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Neuro-oncologists must ultimately rely on their acquired knowledge and accumulated experience to
undertake the sensitive task of brain tumour diagnosis. This task strongly depends on indirect, non-inva-
sive measurements, which are the source of valuable data in the form of signals and images. Expert radi-
ologists should benefit from their use as part of an at least partially automated computer-based medical
decision support system. This paper focuses on Magnetic Resonance Spectroscopy signal analysis and
illustrates a method that combines Gaussian Decomposition, dimensionality reduction by Moving Win-
dow with Variance Analysis and classification using adaptively regularized Artificial Neural Networks.
The method yields encouraging results in the task of binary classification of human brain tumours, even
for tumour types that have seldom been analyzed from this viewpoint.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Magnetic Resonance Spectroscopy (MRS) is a non-invasive mea-
surement technique that can help diagnosing human brain tu-
mours that remain ambiguous after clinical investigation. Being
the brain the subject of study, this non-invasiveness limits the risks
of functional and cognitive damage associated to surgical
intervention.

MRS resorts to the use of strong magnetic fields for the genera-
tion of energy exchanges between an external magnetic field and
the protons that are present in abundance in all living tissue (Liang
& Lauterbur, 1999). A radio-frequency machine detects these en-
ergy exchanges, which are then coded using sophisticated mathe-
matical software. The result is a signal in the frequency domain
that peaks at specific frequencies or frequency bands that are
known to correspond to the the sites of resonance for specific
chemical and biochemical components of the tissue. The signal
profile is a quantitative indicator of the presence of these compo-
nents: those substances that are present in big quantities in the tis-
sue will yield higher peaks than those present in lower
concentrations. As a result, in vivo MRS enables the quantification
of metabolite concentrations in the brain tissue, providing experts
with a detailed signature of localized tissue metabolism that
should shed light on tumour characterization.

This technique has evolved rapidly over the past decades, helping
to discover informative correlations between brain tumour types
and spectral patterns. Although MRS has a great potential for clinical
decision making support, there are several factors that make MRS
signal processing difficult (Cousins, 1995) and thus hamper its appli-
cation: signal degradation related to the sensitivity of the technique,
thermal noise from the sample, noise from the electronic compo-
nents, technical limitations when measuring the in vitro tissue, as
well as time limitation during measurement. In general, in vivo
MRS signals are characterized by a low signal-to-noise ratio (SNR),
strongly overlapping spectral components (Tate et al., 1996) and
the presence of the residual water peak in the case of proton MRS
(1H-MRS), which even after pre-saturation, dominates the proton
free induction decay, causing baseline distortions in the frequency
domain (particularly for resonances closer to the water peak).
Furthermore, radiologists are more commonly trained in the use
and interpretation of imaging techniques than in MRS interpreta-
tion, limitation compounded by the fact that this task requires
considerable experience. The automated processing, analysis and
interpretation of the MRS spectra is therefore highly valuable.
Additionally, the intrinsically high dimensionality of the spectra,
the presence of noise and artifacts, and the low amount of data
available for specific pathologies (i.e., for specific brain tumour
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Table 1
Analyzed classes from the INTERPRET database.

Tumour class Number of
cases

a2: Astrocytomas, grade II 22
a3: Astrocytomas, grade III 7
ab: Brain abscesses 8
gl: Glioblastomas 86
ly: Lymphomas 10
me: Metastases 38
mm: Meningiomas grade I 58
no: Normal cerebral tissue, white matter 22
oa: Oligoastrocytomas grade II 6
od: Oligodendrogliomas grade II 7
pn: Primitive neuroectodermal tumours and

medulloblastomas
9
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types) often complicate their diagnostic-oriented classification
(Arizmendi, Vellido, & Romero, 2009).

This paper aims to contribute new tools for the automated clas-
sification analysis of brain tumours from MRS data. The proposed
method is a combination of signal processing, variable selection,
and machine learning classification techniques for tumour diagno-
sis. It is tested using data from the international, multi-center
INTERPRET database (Julià-Sapé, Acosta, Mier, Arùs, & Watson,
2006).

The MR spectrum, as expressed over a frequency range, is the
result of computing the Fast Fourier Transform (FFT) of the FID
signal, and we can therefore safely assume that is the sum of a
set of tones at the corresponding resonance frequencies. The first
step of the proposed method consists in breaking down the spectra
in individual components using the Gaussian Decomposition (GD)
technique. Each tone can be approximated with a Gaussian func-
tion, so that the spectrum as a whole is approximated through a
sum of Gaussians. From each of them, the coefficients of amplitude,
standard deviation and translation parameters are used. These can
be associated to specific metabolites to improve the interpretabil-
ity of the results, which is a key goal in medical practice (Vellido,
Martín-Guerrero, & Lisboa, 2012). The second step of the method
involves dimensionality reduction in the form of a feature selection
filter method known as Moving Window with Variance Analysis
(MWVA) (Arizmendi et al., 2009). In the third and final step, the
remaining relevant information is fed to an Artificial Neural Net-
work (ANN) classifier with Bayesian regularization (MacKay,
1992).

