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Neighborhood-Based Stopping Criterion for
Contrastive Divergence

Enrique Romero Merino, Ferran Mazzanti Castrillejo, and Jordi Delgado Pin

Abstract— Restricted Boltzmann Machines (RBMs) are general
unsupervised learning devices to ascertain generative models of
data distributions. RBMs are often trained using the Contrastive
Divergence (CD) learning algorithm, an approximation to the
gradient of the data log-likelihood (logL). A simple reconstruction
error is often used as a stopping criterion for CD, although
several authors have raised doubts concerning the feasibility
of this procedure. In many cases, the evolution curve of the
reconstruction error is monotonic, while the logL is not, thus
indicating that the former is not a good estimator of the optimal
stopping point for learning. However, not many alternatives to
the reconstruction error have been discussed in the literature.
An estimation of the logL of the training data based on
annealed importance sampling is feasible but computationally
very expensive. In this manuscript, we present a simple and cheap
alternative, based on the inclusion of information contained in
neighboring states to the training set, as a stopping criterion for
CD learning.

Index Terms— Machine learning, neural networks, recurrent
neural networks, restricted Boltzmann machines, unsupervised
learning.

I. INTRODUCTION

LEARNING algorithms for deep multilayer neural net-
works have been known for a long time [1], though they

usually could not outperform simpler shallow networks. In this
way, deep multilayer networks were not widely used to solve
large scale real-world problems until the last decade [2], [3].
In 2006, deep belief networks (DBNs) [4] came out as a
real breakthrough in this field, since the learning algorithms
proposed ended up being a feasible and practical method to
train deep networks, with interesting results [5]–[9]. DBNs
have restricted Boltzmann machines (RBMs) [10] as their
building blocks.

RBMs are topologically constrained Boltzmann
Machines (BMs) with two layers, one of hidden and
another of visible neurons, and no intralayer connections.
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This property makes working with RBMs simpler than with
regular BMs and, in particular, the stochastic computation
of the logL gradient may be performed more efficiently by
means of Gibbs sampling [2], [11].

In 2002, the contrastive divergence (CD) learning algorithm
was proposed as an efficient training method for product-of-
expert models, from which RBMs are a special case [12].
It was observed that using CD to train RBMs worked quite
well in practice. This fact was important for deep learning
since some authors suggested that a multilayer deep neural
network is better trained when each layer is pre-trained sepa-
rately as if it was a single RBM [5], [6], [13]. Thus, training
RBMs with CD and stacking them up seems to be a good way
to go when designing deep learning architectures.

However, the picture is not as nice as it looks, since CD
is not a flawless training algorithm. Despite CD being an
approximation of the true logL gradient [14], it is biased
and it may not converge in some cases [15]–[17]. Moreover,
it has been observed that CD and variants such as persistent
CD (PCD) [18] or fast PCD [19] can lead to a steady
decrease of the logL during learning [20]–[22]. Therefore,
the risk of learning divergence imposes the requirement of
a stopping criterion. There are two main methods used to
decide when to stop the learning process. One is based on the
monitorization of the reconstruction error [23]. The other is
based on the estimation of the logL with annealed importance
sampling (AIS) [24], [25]. The reconstruction error is easy
to compute and it has been often used in practice, though its
adequacy remains unclear because of monotonicity [21]. AIS
seems to work better than the reconstruction error in most
cases, though it is considerably more expensive to compute,
and may also fail [20].

