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a b s t r a c t

Visualisation with good discrimination between data cohorts is important for exploratory data analysis

and for decision support interfaces. This paper proposes a kernel extension of the cluster-based linear

visualisation method described in Lisboa et al. [15]. A representation of the data in dual form permits

the application of the kernel trick, so projecting the data onto the orthonormalised cohort means in the

feature space. The only parameters of the method are those for the kernel function. The method is

shown to obtain well-discriminating visualisations of non-linearly separable data with low computa-

tional cost. The linearity of the visualisation was tested using nearest neighbour and linear discriminant

classifiers, achieving significant improvements in classification accuracy with respect to the original

features, especially for high-dimensional data, where 93% accuracy was obtained for the Splice-junction

Gene Sequences data set from the UCI repository.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Low-dimensional visualisation methods generally fall into
three categories. Purely linear methods frequently utilise singular
values spanning the largest variance in the data or preserving
pairwise inner products, such as the widely used Principal
Component Analysis-based bi-plots [8] or classical Multi-
Dimensional Scaling [25]. A second approach is to relax the
linearity restriction and to define a non-linear projection to
optimise the correspondence between distances in the original
input space and distances in the projected space, such as in
generalised (metric and non-metric) Multi-Dimensional Scaling
[4] (including for example Sammon’s mapping [20] and Kruskal’s
approach [11]) or Isomap [24]. A third approach generates latent
variable models over the data space to induce a visualisation based
on the density distribution of the data. This can be achieved directly
with smoothing maps such as Gaussian Processes [12,13] and with
topographic methods including Self-Organizing Maps [9] and Gen-
erative Topographic Mapping [3]. Alternatively, graph-partitioning
methods can be used to avoid the curse of dimensionality by
resorting to domain specific similarity relationships, followed by the
application of clustering methods to rank the data by similarity [23].

Most visualisation methods construct the mapping to low-dimen-
sional spaces without using the cluster or class labels, and then
represent differently objects from different cohorts for comparison
ll rights reserved.

.

purposes [14]. Although this property makes the method generically
applicable, it does not always use all of the information that is
available, for instance clustering labels or prior knowledge about class
membership. This is particularly important if the objective is to
visualise the separation between cohorts. The most common super-
vised visualisation methods are based on Linear Discriminant Analy-
sis (LDA) (see, for example, [5]) and its non-linear (kernel) version,
Kernel Linear Discriminant Analysis (KLDA) [21], although other
supervised non-linear visualisation approaches can be found (see
[7,10,17] or [16], for example). While KLDA searches for optimal
directions in feature space for which separation between classes is
maximal, this method does not directly attempt to perform dimen-
sionality reduction, which is important in data visualisation. It is
possible to combine KLDA with feature space selection by optimising
the kernel parameters directly [27] or, alternatively, to map the data
onto a high-dimensional kernel space and then optimise a scatter-
matrix separation index similar to that used in this paper, based
on the Kernel PCA transformation [26]. Some relationships
between KLDA, Kernel PCA (KPCA) [22] and LDA can be found in
Yang et al. [28]. These methods have been further extended to kernel
quadratic discriminant analysis [19].

This paper takes advantage of a recent result derived for linear
visualisation of labelled data cohorts, typically defined by cluster
membership or class labels, in the context of scatter-matrix
separation measures. In the Cluster-based Visualisation with
Scatter Matrices (CVSM) method, described in Lisboa et al. [15],
it was shown that the space spanned by the cohort means forms
a useful basis for dimensionality reduction while retaining
much of the cohort separation measured by a quadratic index.
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In particular, when the covariance matrix of the original data is
non-singular, it was proven that this data compression, preceded
by a sphering of the data, exactly preserves the value of the
separation index, thus preserving the cohort separation at the
level of second-order statistics. This is a surprising amount of
separation for what can be a drastic reduction in dimensionality.
For non-linearly separable data cohorts, the natural extension is
to use kernel methods, raising the possibility that a similarly
efficient compression can be obtained. The application of kernels to
CVSM may lead to insights about the data, by generating linearly
separable views of non-linearly separable data.