The main technical contribution of the current study is the com-
bination of a feature extraction technique such as GD, never used
for MRS analysis and rarely in medical imaging studies, with a sub-
sequent feature selection step of the analysis that should ease the
interpretation of the results. The proposed combination of tech-
niques is shown in the reported experiments to yield high diagnos-
tic classification accuracy for a broad range of brain tumour
pathology discrimination problems, some of which have seldom
been analyzed from this viewpoint. These results come to justify
the adequacy of the proposed combination of methods.
2. Materials and methods

2.1. Database

This study used MRS available from a database hosted at the
Grup d’Applications Biomèdiques de la Ressonància Magnètica Nuclear
(GABRMN) at Universitat Autònoma de Barcelona (UAB), in Spain.
This database was created under the framework of the European
project INTERPRET, an international collaboration of centers from
four different countries. More specifically, the data were collected
by CDP (Centre Diagnòstic Pedralbes, Barcelona, Spain), IDI (Insti-
tut de Diagnòstic per la Imatge, Barcelona, Spain), SGHMS (St.
George’s Hospital Medical School, London, UK) and UMCN (Univer-
sity Nijmegen Medical Center, Nijmegen, Netherlands).

The original criteria for the selection of cases to be included in
the database were: (a) that each considered case had a single voxel
short TE, 1.5 T spectrum acquired from a nodular region of the tu-
mour; (b) that the voxel was located in the same region as where
subsequent biopsy was obtained; (c) that the short TE spectrum
had not been discarded because of acquisition artefacts or other
reasons; and (d) that a histopathological diagnosis was agreed
among a committee of neuropathologists. In those cases in which
the spectra were obtained from normal volunteers without the
pathology, or corresponded to abscesses or clinically proven
metastases, biopsy was not required. For further details on data
acquisition and processing, and on database characteristics, we
refer readers to INTERPRET project (2014) and Julià-Sapé et al.
(2006). Class labelling was performed according to the World
Health Organization (WHO) system for diagnosing brain tumours
by histopathological analysis of a biopsy sample (Kleihues et al.,
2002). The database includes, amongst others, the types of
tumours (as well as normal tissue and brain abscesses) listed in
Table 1.

The database includes proton MRS (1H-MRS) with removal of
water obtained using PRESS and STEAM sequences. The spectra
were acquired at different times of echo: long time of echo (LTE,
135–136 ms, 266 patients) and short time of echo (STE,
30–32 ms, 304 patients). The time repetition (TR) was set between
1.50 and 2.02 ms; the spectral bandwidth, from 1000 Hz to
2500 Hz, and the total number of spectral frequencies was set to
512.
2.2. Basics of Gaussian decomposition

Several studies have investigated the problem of the extraction
of relevant information for the task of diagnostic classification from
MRS. The presence of noise and artifacts in the spectra (Vellido,
Lisboa, & Vicente, 2006; Vellido et al., 2009) and the strong overlap-
ping between spectral peaks (De Graaf & Bovee, 1990), amongst
other causes, are known to make the extraction of discriminant
information between classes difficult. This is especially true for
techniques used for brain tumour discrimination such as Principal
Component Analysis (PCA) (Devos et al., 2004) or the Discrete
Wavelet Transform (DWT) (Arizmendi, Vellido, & Romero, 2012;
Tate et al., 1996), but also for source extraction techniques such
as Independent Component Analysis (ICA) and Non-negative Matrix
Factorization (NMF), which tend to obtain sources that reflect tissue
types instead of tissue metabolites (Huang, Lisboa, & El-Deredy,
2003; Vilamala, Lisboa, Ortega-Martorell, & Vellido, 2013).

The technique of Peak Integration (PI) has also been suggested
as a candidate to overcome the problem of peak overlapping
(García-Gómez et al., 2009; Hoch & Stern, 1996). However, the pre-
cise estimation of the peak integrals is difficult due the existence of
a non-zero baseline, overlapping between peaks, and the discrete
nature of the spectra (Devos et al., 2004). Because of the strong
overlapping, the use of prior knowledge for peak selection becomes
mandatory (Lukas et al., 2004).

The MR spectra is the summatory of a set of tones at the corre-
sponding resonance frequencies for the metabolites present in the
sample (Elguero, Alkorta, Pardo, Claramunt, & Santa María, 2004).
In signal preprocessing, the approximation of each tone by a
Gaussian is a plausible procedure. This way, the spectrum can be
approximated as the sum of a set of Gaussian functions. The meth-
od proposed in the current study includes the use of the GD signal
processing technique to break down a given MR spectrum into its
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Gaussian components. Despite having been used in a variety of
fields, such as astronomy (Haud, 2010; Haud & Kalberla, 2007)
and laser instrumentation (Wagner, Ullrich, Ducic, Melzer, &
Studnicka, 2006), to name a few, GD has rarely been applied in
the medical domain in general and in MR in particular. In Suzuki,
Sakai, and Jara (2006), GD was used to fit the pixel histograms of
relaxation times for MRI. A similar approach can be found in
Oros-Peusquens, Laurila, and Shah (2008). To the best of the
authors’ knowledge, this technique has never been used to analyze
MRS data.

We describe each of the constituent tones obtained by GD
through its coefficients of amplitude, standard deviation and trans-
lation. These descriptive coefficients can then be associated to spe-
cific metabolites, thus increasing the interpretability of the results.
Unlike PI, GD does not require prior knowledge to extract the indi-
vidual information of the metabolites. It also overcomes the prob-
lem of the separation of overlapping spectral components. For all
the reasons stated above, we consider GD an adequate tool for
the investigation of MRS.

Consider a typical MRS section as that illustrated in Fig. 1, with
two resonance peaks associated with specific metabolites. Assume
that the interval of spectral signal delimited by the ½k1; k2� interval
is modeled by superposition of n Gaussians, as:

Fðx; PÞ ¼
Xn

i¼1

Aie�kiðx�liÞ
2
; k1 6 x 6 k2 ð1Þ

FðxÞ ¼ 0; x < k1 or x > k2 ð2Þ

where ki ¼ �1=2r2
i , and Pi ¼ fAi; ki;lig 2 R3þ contains information

of the amplitude (Ai), standard deviation (ri), and translation (li)
of each Gaussian. Therefore, the set P ¼ fP1; P2; . . . Png contains all
the parameters corresponding to the n Gaussians used to fit the
MRS signal.