In this paper, we approach this problem from a differ-
ent perspective. In general, CDn tends to concentrate the
probabilities in a small subset of the training data, leaving
little probabilities to the rest of states. This is an undesired
feature that prevents building a good model. In this paper, we
propose a stopping criterion that tries to detect this before
the likelihood starts to degenerate. Since in a Boltzmann
distribution the probability of a given state is proportional to
the exponential of its energy, states with similar energy also
have similar probability. Based on the fact that the energy is
a continuous and smooth function of its variables, the close
neighborhood of the high-probability states is also expected to
acquire a significant amount of probability. In this sense, we
argue that the information contained in the neighborhood of
the training data is valuable, and that it can be incorporated in
the learning process of RBMs. We use the Hamming distance
as a measure of how close different states are.
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The proposed stopping criterion depends on the information
contained in the training set and its neighbors and can be
used to detect changes in the curvature of the logL. In this
sense, the criterion is local as it does not need to explore
the whole space of states. Furthermore, and in order to make
it computationally tractable, we build the stopping criterion
in such a way that it becomes independent of the partition
function of the model, which is computationally intractable in
real-world large spaces. Moreover, the proposed quantity we
monitor during learning is much cheaper to evaluate than the
estimated logL using AIS. In the following sections, we define
the neighborhood-based stopping criterion for CDn and show
its performance in several data sets.

II. LEARNING IN RESTRICTED BOLTZMANN MACHINES

A. Energy-Based Probabilistic Models

Energy-based probabilistic models define a probability dis-
tribution from an energy function, as follows:

P(x, h) = e−Energy(x,h)

Z
(1)

where x and h stand for (typically binary) visible and hidden
variables, respectively. The normalization factor Z is called
partition function and reads

Z =
∑

x,h
e−Energy(x,h). (2)

Since only x is observed, one is interested in the marginal
distribution

P(x) =
∑

h e−Energy(x,h)

Z
(3)

but the evaluation of the partition function Z is computation-
ally prohibitive since it involves an exponentially large number
of terms. In this way, one cannot measure directly P(x).

The energy function depends on several parameters θ ,
which are adjusted at the learning stage. This is done by
maximizing the likelihood of the data. In energy-based models,
the derivative of the logL can be expressed as

−∂ log P(x; θ)

∂θ
= E P(h|x)

[
∂Energy(x, h)

∂θ

]

− E
P(

∼

x)

[
E

P(h|∼x)

[
∂Energy(

∼

x, h)

∂θ

]]

(4)

where the first term is called the positive phase and the
second term is called the negative phase. In this expression,
E

P(
∼

x)
stands for the expectation value over the probability of

the visible states, and involves the evaluation of the partition
function according to the definition E

P(
∼

x)
[ f (

∼

x)] = ∑
∼

x
P(

∼

x

) f (
∼

x) with P(
∼

x) defined in (3). As it can be seen, the exact
computation of the derivative of the logL is usually unfeasible
because of the negative phase in (4), which comes from the
derivative of the partition function.

B. Restricted Boltzmann Machines

RBMs are energy-based probabilistic models whose energy
function is

Energy(x, h) = −bt x − ct h − ht W x (5)

where W is the two-body weights connecting pairs of hidden
and visible units and b and c are the corresponding bias terms.
RBMs are at the core of DBNs [4] and other deep architectures
that use RBMs for unsupervised pre-training previous to the
supervised step [5], [6], [13].

The consequence of the particular form of the energy
function is that in RBMs both P(h|x) and P(x|h) factorize.
In this way, it is possible to compute P(h|x) and P(x|h)
in one step, making it possible to perform Gibbs sampling
efficiently, in contrast to more general models like Boltzmann
machines [26].

C. Contrastive Divergence

The most common learning algorithm for RBMs uses an
algorithm to estimate the derivative of the logL of a product
of experts model. This algorithm is called CD [12].

CDn estimates the derivative of the logL for a given point
x as

−∂ log P(x; θ)

∂θ
� E P(h|x)

[
∂Energy(x, h)

∂θ

]

− E P(h|xn)

[
∂Energy(xn, h)

∂θ

]
(6)

where xn is the last sample from the Gibbs chain starting from
x obtained after n steps:

1) h1 ∼ P(h|x);
2) x1 ∼ P(x|h1);
3) . . .;
4) hn ∼ P(h|xn−1);
5) xn ∼ P(x|hn).

Usually, E P(h|x)[(∂Energy(x, h)/∂θ)] can be easily com-
puted.

Several alternatives to CDn are PCD [18], fast PCD [19],
parallel tempering [22], dissimilar CD [27], average CD [28],
or beyond mean field corrections [29].

