± 0.14 0.18
(iii) FFT-RF 0.58 ± 0.32 0.58 ± 0.32 0.64 ± 0.29 0.19
(iv) FFT-SVM 0.66 ± 0.28 0.69 ± 0.26 0.63 ± 0.29 0.30
(v) FFT-XGB 0.65 ± 0.28 0.68 ± 0.26 0.61 ± 0.30 0.26
(vi) EEGNet [23] 0.58 ± 0.32 0.58 ± 0.31 0.59 ± 0.32 0.17
(vii) EEGNet-SSVEP [23] 0.54 ± 0.34 0.60 ± 0.31 0.46 ± 0.37 0.04
(viii) Riemann [27] 0.41 ± 0.50 0.47 ± 0.54 0.44 ± 0.50 −0.10
(ix) DeepConvNet [24] 0.54 ± 0.12 0.64 ± 0.08 0.41 ± 0.14 0.01
(x) ShallowConvNet [24] 0.57 ± 0.32 0.58 ± 0.31 0.56 ± 0.32 0.12
(xi) DSTFT-SNN-kNN 0.88 ± 0.12 0.90 ± 0.09 0.85 ± 0.14 0.74
(xii) DSTFT-SNN-NB 0.83 ± 0.16 0.82 ± 0.16 0.83 ± 0.15 0.62
(xiii) DSTFT-SNN-RF 0.88 ± 0.11 0.93 ± 0.07 0.82 ± 0.16 0.71
(ix) DSTFT-SNN-SVM 0.87 ± 0.12 0.96 ± 0.04 0.78 ± 0.20 0.74
(x) DSTFT-SNN-XGB 0.95 ± 0.05 0.98 ± 0.02 0.92 ± 0.07 0.88
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original data space into a pairwise distance space to support data
augmentation while enhancing the discriminative power of the output
features; and (2) the exploration of the rich nature of brain patterning
through convolution operations on the spectral imaging of the signal,

with weights learned under a cosine loss to improve robustness against
the inherent noisy nature of electrophysiologic data. Results suggest
that the proposed Siamese neural networks decode structural neuro-
plasticity differences between healthy and schizophrenic individuals,

Fig. 6. Statistical analysis of the SNN features in a 80/20 train and test setting. The hyperparameters were obtained from a random fold of the LOOCV.
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an observation corroborated by previous studies on how neuroplasticity
properties are encoded in the frequency domain of EEG signals from
individuals with schizophrenia [43,44]. Furthermore, this property
opens up a new door for the guided application of neurofeedback
therapies, similarly to the therapeutic settings discussed in [1]. In
therapeutic settings, incentives can be given to counteract the differ-
ences from the gathered SNN features against control feature expecta-
tions. To this end, the neurofeedback system should represent the EEG
signal in the frequency domain, by means of the DSTFT; process its
spectral content using the proposed deep learning architecture; and
output the values for the most critical SNN features against expectations
gathered from control individuals. As future work, we aim to extend the
experimental analysis toward alternative disorders, and different EEG
instrumentation or protocols; contrast the performance of the proposed
EEG-based learners against state-of-the-art MRI- and PET-based lear-
ners on a population of individuals with (and without) neurodegen-
erative conditions being currently monitored at Instituto de Medicina
Molecular; and to establish a method that is capable of performing
neurofeedback techniques to tackle schizophrenia symptoms, similarly
to what has been previously proposed by Nan et al. [1].
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