Let Y ¼ fY1;Y2; . . . ;Ymg be the observed function (observed
MRS) for a data set X ¼ fx1; x2; . . . ; xmg and bY ¼
fbY 1; bY 2; . . . ; bY mg ¼ fFðx1; bPÞ; Fðx2; bPÞ; . . . ; Fðxm; bPÞg the estimated
approximated function for a set of parameters bP . GD aims to solve
the optimization problem:
Fig. 1. Left: Mean � standard deviation of the brain tumour spectrum FðxÞ acquired by
min
P̂

uðx;Y; P̂Þ
� �

¼
Xm

i¼1

ðYi � Ŷ iÞ
2

ð3Þ

As the x wavelenght points are the same in Y and Ŷ , the function to
minimize becomes:

min
P̂

uðP̂Þ
� �

¼
Xm

i¼1

Yi � Ŷ iðP̂Þ
� �2

ð4Þ

Therefore, the optimization objective is to find the bP that minimizes
uðbPÞ. This can be seen as a non-linear least squares problem, for
which plenty of deterministic and nondeterministic optimization
methods exist (Barton & Valdés, 2008). To minimize uðbPÞ, we used
the Trust-Region Dogleg (TR) method, because it yields better accu-
racy than the Levenberg–Marquardt (LM). Fig. 2 exemplifies the re-
sults of the LM and TR algorithms in solving the problem of fitting
the sum of two artificially generated Gaussians with added Gauss-
ian noise. While LM does not fit the data properly, TR produces an
excellent fit of the signal.

In this study, the Matlab� Curve Fitting Toolbox was used to
decompose the spectrum into its constituent tones (i.e., to obtain
the coefficients of amplitude, standard deviation and translation),
by minimizing the mean squared error (MSE) between the original
spectra and the fitted ones.

2.3. Moving Window with Variance Analysis

One of the main characteristics of the analyzed MRS is their
high dimensionality, due to the fact that each measured frequency
is treated as a data feature (or attribute/variable). It is well-known
that only a few of these frequencies (or short intervals of frequen-
cies) are associated to identifiable metabolites that may be present
in the tumoural tissue (Govindaraju, Young, & Maudsley, 2000). On
the other hand, it is also well investigated that some of these
metabolites are especially relevant as tumour markers. Neverthe-
less, the relative relevance of individual metabolites or groups of
them for the automatic discrimination of MRS spectra according
to tumour types and grades is still an open multivariate data anal-
ysis problem (González-Navarro et al., 2010). For this reason, the
MRS for a Glioblastoma case. Right: Gaussian Dissection of FðxÞ in f1ðxÞ and f2ðxÞ.



Fig. 2. F1ðxÞ and F2ðxÞ are artificially generated Gaussians with Gaussian noise added where F3ðxÞ ¼ F1ðxÞ þ F2ðxÞ þ Gaussian noise (the Gaussian noise has mean 0 and
standard deviation 1). In turn, LM1ðxÞ; LM2ðxÞ; TR1ðxÞ and TR2ðxÞ are the adjusted Gaussians with the LM and TR algorithms, respectively; (i.e., LM3ðxÞ ¼ LM1ðxÞ þ LM2ðxÞ and
TR3ðxÞ ¼ TR1ðxÞ þ TR2ðxÞ).
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development of robust and efficient feature selection techniques
for this domain is of special importance.

In this paper, we use MWVA: a feature selection filter method
proposed in Arizmendi et al. (2009), which consists of the combi-
nation of the Moving Window technique in conjunction with the
calculation of a standard ratio X, defined as the quotient between
the between-groups variance (BGV) and the within-groups vari-
ance (WGV) for a particular width w of the window. The reader
is referred to Arizmendi et al. (2009) for more details on this
method.

2.4. Aspects of the use of GD for the analysis of MRS

2.4.1. Selection of the optimal number of Gaussians
There is no general consensus about which methodology is the

most adequate for the selection of the optimal number of Gaussi-
ans in the signal fitting process (Kalberla et al., 2005), due to the
many aspects of the problem that must be considered (e.g., fitting
technique, algorithms, methods to choose the starting points, etc.).

The following experiment with artificial data was devised: Five
artificial Gaussians were generated and added together, resulting
in one single smooth signal. Table 2 summarizes the coefficients
of the five generated Gaussians in the experiment. This test signal
was then reconstructed in different trials with a varying number of
Gaussians (in trial 1, it was reconstructed with one Gaussian, in
trial 2 with two Gaussians, and so on until completing 20 trials).
In each reconstruction trial, three figures of merit were computed:
the MSE, Preserved Energy (PE) and Power Distortion (PD). The re-
sults for these figures of merit are shown in Fig. 3 as a function of
the number of Gaussians used to recover the signal. The PE is used
as an index to gauge if the algorithm is fitting the spectra in an
appropriate manner, comparing the area under the curve of the ad-
justed signal and the original one. If the PE is low, the algorithm is
correctly fitting the signal.
Table 2
Coefficients of the 5 artificially generated Gaussians.

Gaussians generated Amplitude Std deviation Translation

Gaussian 1 10 15 30
Gaussian 2 10 25 60
Gaussian 3 10 10 90
Gaussian 4 10 15 120
Gaussian 5 10 5 150
These results with a toy example indicate that neither MSE nor
PD have monotonically decreasing trends. In addition, the selection
of starting parameters (initial bP) may lead to convergence towards
local minima. In consequence, the fitting should be performed with
as many trials as possible, increasing the number of Gaussians in
each trial, and with different starting points.