D. Monitoring the Learning Process in RBMs

Learning in RBMs is a delicate procedure involving a lot of
data processing that one seeks to perform at a reasonable speed
in order to be able to handle large spaces with a huge amount
of states. In doing so, drastic approximations that can only be
understood in a statistically averaged sense are performed [30].

One of the most relevant points to consider at the learning
stage is to find a good way to determine whether a good
solution has been found or not, and so to decide when the
learning process should stop. One of the most widely used
criteria for stopping is based on the monitorization of the
reconstruction error, which is a measure of the capability of the
network to produce an output that is consistent with the data at
input. Since RBMs are probabilistic models, the reconstruction
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error of a data point x(i) is computed as the probability of x(i)

given the expected value of h for x(i)

R(x(i)) = − log P(x(i)|E P(h|x(i))[h]) (7)

which is a probabilistic extension of the sum-of-squares recon-
struction error for deterministic networks

ε(x(i)) = ||x(i) − x(i)
n ||2. (8)

In this expression, x(i)
n stands for the nth reconstruction, in

the Gibbs chain mentioned above, of the i th member of the
training set. In practice, (7) is computed analytically. One first
evaluates the expectation value of the hidden units for a given
input, and then the conditional probability of the visible units
given that.

Schulz et al. [20] and Fischer and Igel [21] have shown
that, in some cases, learning induces an undesirable decrease
in likelihood that goes undetected by the reconstruction error
(both R(x(i)) and ε(x(i)) usually decrease monotonically).
Sinc°e no increase in the reconstruction error takes place
during training, there is no apparent way to detect the change
in behavior of the logL for CDn .

Alternatively, one could evaluate an estimation of the likeli-
hood of the training data by means of the AIS algorithm. While
this is theoretically possible, it can be very expensive from a
computational point of view when the system size is large, and
in some cases, it is not even clear how well it performs [20].

III. PROPOSED STOPPING CRITERION

The proposed stopping criterion is based on the monitoriza-
tion of the ratio of two quantities: the geometric average of the
probabilities of the training set and the sum of probabilities
of points in a given neighborhood of the training set. More
formally, what we monitor is

ξd =
[∏N

i=1 P(x(i))
]1/N

∑
y∈D P(y)

(9)

where D is a subset of points at a Hamming distance less
or equal than d from the training set. As usual, the distance
between a given point and a data set is taken as the minimum
distance from the given point to any element of the set. Notice
that using points not in the training set to improve learning is
also present in other works, as in [27].

The idea behind the definition is that the evolution of ξd at
the learning stage is expected to capture the main trends of
the logL for certain values of d and D. Notice that there are
two interesting limiting cases. On one hand, when D spans
the whole space (thus d being equal to the maximal possible
Hamming distance), ξd is exactly the likelihood of the data
since the denominator in (9) adds up to 1. On the other hand,
only the data in the training set is involved in the calculation
when d = 0. The choice of D and d is problem-dependent,
but in any case one should make sensible choices, taking d
small enough to have a local estimator and D of a reasonable
size in order to make ξd computationally feasible.

In this paper, we propose to stop CDn learning at the
maximum of ξd , which we expect to be close to the one shown

Fig. 1. Average logarithm of the probabilities (left) and fraction of sign
changes for small weight changes (right) of the most probable states as a
function of the Hamming distance for one thousand runs of an RBM with 12
visible units.

by the logL of the data. This holds for suitable values of d
and D, as shown by the experiments in the next sections.

The motivation for the analytic form of ξd in (9) is
twofold. On one hand, the numerator and the denominator
monitor different things. The numerator, which is essentially
the likelihood of the data, is sensitive to the accumulation
of most of the probability mass by a reduced subset of
the training data, a typical feature of CDn . For continuity
reasons, the denominator is strongly correlated with the sum
of probabilities of the training data. Once the problem has
been learned, the probabilities in a close neighborhood of the
training set will be high. The value of ξd results from a delicate
equilibrium between these two quantities (see Section IV).
On the other hand, notice that as the partition function is
the most expensive quantity to evaluate, we explicitly build
ξd as a Z -independent quantity. This is a necessary condition
we impose in the design of the quantity being monitorized.
In this way, due to the structure of ξd , the partition functions
Z involved in both the numerator and the denominator cancels
out. In other words, the computation of ξd can be equivalently
defined as