Fig. 3 also shows that the PD is 24.12% when 5 Gaussians were
used to fit the spectra, whereas a PD as small as 0.00028% was ob-
tained when 14 Gaussians were used. The two cases are portrayed
in Fig. 4, which is self-explanatory in terms of the difference in
goodness-of-fit.

Table 3 summarizes the coefficients (amplitude (A), standard
deviation (SD) and translation (T)) of the trials with 5 (the original
number), 11, 14, and 15 Gaussians. Figures in bold indicate those
parameters that best match the original ones. For the fitting with
14 Gaussians, a zero MSE is obtained. As reported in previous re-
search (Haud, 2000; Kalberla et al., 2005), the algorithm uses more
Gaussians than necessary to fit the signal properly, setting to zero
those Gaussians that fit noise or that are irrelevant for the
reconstruction.

In conclusion, both the PD and MSE are good criteria to choose
the number of Gaussians of a fitting process. In contrast, PE is use-
ful to observe the behaviour of the algorithm: If PE shows too many
oscillations or is too low, this will be an indication that the algo-
rithm is not fitting the signal properly. Regarding the number of
Gaussians needed to fit the spectra, the algorithm tends to use
more than necessary, although it does not necessarily yield a bad
quality reconstruction.

2.4.2. Filtering and Baseline correction
The GD method separates an MR spectrum into its constituent

tones, expressed by coefficients of amplitude, standard deviation,
and translation of the corresponding Gaussian functions. These
parameters must not be negative when the TR method is used, in
order to obtain a good fitting. Therefore, a baseline correction is re-
quired to ensure positive values for all the components of the spec-
trum. In this study, the baseline correction consisted in adding the
absolute value of the minimum negative amplitude to the
spectrum.

As an additional preprocessing procedure, a half band wavelet
filtering was carried out using the Biorthogonal 3.3 mother wave-
let. The half-band filtering corresponds to picking up only the
approximation coefficients of the first decomposition level (Mallat,



Fig. 3. MSE, PE and PD corresponding to the fitting of the 5 artificially generated Gaussians. The fit was carried out with a maximum of 20 Gaussians.

Fig. 4. The top figure corresponds to the original signal, whereas the middle figure corresponds to the signal fitted with 5 Gaussians and the bottom one to the signal fitted
with 14 Gaussians.
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Table 3
Coefficients for trials with different numbers of Gaussians corresponding to the lowest values of PD. The trials are ordered, from left to right, according to their PD, so that the trial
with 14 Gaussians has the best PD, and the trial with 11, the worst one (out of the best trials considered). For comparison purposes, the trial with 5 Gaussians is also included
(rightmost). Results in boldface indicate the Gaussians that are closer to the original ones.

14 Gaussians 15 Gaussians 11 Gaussians 5 Gaussians

A14 SD14 T14 A15 SD15 T15 A11 SD11 T11 A5 D5 T5

0.00 0.60 12.77 0.08 0.18 9.53 10.00 15.00 30.00 12.74 0.02 32.95
10.00 25.00 60.00 10.00 15.00 30.00 12.15 0.03 32.55 9.54 2.22 66.12
10.00 15.00 30.00 10.15 0.10 59.67 3.02 0.14 48.42 8.53 17.88 34.17
10.18 0.07 52.55 7.94 0.00 69.30 9.76 0.15 63.51 9.82 58.03 88.64

9.63 0.10 65.32 10.00 25.00 60.00 10.00 5.00 150.00 0.00 0.00 165.00
2.85 0.06 75.73 10.00 10.00 90.00 10.00 10.00 90.00

10.00 10.00 90.00 0.64 14.70 123.62 10.00 24.99 60.00
4.67 0.04 104.42 10.01 0.02 120.06 6.51 14.69 118.32
9.64 0.15 116.50 9.40 14.96 119.76 3.73 14.58 122.96

10.00 15.00 120.00 2.20 4.89 148.98 0.12 0.07 165.25
0.00 18.22 169.84 7.92 4.96 150.28 0.00 0.00 176.00

10.00 5.00 150.00 0.00 0.00 168.00
0.00 0.00 169.00 0.00 0.00 180.01
0.00 0.00 0.00 12.45 0.13 13.50

10.24 0.02 48.08

Fig. 5. Top: Original spectra; Middle: Reconstructed signal without preprocessing; Bottom: Reconstructed signal with filtering and baseline correction.
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1999). In previous studies, the Biorthogonal 3.3 wavelet decom-
posed the MR spectra with the minimum number of coefficients,
while keeping MSE and PD low and SNR high (Arizmendi, Hernan-
dez-Tamames, Romero, Vellido, & Del Pozo, 2010).
Fig. 5 illustrates the signal processing procedure with two cases
from the database, corresponding to different types of brain tu-
mour. They were fitted with and without baseline correction and
wavelet filtering. It is clear from these examples that the



Table 4
Fit convergence criteria for GD.

Parameter Description Default
value

MaxFunEvals Max. number of function (model) evaluations
allowed

1000

MaxIter Max. number of iterations allowed 1500
TolFun Termination tolerance wrt the function

(model) value
10�8

TolX Termination tolerance wrt the coefficients 10�6

DiffMinChange Min. change coefficients for finite difference
Jacobians

10�4

DiffMaxChange Max. change coefficients for finite difference
Jacobians

1
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reconstruction is much better when wavelet filtering and baseline
correction is applied.
2.4.3. Construction of the final GD models
The following initial values were set for the parameters of the

algorithm:

� The initial translation values li, defining the center of each
Gaussian fi, were equally spaced in each trial.
� The initial amplitude Ai for each Gaussian fi was computed as

the average of the 3 consecutive sample values in the spectrum
that were closer to the associated translation value.
� The initial standard deviation di of each Gaussian fi was set to

one.