ξd =
[∏N

i=1
∑

h e−Energy(x(i),h)
]1/N

∑
y∈D

∑
h e−Energy( y,h)

. (10)

The particular topology of RBMs allows to compute∑
h e−Energy(z,h) efficiently [2]. This fact dramatically

decreases the computational cost involved in the calculation,
which would otherwise become unfeasible in most real-world
problems where RBMs could be successfully applied.

Defining the probabilistic neighborhood of each training
sample is in general problematic because it clearly depends
on the value of the weights and bias of the network, and
can be computationally very expensive. The choice of the
Hamming distance as a measure of probability proximity can
be justified in a statistical sense, since the energy function
is the sum of many terms involving a single bit from the
visible units, one expects that changes in the total energy
will be smaller the fewer bits are changed, at least in a
small range of Hamming distances. Moreover, one also expects
that changes in the probabilities of nearby states follow the
same direction. In order to illustrate these points, we have
conducted a series of synthetic experiments with randomly
chosen Gaussian weights, such that a small fraction of the
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whole space acquires a significant amount of probability mass.
In this way, our goal is to reproduce what it is usually found
in learning problems, where the training set is small compared
with the whole space. Fig. 1 shows the results of the average
over one thousand runs on an RBM with 12 and 18 visible
and hidden units, respectively. Parameters have been adjusted
such that approximately a 5% of the total number of states
exhausts approximately 0.8 of the total probability. The left
panel shows the average probability of neighboring states
to the most probable ones, as a function of the Hamming
distance. As it can be seen from the plot, on average the
probability is a smooth function of the Hamming distance
that shows a monotonic behavior up to a certain point. The
right panel shows the fraction of sign changes in the averaged
probabilities when a small variation of less than a 1% in the
weights is performed (which would account for a small update
in a learning epoch). As it can be seen, most of the neighboring
states follow the same sign changes as the original state, thus
reinforcing the idea of continuity in probability space. In this
way, the idea of using the Hamming distance as a measure
of probabilistic similarity is supported in a statistical sense.
Furthermore, it is one of the simplest and cheapest metrics
to evaluate. It is clear that the Hamming distance may fail in
some cases, but our criterion is based on the hypothesis that
this is not the dominant case. In this way, other non-trivial
metrics as the ones proposed in [31] and [32] could be used.

While the numerator in ξd is directly evaluated from the
data in the training set, the problem of finding suitable values
for y ∈ D still remains. Indeed, the set of points at a given
Hamming distance d from the training set is independent of
the weights and bias of the network. In this way, it can be
built once at the very beginning of the process and be used
as required during learning. Therefore, two issues have to be
sorted out before the criterion can be applied. The first one
is to decide a suitable value of d . Experiments with different
problems show that this is indeed problem dependent, as is
illustrated in the experimental section below. The second one is
the choice of the subset D, which strongly depends on the size
of the space being explored. For small spaces, one can safely
use the complete set of points at a distance less than or equal
to d , but that can be forbiddingly large in real world problems.
For this reason, we explore two possibilities: one including all
points and another including only a random subset of the same
size as the training set, which is only as expensive as dealing
with the training set. This is an arbitrary decision that can
be changed at will, keeping in mind that one always needs a
large enough set of points that does not, however, increase the
computational cost significantly.

IV. EXPERIMENTS

We performed several experiments to explore the aforemen-
tioned criterion defined in Section III and study the behavior
of ξd in comparison with the logL and the reconstruction
error of the data in several problems. For an exact analysis,
we have explored problems of a size such that the logL
can be exactly evaluated and compared with the proposed ξd

parameter. Moreover, we have also included the results for

large benchmarking data sets, where the calculation of the
exact logL is unfeasible and has been approximated with the
AIS algorithm [25].