Since the coefficients of the Gaussians were restricted to be
positive, the restrictions in the TR algorithm were set to fit positive
coefficients. The convergence criteria were set to the values
compiled in Table 4, which resulted in a good fitting performance.
2.5. Feature selection of the GD models using MWVA

Having pre-processed the MR spectra and after reconstructing
the signal using an adequate number of Gaussians, two vectors
with the values of amplitude and standard deviation of each
Gaussian were created. These values were positioned at the coordi-
nates of the translations of their corresponding Gaussian. The car-
dinality of these vectors (lower than the 195 of the original
spectra) was then artificially set to 195 by assigning zero values
to translations other than those of the Gaussians themselves. This
procedure also served to identify repetitions in the translations (by
repetition, we understand two translations within the same inte-
ger interval). When such a repetition in translation was identified,
the lower translation value was truncated to the closest integer va-
lue, while the higher translation value was rounded to the next
integer value, thus avoiding the overlapping. When more than
two repetitions happened in the same interval, the highest of the
translations were moved to the closest higher integer, while the
other translations were positioned, according to their value
(ranked from the highest to the lowest, following the aforemen-
tioned procedure), behind the highest integer initially estimated.
This process finished when no further overlapping was found be-
tween translations.

Feature selection was performed with MWVA (Arizmendi et al.,
2009, 2010) (see section 2.3), applying it to the re-scaled vectors of
amplitude and standard deviation (the data were re-scaled to zero
mean and unit variance). Each value of X in the Dissimilarity Index
Matrix (DIM) was labeled with the coordinates k and l, where k
indicates the position of the spectrum where the window starts
and l indicates the window width (w) used.
Once the DIM of the amplitude and standard deviation of each
experiment were obtained, the selection of the relevant variables
was carried out with MWVA in two different data sets: The first
one corresponded to the concatenation of amplitude and standard
deviation. The second one corresponded to the average of the
amplitude and standard deviation.
2.6. MRS classification

Feed-forward ANNs were used in the classification experiments
starting from the features selected and extracted through dimen-
sionality reduction and variable selection. Different network archi-
tectures between 5 and 40 units in the only hidden layer were
investigated. Given that all classification problems were binary,
one unit in the output layer did suffice. In order to avoid data over-
fitting, the networks were trained with Bayesian regularization
(MacKay, 1992) as part of a back-propagation process. The
adaptive weights and biases were updated according to the
Levenberg–Marquardt algorithm (Foresee & Hagan, 1997).

Obviously, there is a wide choice of available classifiers to per-
form this task. Given that the focus of this study is in the impact of
feature extraction and selection of the signal processing method
and not in the classification method itself, we restrict our choice
to a technique that combines the flexibility of nonlinear models
with the penalization of model over-complexity conferred by the
Bayesian regularization framework in which it is developed. To
some extent, the choice was also justified by the results obtained
in our experiments and reported in Section 3.2, as they were
shown to outperform results presented in other studies that ana-
lyzed similar data using Linear Discriminant Analysis (LDA), Sup-
port Vector Machines (SVM) and unregularized ANNs, amongst
other techniques.

One run of a 5-fold cross-validation was performed for each
ANN, allowing a maximum of 500 epochs. To address the issue of
class imbalance (the number of cases available from each tumour
type is always small, but widely varying), the original datasets
were optionally re-sampled, by over-sampling the minority class
and under-sampling the majority class (Japkowicz, 2000).
3. Results

3.1. Final Gaussian dissection models

In this study, and following the recommendations of previous
research (Vellido et al., 2009, 2012), each MR spectrum was repre-
sented by 195 clinically-relevant frequency intensity values (data
features). Considering as well that each Gaussian is defined by
three parameters, the maximum allowed number of Gaussians
was limited to 65. For each trial, the MSE and PD figures of merit
were computed, taking the minimum PD out of the 65 trials for
each spectrum as the representative solution.

Table 5 shows the MSE, PD and the statistics of the fitting of the
spectral signal in two settings: (1) when decomposing the spec-
trum without preprocessing and (2) when decomposing the spec-
trum after preprocessing (i.e., preprocessing using wavelet
filtering with baseline correction). These results fully confirm the
adequacy of the pre-processing procedure.

In order to remove the less relevant amongst the obtained
Gaussians, retaining only the most important ones, the individual
area of each Gaussian in the trial with minimum PD was computed.
These areas were subsequently ranked in descending order. The
ranked Gaussians were then added sequentially, reconstructing
the spectra and calculating the MSE after each addition. The differ-
ences in MSE between consecutive additions were computed and
normalized, so as to produce the maximum value of 100%. The



Table 5
Mean � Std of the MSE and PD corresponding to the MR Spectrum preprocessed and
without preprocessing. The last line presents the Mean � SD of the number of
Gaussians used in the reconstruction.

With preprocessing Without
preprocessing

Mean � SD of MSE 0:1419� 0:3045 0:7218� 3:0375
Mean � SD of PD 3:8754� 1:8893 8:0960� 11:9532
Mean � SD of Gaussians used 55:1217� 10:1610 42:7303� 19:3334

Table 6
Best accuracy results and their corresponding methods.