A. Small Problems

The first small problem, denoted bars and stripes (BS),
tries to identify vertical and horizontal lines in 4 × 4 pixel
images. The training set consists in the whole set of images
containing all possible horizontal or vertical lines (but not
both), ranging from no lines (blank image) to completely filled
images (black image), thus producing 2×24−2 = 30 different
images (avoiding the repetition of fully back and fully white
images) out of the space of 216 possible images with black
or white pixels. The second small problem, named labeled
shifter ensemble (LSE), consists in learning 19-b states formed
as follows: given an initial 8-b pattern, generate three new
states concatenating to it the bit sequences 001, 010, or 100.
The final 8-b pattern of the state is the original one shifting
one bit to the left if the intermediate code is 001, copying it
unchanged if the code is 010, or shifting it one bit to the right
if the code is 100. One thus generates the training set using all
possible 28 × 3 = 768 states that can be created in this form,
while the system space consists of all possible 219 different
states one can build with 19 b. These two problems have
already been explored in [21] and are adequate in the current
context since, while still large, the dimensionality of space
allows for a direct monitorization of the partition function and
the logL during learning. For the sake of completeness, we
have also tested the proposed criterion on randomly generated
problems with different space dimensions, where the number
of states to be learned is significantly smaller than the size
of the space. In particular, we have generated four different
data sets (RAN10, RAN12, RAN14, and RAN16) consisting
of Nv = 10, 12, 14, 16 binary input units and 2Nv /2 examples
to be learned, as suggested in [33].

In the following, we discuss the learning processes of these
problems with binary RBMs, employing the CD algorithm
CDn with n = 1 and n = 10 as described in Section II-C.
In the BS case, the RBM had 16 visible and 8 hidden
units, while in the LSE problem these numbers were 19 and
10, respectively. For the random data sets, we have used
10 hidden units in each case.

Every simulation was carried out for a total of
50 000 epochs, with measures being taken every 50 epochs.
Moreover, every point in the subsequent plots is the average
of ten different simulations starting from different random
values of the weights and bias. No weight decay was used,
and momentum was set to 0.8. The learning rates (LRs) were
chosen in order to make sure that the logL degenerates, in
such a way that it presents a clear maximum that should be
detected by ξd .

In the following sections, we present results for two series
of experiments. In the first one (Section IV-A1), we analyze
the case where all states in D are included for a given d .
In the second one (Section IV-A2), we relax the computational
cost of the evaluation of ξd by selecting only a small subset
of all the states in D.
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Fig. 2. Results for the RAN10 problem. The first column shows the logL (top) and the reconstruction errors (7) and (8) (center and bottom). The other
columns in the first, second, and third rows depict ξd for D = DA (black curves), the sum of probabilities in the denominator of ξd for D = DA (brown
curves) and ξd for D = DS (green curves) for d = 0, 1, 2, 3, respectively. The x-axis is the number of epochs along the simulation divided by 50 in all plots.
All data in the y-axis are in arbitrary units.

Fig. 3. Results for the RAN14 problem. The first column shows the logL and the reconstruction error (7) (top and bottom). The other columns in the upper
and lower rows show ξd for D = DA and ξd for D = DS for d = 0, 1, 2, 3, respectively.

1) Complete Neighborhoods: We present the results for
the problems at hand, showing for each analyzed instance
different plots corresponding to the actual logL of the prob-
lem and ξd for different values of d , among other things.
In order to identify the contributions to ξd from the different
neighborhoods of the training set, we define two different sets:
DA containing all states at a distance less than or equal to d ,
and DS accounting for those states at a distance exactly equal
to d . We have computed ξd for D = DA and D = DS in all
our experiments that are commented in the following.

Fig. 2 shows our results for the RAN10 data set. The upper
left panel shows the logL of the data during training. As it can
be seen, there is a clear maximum that should be identified as
the stopping point. The panels below show the reconstruction

errors (7) and (8), which clearly fail to identify the desired
extremum. The rest of the columns show results for distances
d = 0, 1, 2, and 3. The first row depicts ξd for DA , where
all states at the required distances are taken into account.
As it can be seen, starting at d = 1, the criterion is robust
and consistently detects the maximum of the logL at the right
place, thus reinforcing the idea that the neighborhood of the
data contains valuable information. The second row shows the
denominator of ξd corresponding to the first row, that is, the
sum of probabilities of the states included in each case. Notice
that for d = 3, this sum equals one and ξd is exactly equal
to the likelihood of the data. More interestingly, even when
the sum is still far away from one, as it happens for d = 1,
ξd consistently finds the desired point. This behavior is also
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Fig. 4. Same as in Fig. 3 for the BS data set.

Fig. 5. Same as in Fig. 3 for the LSE data set.

TABLE I

NUMBER OF NEIGHBORS AT DIFFERENT HAMMING DISTANCES FOR THE BS AND LSE DATA SETS

observed in the rest of the data sets analyzed. Finally, the third
row shows ξd for DS , thus showing the behavior of the crite-
rion applied to different shells. For d = 1 and 2, the criterion
detects reasonably well the maximum of the logL and can be
used to identify the desired stopping point. Notice, though, that
the data alone, entirely contained at d = 0, are not capable
to reproduce this behavior. Moreover, for d larger than 2, the
criterion also fails, as it is expected that starting at a certain
distance the information regarding the model is lost. Please
notice that the initial transitory behavior of some of the plots
above is meaningless and can be omitted so it has been cut.

Equivalent results for the RAN14 case are shown in Fig. 3.
The logL and the probabilistic reconstruction error in (7) are
depicted in the upper and lower panels in the first column,
respectively. The other panels show ξd for DA and DS , with
d = 0, 1, 2, 3 (top and bottom rows, second to fifth columns).
As in the previous case, the reconstruction error fails to detect

the maximum of the likelihood, thus not being very useful in
the present context. On the contrary, a stopping point obtained
from ξd selects a near-optimal model. Notice that the criterion
is robust along all distances explored, as desired. Similar
results are found for the RAN12 and RAN16 cases.

The same plots for the BS and LSE problems are found in
Figs. 4 and 5. Once again, the reconstruction error decreases
monotonously and is therefore useless in the present context.
For the LSE problem, ξd for d larger than 1 successfully does
the task for D = DA and D = DS . However, in the BS case,
it works for D = DA but not for D = DS and d > 1. As it
can be inferred from these results, the optimal value of d can
not be fixed beforehand and is problem-dependent.

2) Incomplete Neighborhoods: Despite the success of the
criterion built for D = DA, it is clear that for large spaces it
can be unpractical if the number of states in the neighborhood
of the training set is very large. For that reason, we have tested
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Fig. 6. Comparison between ξd (black curves) and ξ̃d (red curves) for the BS and LSE data sets (upper and lower rows). Notice that since the magnitude
of these parameters is irrelevant, some curves have been scaled for the sake of clarity. The first column plots the logL of the data along the simulation.

Fig. 7. Same as in Fig. 6 for the LSE problem in CD10.

Fig. 8. Training data (two upper rows) and generated samples (two lower rows) for the BS problems with the weights and bias obtained at the stopping
point detected by ξ̃d with d = 1.

the criterion on randomly selected subsets D̃A ⊂ DA of the
same size as the training set, which is always computationally
tractable. In this sense, we denote by ξ̃d , the evaluation of ξd

on D̃A . Fig. 6 shows ξ̃d compared with ξd from the previous
figures for the BS (first row) and LSE (second row) problems.
More precisely, the first column shows the logL of the data
along the training process, while the rest of the columns plot
both ξ̃d and ξd for d = 0, 1, 2, and 3. Notice that the absolute
scales of ξd and ξ̃d may vary mainly due to the value of the
sum of probabilities in the denominators. However, since the
precise value of these quantities is irrelevant, we have decided
to scale them properly for the sake of comparison. Although
ξ̃d is built from a much smaller set than ξd , in most cases
it captures the significant features of ξd and can therefore be
used instead of it. In this sense, ξ̃d provides a good stopping
criterion for CD1, although it is not as robust as ξd due to the
strong reduction of states contributing to ξ̃d as compared with

those entering in ξd . This reduction is illustrated in Table I,
where we show the number of neighboring states to the data
set at different distances for the BS and LSE problems. By
increasing the number of states included in ξ̃d , convergence to
ξd is expected at the expense of an increase in computational
cost. However, the present results indicate that, at least for the
problems at hand, a number of examples similar to that of the
training set in the evaluation of ξ̃d are enough to detect the
maximum of the logL of the data.