Experiments Clasification Methods

G1 vs G2 87:35� 8:45 UB.CO
G1 vs mm 89:83� 5:69 B.CO
a2 vs a3 96:00� 8:94 B.CO, UB.CO, UB.AV
a2 vs G2 91:90� 8:55 B.CO
a2 vs ly 100:00� 0:00 UB.CO
a2 vs oa 100:00� 0:00 B.CO
a3 vs pn 93:33� 14:91 B.AV
G2 vs mm 88:80� 1:95 B.CO
gl vs a3 96:17� 5:64 B.CO
gl vs ab 97:42� 3:54 UB.CO
gl vs ly 96:25� 3:42 UB.CO
gl vs me 77:90� 2:37 UB.CO
gl vs no 96:67� 3:04 UB.CO, B.CO
gl vs pn 98:75� 2:80 UB.CO
me vs ly 95:00� 6:85 B.CO, B.AV
me vs mm 95:00� 8:15 UB.CO
me vs no 100:00� 0:00 UB.CO
me vs pn 100:00� 0:00 UB.CO, UB.AV
mm vs ab 100:00� 0:00 B.CO
od vs a2 96:00� 8:94 B.CO, B.AV, UB.CO, UB.AV

Table 7
Best BER results and their corresponding methods.

Experiments Classification Methods

G1 vs G2 16:45� 10:92 B.CO, UB.CO
G1 vs mm 9:77� 8:05 B.CO, UB.CO
a2 vs a3 2:50� 5:59 B.CO
a2 vs G2 6:88� 5:91 B.CO
a2 vs ly 0:00� 0:00 UB.CO
a2 vs oa 0:00� 0:00 B.CO
a3 vs pn 5:00� 9:12 B.AV
G2 vs mm 13:33� 3:26 UB.CO
gl vs a3 2:05� 3:01 B.CO
gl vs ab 2:81� 2:98 UB.AV
gl vs ly 8:38� 3:75 B.CO
gl vs me 17:33� 4:14 UB.AV
gl vs no 2:10� 1:92 B.CO
gl vs pn 0:67� 1:49 UB.CO
me vs ly 10:00� 13:69 B.AV
me vs mm 4:00� 6:52 UB.CO
me vs no 0:00� 0:00 B.CO, UB.CO
me vs pn 0:00� 0:00 B.CO, UB.CO
mm vs ab 0:00� 0:00 B.CO
od vs a2 2:50� 5:59 B.CO, UB.CO, B.AV, UB.AV

Table 8
Best AUC results and their corresponding methods.

Experiments Classification Methods

G1 vs G2 0:93� 0:07 B.CO
G1 vs mm 0:99� 0:01 B.CO
a2 vs a3 1:00� 0:00 B.CO, UB.CO, UB.AV, B.AV
a2 vs G2 0:96� 0:04 B.CO
a2 vs ly 1:00� 0:00 UB.CO, B.CO, B.AV, UB.AV
a2 vs oa 1:00� 0:00 UB.CO, B.CO, B.AV, UB.AV
a3 vs pn 1:00� 0:00 UB.CO, B.CO, B.AV, UB.AV
G2 vs mm 0:95� 0:04 B.CO
gl vs a3 1:00� 0:00 B.CO, UB.CO, UB.AV
gl vs ab 1:00� 0:00 B.CO, B.AV, UB.CO, UB.AV
gl vs ly 0:99� 0:03 UB.CO
gl vs me 0:88� 0:09 B.CO
gl vs no 0:99� 0:01 B.CO
gl vs pn 1:00� 0:00 B.CO, UB.CO
me vs ly 1:00� 0:00 UB.CO, B.CO, B.AV, UB.AV
me vs mm 1:00� 0:00 B.CO, B.AV, UB.AV
me vs no 1:00� 0:00 UB.CO, B.CO, B.AV, UB.AV
me vs pn 1:00� 0:00 UB.CO, B.CO, B.AV, UB.AV
mm vs ab 1:00� 0:00 UB.CO, B.CO, B.AV, UB.AV
od vs a2 1:00� 0:00 UB.CO, B.CO, B.AV, UB.AV
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addition of Gaussians stopped when the MSE improvement was
lower than 1%, and the remaining ones were eliminated.

The mean (� standard deviation) MSE for the complete MRS
data set before this reduction in the number of constituting Gaus-
sians was 0.14 (�0.30), with an average of 55.12 (�10.16) Gaussi-
ans used; the corresponding values after reduction were 0.16
(�0.31) with an average of 25.55 (�8.35) Gaussians. These results
confirm that the elimination process does not affect the recon-
struction in any significant way, while managing a reduction of
46.36% in the number of Gaussians initially considered for the
reconstruction of the spectra.
3.2. Classification results

The best results for each of the performance evaluation metrics
(which are the Area Under the ROC Curve (AUC), the accuracy, and
the Balanced Error Rate (BER)), together with their corresponding
methods, are summarized in Tables 6–8. Figs. 6–8 display the
box-plots of the global results of AUC, BER and accuracy, for all
the analyzed problems in balanced (B) and unbalanced (UB)
groups, and for the concatenated (CO) and averaged (AV) DIM.

The labels in the box-plot figures are built by joining the acro-
nym of the method (i.e., CO and AV) and the performance indicator
(i.e., Accuracy, BER and AUC). The descriptive statistics (i.e., mean,
standard deviation, median, and 25/50/75 quartiles) for the AUC,
100� BER and Accuracy results are summarized, in turn, in Tables
9–11.
4. Discussion

The box-plots in Figs. 6–8 provide evidence that the concate-
nated method yields the best scores. A Wilcoxon test was applied
to assess the existence of significant differences between the
scores of averaged and concatenated DIMs. The results of the
statistical test are compiled in Table 12, showing that the concat-
enated method is significantly better than the averaged one
(p-value 6 0.05). In turn, the results obtained with balanced data-
sets are consistently better than those obtained with the original
unbalanced ones, although not in a statistically significant way, as
evaluated again through a Wilcoxon test (see Table 13). This last
result supports the importance of using class-balancing algorith-
mic strategies in order to limit the bias introduced by heteroge-
neous class sample size in the classification process, but also
indicates that, in the tumour classification problems analyzed in
this study, the negative impact of class unbalance is not too
significant.