All the results presented up to this point show the goodness
of the proposed stopping criterion for learning in CD1. How-
ever, the underlying idea can be applied to different learning
algorithms that try to maximize the logL of the data. In this
way, we have repeated all the previous experiments for CD10
with very similar results to the ones above. As an example,
Fig. 7 shows the logL, ξd , and ξ̃d with d = 0, 1, 2, 3 and
CD10 for the LSE data set. As it is clearly seen, the quality
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Fig. 9. Same as in Fig. 6 for the LSE problem in PCD.

Fig. 10. Comparison between ξ̃d for D = D̃A (red curves) and D = D̃S (blue curves) for the MNIST problem. The first column shows the AIS-estimated
logL of the data, while the rest of the columns show ξ̃d for d = 0, 5, 10 and 20, respectively.

TABLE II

OPTIMAL AIS-ESTIMATED STOPPING POINT, AND D = D̃S AND D = D̃A PREDICTIONS AS A FUNCTION OF THE DISTANCE d , FOR SEVERAL LARGE-
SIZED PROBLEMS ALSO USED IN [35]–[37]. LR AND LOGL STAND FOR LEARNING RATE AND LOG-LIKELIHOOD, RESPECTIVELY. EPOCHS AND

LOG-LIKELIHOOD OF THE OPTIMAL STOPPING POINT ARE REPORTED. LAST ROW INCLUDES RESULTS FOR THE MNIST PROBLEM

of the results is very similar to the CD1 case, thus stressing
the robustness of the criterion.

As a final remark, we note that for the BS problem the
trained RBM stopped using the proposed criterion is able to
qualitatively generate samples similar to those in the training
set. We show in Fig. 8 the complete training set (two upper
rows) and the same number of generated samples (two lower
rows) obtained from the RBM trained with CD1 and stopped
after 5000 epochs, around the maximum shown by ξ̃d=1, which

approximately coincides with the optimal value of the logL.
It is important to realize that, ultimately, the quality of the
model is a direct measure of the quality of CD1 learning, and
that the model used to generate the plots is the one with largest
ξ̃d , which is quite close to the one with largest likelihood.

B. Persistent CD

PCD is a well known and cheap alternative to plain CD
that helps improving learning [18], [19]. We have tested our
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stopping criteria in the same setting of the previous sections
using PCD, leading to similar results. This can be justified
from the fact that it is known that under certain conditions
PCD also degenerates [20], [21] as much as CD does, due to
probability concentration in a handful of states. Therefore, a
measure that qualitatively captures the logL behavior for CD
is expected to work also for PCD.

This is illustrated in Fig. 9, where ξ̃d and ξd are shown for
the LSE problem learned with PCD. As in the previous cases,
the evolution of the proposed estimators along the simulation
qualitatively resembles that of the ground truth, and thus the
stopping criteria detect a reasonably good stopping point.

C. MNIST Data set

The MNIST data set is a well known benchmark problem
corresponding to 28 × 28 binarized images of hand-written
digits from a huge space of 2764 possible states.1 In this case,
an RBM with 764 visible and 500 hidden units has been
employed. The calculation of the reference logL of the training
set has been approximated with the AIS technique, for a total
of 100 running chains of 1000 βk each [25]. These values
have been chosen for efficiency reasons and have been checked
to provide reasonable estimations of the likelihood compared
with results obtained with larger values. The RBM was run
for a total of 1000 epochs, and the LR and momentum chosen
for the following figures are 0.0001 and 0.8, respectively.
No weight decay has been used, though exploration with
nonzero values showed very little influence on the final results.