Quite a few of the classification problems addressed in this
study have previously been investigated using similar datasets ex-
tracted from the INTERPRET project database. Tumour type dis-
crimination was carried out in García-Gómez et al. (2009) using a
slightly different subset of MRS data obtained at SET from the
INTERPRET database analyzed in our experiments. This makes
the comparison with this study especially relevant.

The authors reported in García-Gómez et al. (2009) a BER result
of 40% in the difficult problem of discriminating between two types
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Fig. 6. Boxplot of the AUC values. Each box represents the lower quartile (bottom line), median (line in the middle), and upper quartile (top line) values. The whiskers are
lines extending from each end of the box to represent the extent of the rest of the data. Classification problems with atypical results are left outside the limits of the boxplots.
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Fig. 7. Boxplots of the BER values, as in Fig. 6.
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of aggressive tumours, namely gl and me, using spectral PI and a
Linear Discriminant Analysis (LDA) classifier. This result is to be
compared with a BER as low as 17.33%, reported in Table 7. The
best results to date in this problem using the INTERPRET database
were reported in Vellido et al. (2012), where a test AUC of 0.86 was
obtained using a concatenation of LET and SET spectra for the same
patients. Also in García-Gómez et al. (2009), a BER result of 5% was
reported for the easier problem of discrimination between me and
mm, this time using PCA and a MLP ANN classifier; this result is not
too different from the result of 4% reported in Table 7.

Some similar diagnostic classification problems were explored
in Lukas et al. (2004). They involved data from the same general
INTERPRET database, but acquired at LET. Experiments were re-
ported for gl;me, mm, and low-grade astrocytomas (a2). More
specifically, the following binary problems were considered: gl
vs. mm; gl vs. me; gl vs. a2;mm vs. me;mm vs. a2, and me vs. a2. Data
were classified using linear and nonlinear methods, namely, LDA,
SVM and Least-Squares SVM (LS-SVM). Experiments with and
without dimensionality reduction (with PI and heuristic spectral
sub-regions selection) were performed. Results were qualified
using the AUC measure. Only two of their experiments correspond
to our setting: The best reported mean AUC for the gl vs. me prob-
lem is 0.64 with PI and LS-SVM. Although not directly comparable,
due to the use of different echo times, our corresponding result is
0.88 with MWVA, as reported in Table 8. For mm vs. me, the best
mean AUC in Lukas et al. (2004) was 0.97 for LS-SVM without
dimensionality reduction. This is to be compared with the AUC
1.00 reported in Table 8.
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Fig. 8. Boxplots of the ACCURACY values, as in Fig. 7.

Table 9
AUC: Descriptive statistics for each of the tests performed.

Performance indicator N Mean Std deviation Min Max Percent

25 50 75

B.CO.AUC 20 0.985 0.0318 0.88 1.00 0.9925 1.0000 1.0000
UB.CO.AUC 20 0.983 0.0359 0.87 1.00 0.9900 1.0000 1.0000
B.AV.AUC 20 0.969 0.0599 0.82 1.00 0.9825 1.0000 1.0000
UB.AV.AUC 20 0.971 0.0523 0.83 1.00 0.9650 1.0000 1.0000

Table 10
BER: Descriptive statistics for each of the tests performed.

Performance indicator N Mean Std deviation Min Max Percent

25 50 75

UB.CO.BER 20 92.732 6.222 83.55 100.00 85.42 95.00 98.34
B.AV.BER 20 91.054 6.623 75.62 98.33 89.18 93.47 95.64
B.CO.BER 20 94.035 5.863 81.81 100.00 88.93 96.66 98.47
UB.AV.BER 20 89.821 8.784 74.00 98.57 82.89 91.48 97.44

Table 11
Accuracy: Descriptive statistics for each of the tests performed.

Performance indicator N Mean Std deviation Min Max Percent

25 50 75

UB.AV.ACCURACY 20 91.995 5.708 76.05 98.00 88.30 94.64 96.00
B.CO.ACCURACY 20 93.671 6.041 75.00 100.00 90.35 95.50 97.30
UB.CO.ACCURACY 20 93.847 5.692 77.90 100.00 89.81 96.00 98.01
B.AV.ACCURACY 20 89.881 5.929 73.14 98.00 87.55 91.46 94.25
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The difficult problem of discriminating between different
grades of astrocytomas a2 and a3 was addressed in Ladroue
(2003). Here, PCA was used for dimensionality reduction and
LDA, LS-SVM and K-Nearest Neighbor (K-NN) were used as classi-
fiers. A mean test accuracy of just under 70% for 20 PC’s and LS-
SVM was reported. This can be compared with our result of around
96.00%, reported in Table 6.

Another classically difficult problem: me vs. gl was also investi-
gated in Ladroue, Howe, Griffiths, and Tate (2003). A maximum
accuracy of only 55% was reported, compared to our result of
77.90%, using MWVA for dimensionality reduction.

A different tumour classification problem, that of discriminating
between low-grade gliomas (G1) and high-grade malignant
tumours (G2), has far more commonly been analyzed in the litera-
ture. Using PCA followed by LDA to distinguish between G2 and
mm, a mean AUC of 0.94, with 6 principal components was re-
ported in Devos (2005); this must be compared with our results
of 0.95 reported in Table 8. The same method was used in Devos



Table 12
p-values between the concatenated and averaged methodologies in the Wilcoxon test.