The left panel in Fig. 10 shows the AIS-estimated logL of
the training set. The other plots depict ξ̃d for d = 0, 5, 10, 20
corresponding to D = D̃A and D = D̃S . Notice that only the
incomplete neighborhood estimator has been evaluated as the
total amount of neighbors of the training set at a given distance
is exceedingly large to be of practical use. Remarkably, our
measure works equally well in all these cases, thus showing
that the proposed estimator is in principle able to capture
the leading features of the likelihood even in large problems.
Notice that in this case already d = 0 provides a good
estimation of the stopping point.

One could think that the AIS estimated likelihood would
provide a equally good stopping point. While this is true, it
is worth noticing that, with the standard parameters used in
real calculations based on AIS, the computational costs would
increase by a few orders of magnitude. For example, with the
parameters in [34] where a total of 5000 running chains with
105 βk’s, the computational cost would be approximately 104

times larger.
Additionally, and in order to compare with exact results as

in [25], we have tested our stopping criterion on the MNIST
problem with 25 hidden units. Notice that in this case the
exact partition function is evaluated, not estimated using AIS
or any other approximation. Best results are achieved with
a LR ε = 10−3, where the stopping point according to the
exact likelihood is located at the epoch ∼ 100. In contrast,
our criteria for D = D̃S and D = D̃A give similar results and
suggest to stop at epoch ∼ 120.

1http://yann.lecun.com/exdb/mnist

D. Other Large Problems

We have extended our analysis to other large-sized
problems of relatively high dimensionality: Adult-
a5a, Connect-4, DNA, Mushrooms, NIPS-0-12, OCR-
Letter, RCV1, Web-w6a (used in [35] and [36], for
example) and the Caltech101 Silhouettes data set (used
in [37], for example). The data sets can be downloaded
from http://www.cs.toronto.edu/~larocheh/code/nade.tgz
and http://www.cs.ubc.ca/~bmarlin/data. We have used the
same topology as in the references. In each case, we have
performed ten runs and averaged the resulting curves, as in
the MNIST problem. Table II shows the results (stopping
epoch and AIS-estimated logL at that epoch) obtained for
D = D̃S and D = D̃A for several distances d . Notice that the
results reported in the table are the most representative of the
general behavior, obtained after many runs with different LRs.
As it can be seen, both criteria work well in most cases.
When the likelihood achieves a maximum, it is usually
detected by both criteria, yielding a good estimation of the
optimal likelihood. Still, in some cases the criterion fails to
detect a good stopping point, as happens with the Caltech101
and the NIPS-0-12. However, even in these cases, valuable
information is recovered, as both criteria detect that the
likelihood achieves a maximum at some point and afterwards
degenerates, which suggests to start the learning process
again with a lower LR. When the best likelihood is achieved
around the last epoch of the training, our criteria usually
indicate that one should stop near the end, though in some
cases D = D̃S performs better (DNA, Connect-4). Overall,
our criteria successfully detect a good stopping point that can
be taken as the end of the learning process.

V. CONCLUSION

In this paper, we have introduced the contribution of neigh-
boring points to the training set to build a stopping criterion for
learning in CD. We have shown that not only the training set
but also the neighboring states contain valuable information
that can be used to follow the evolution of the network along
training.

Based on the fact that learning tries to increase the contri-
bution of the relevant states while decreasing the contribution
of the rest, continuity, and smoothness of the energy function
assigns more probability to states close to the training data.
This is the key idea behind the proposed stopping criterion.
In fact, two different but related estimators (depending on the
number of states used to compute them) have been proposed
and tested experimentally. The first one includes all states
close to the training set, while the second one takes only a
fraction of these states as small as the size of the training
set. The first estimator is robust but may require the use of
a forbiddingly large amount of states, while the second one
is always tractable and captures most of the features of the
first one, thus providing a suitable stopping learning criterion.
This second estimator has been shown to work equally well
in the MNIST and other large data sets, where an exact
computation of the logL is not possible. Additionally, the main
idea of proximity to the training set will be explored in other
aspects related to learning in the future work. Furthermore,
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we could try different metrics to measure proximity between
neighboring states.
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