Methodologies p-value

UB.CO.AUC-UB.AV.AUC 0.018
UB.CO.BER-UB.AV.BER 0.019
UB.CO.ACCURACY-UB.AV.ACCURACY 0.006
B.CO.ACCURACY- B.AV.ACCURACY 0.003
B.CO.BER- B.AV.BER 0.003
B.CO.AUC-B.AV.AUC 0.007

Table 13
p-values between the balanced and unbalanced methodologies in the Wilcoxon test.

Methodologies p-values

B.AV.AUC-UB.AV.AUC 0.096
B.CO.BER-UB.CO.BER 0.102
B.CO.ACCURACY-UB.CO.ACCURACY 0.777
B.AV.ACCURACY-UB.AV.ACCURACY 0.609
B.AV.BER-UB.AV.BER 0.542
B.CO.AUC-B.CO.AUC 0.028
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(2005) to distinguish between G2 and a2, obtaining a mean AUC of
0.92, also using 6 principal components; this must be compared
with our result of 0.96 reported in Table 8.

Importantly, the proposed method has achieved very encourag-
ing classification results in problems concerning tumour types that
have received little attention from the point of view of pattern
recognition-based diagnostic classification from MRS. They include
lymphomas (ly) and primitive neuroectodermal tumours and
medulloblastomas (pn). The former have been discriminated from
low-grade astrocytomas (a2) and high-grade malignant tumours
(me and gl) with average accuracies ranging from 95 to 100% (see
Table 6). Note that these tumours are difficult to discriminate from
glioblastomas and metastases even with state-of-the-art data
acquisition methods (Wang et al., 2011). The latter were classified
within a similar range of accuracy from a3; gl and me, which neatly
improves on previous results presented in Majós et al. (2002).

All in all, these comparisons with previous results reported in
similarly-oriented studies of the INTERPRET database MRS data
provide some evidence to support that the differential advantage
provided by our proposed method lies mainly in the GD method
and the pre-processing of the data using the wavelet filtering stage,
combined with the use of MWVA for dimensionality reduction.
Having said that, the proposed method has several limitations to
take into account. Firstly, because it is a combination of several
data pre-processing stages (GD, filtering, feature selection) with
classification; there is no guarantee that alternative combinations
of pre-processing methods (using, for instance, different filtering
techniques or different feature selection approaches) could not
yield better results. Secondly, there is no guarantee that the pro-
posed pairing of proposed pre-processing strategy and classifier
is, again, optimal in any sense.
5. Conclusions

In this study, the GD signal processing technique was used to
break down a given MR spectrum into its constituent tones, repre-
sented by coefficients of amplitude, standard deviation and trans-
lation of their corresponding Gaussians. In doing so, GD provides
information about the conformation of the metabolite peaks.
Simultaneously, it alleviates the problem of metabolite-associated
broad amplitude peak overlapping between metabolites resonat-
ing at similar frequencies, overcomes the noise and baseline prob-
lems, and eases the subsequent feature selection and the
classification processes.
These coefficients obtained by GD, in conjunction with the axis
of transformation and the the concatenation of amplitude and
standard deviation DIM’s, were used for the discrimination be-
tween different types of brain tumours on the basis of their MR
spectra.

The obtained diagnostic classification results were very encour-
aging and rank among the best obtained to date using alternative
methods to analyze similar data. An exception to this pattern are
the experiments that involve some super-class group (G1 or G2).
This could be due to the calculation of the exact variations of the
translations of each Gaussian in each tumour class of the experi-
ments, so that, when several tumour types are merged in a group,
the difficulty of calculating the exact translation of the metabolite
increases. As a result, the errors in each pattern are accumulated,
making the process of feature selection difficult and, subsequently,
affecting classification negatively. This problem could be overcome
by making a transformation of the amplitude and standard
deviation vectors, so as to expand the area of each one translation
component, smoothing the effect of variation in translations.

These results are of special relevance for experiments involving
tumour types that have rarely been studied using pattern recogni-
tion methods from MRS data, in particular those involving the dis-
crimination of lymphomas and primitive neuroectodermal
tumours from astrocytomas and high-grade brain tumours.

The practical implication of our proposed method and the re-
sults of its application to a number of brain tumour classification
problems is straightforward. As stated in the introduction, expert
radiologists face a very sensitive diagnostic task, in which they
might be assisted using decision support systems that include
automated classification tools based on metabolic tissue signature
provided by MRS (Ortega-Martorell, Olier, Julià-Sapé, & Arús, 2010;
Pérez-Ruiz et al., 2010). Our method has shown to provide consis-
tently strong results in many tasks of brain tumour discrimination,
which would make it a good candidate for such medical decision
support system.

Future research will be devoted to the investigation of the asso-
ciation between the most relevant variables (amplitude, transla-
tion and standard deviation) and their correspondence with the
known metabolites in the spectrum. This should result in a more
clinically-interpretable outcome that could be used in decision-
making. Furthermore, alternative and more exhaustive feature
selection and classification methods to be used in combination
with GD should be investigated.

In this study, spectroscopy data acquired only at STE were ana-
lyzed. Future work should also involve similar experiments with
data acquired at long echo times or even with data obtained by
combination of different acquisition echo times, an approach that
has recently been shown to be fruitful (García-Gómez et al.,
2009; Vellido et al., 2012). Despite the fact that the analyzed data-
base is among the best in the world of its kind, future work should
aim to validate the reported results using alternative MRS
databases.
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