The main contribution of this paper is to develop a kernel
extension of CVSM [15], and to demonstrate its value for the
visualisation of non-linearly separable data: class or cluster labels
are used to show how kernels can linearise the visualisation of non-
linearly separable data. Although the kernel trick cannot be directly
applied, this drawback can be avoided by representing the data in
dual form. With this representation, sphering in the feature space,
orthonormalisation in the feature space and the projections of the
data onto the sub-space spanned by the (orthonormalised) class
means in the feature space can be easily and uniformly computed.
This is the second contribution of the paper. This method is different
from KLDA because it usually requires only the inversion of an
Nc � Nc matrix, where Nc is the number of classes, rather than the
solution of a convex quadratic optimisation problem [21] or an
eigenvalue problem of size N (N is the number of examples) [2] in
KLDA. In principle, the proposed method has an advantage over the
non-supervised methods PCA and KPCA, since it explicitly makes use
of the cohort labels to maximise the cohort separation in the low-
dimensional projective space, using the non-linear properties
of kernel features to resolve non-linearly separable data. KPCA must
also solve an eigenvalue problem of size N. The only parameters of
the whole method are the parameters of the kernel function.

The goal of this paper is data visualisation, in particular to
visualise the separation between cohorts. These data cohorts can
be either different clusters (after performing a cluster analysis, for
example) or classes (if this information is available). Correspond-
ingly, the proposed algorithm is aimed at either preserving the
multimodal distribution of the data or the separability between
classes, by incorporating the cluster or class labels, respectively.
The result is a visualisation of the kernel-defined feature space,
which can facilitate to find the most appropriate kernels for
visualisation and, potentially, for kernel-based classification of a
given data set. If we accept that the role of the kernel is to project
the data onto a space where the projections are linearly separable,
then it follows that measuring the extent of linear separation with
the proposed method helps to short-list the most useful kernels
for a given classification task. Since the proposed method can
induce a linearly separable visualisation for data with non-linear
decision boundaries between population cohorts, it provides a
direct visualisation of complex data sets in a feature space that is
relevant to their categorisation into labelled groups, be they clusters
or classes. The linearity of the visualisation was tested using nearest
neighbour and linear discriminant classifiers, achieving significant
improvements in classification accuracy with respect to the original
features, specially for high-dimensional data (93% compared with
87% in the Gene data set from the UCI repository), and with similar
performance to KLDA.
2. Cluster-based linear visualisation with scatter matrices

The method proposed in Lisboa et al. [15] is linear in nature
and it is based on the decomposition of the invariant scatter
matrix after projecting the data onto the subspace spanned by the
class means. In the interest of making the paper as self-contained
as possible, this section will summarise the main mathematical
equations required to reproduce our results.

To fix notation, suppose we are given a data matrix X¼ fxig
N
i ¼ 1

comprising N rows with d-dimensional data points of overall
mean m, where the data are partitioned into Nc groups, each
group jAf1, . . . ,Ncg with Nj points and mean mj. It is well-known
that the overall variance of the data, ST, can be decomposed
into the sum of scatter matrices calculated within and between
labelled cohorts [5,6] thus generating a within-cluster matrix, SW,
and a between-cluster matrix, SB, such that ST ¼ SWþSB. This
decomposition generates a natural scalar index for the separation
between the data cohorts by taking the trace of the scatter matrix
M¼ S�1

W SB leading to the class separation index J¼ trðMÞ. Note
that ST, SW, and SB are d�d matrices.

A strength of the index J is its invariance to affine transforma-
tions of the data matrix, which makes it insensitive to co-linearities
in the data and to changes in relative scaling of the covariates, both
of which are useful properties for exploratory analysis of high
dimensional data as in bioinformatics. Furthermore, if the covar-
iance matrix is non-singular, then this invariance can be exploited
by applying a Mahalanobis rotation to de-correlate the covariates, or
sphering the data, thus rendering ST is diagonal. The scatter matrix
decomposition now indicates that the information contained in the
within-cluster scatter matrix is implicit in the between-cluster
matrix, which uses only the values of the class means fmjg

Nc

j ¼ 1 as
representatives for the classes.

This suggests that the class means form a natural basis to
project the data with minimal loss in class separation as mea-
sured by second-order statistics, as shown in Lisboa et al. [15].
However, in cases where the classes are non-linearly separable,
then the scatter-matrix based separation index is not a reliable
measure of class separation since this is no longer well repre-
sented by the second-order statistics of the data. A better low-
dimensional projection may then be obtained by resorting to non-
linear features, for instance through the use of kernels. To see how
this can be done we briefly review the linear projective method
described in Lisboa et al. [15].

The compression onto the subspace of the class means is readily

achieved by defining an orthonormal set of basis vectors BT
¼

fbjg
Nc

j ¼ 1, for instance by Gram–Schmidt orthogonalisation, generat-

ing the projection of X onto the space spanned by the set of

orthonormalised cluster mean vectors Xc
¼X � B. Note that Xc and

B are N � Nc and d� Nc matrices, respectively. Scatter matrices for

Xc
¼ fxc

i g
N
i ¼ 1 can be calculated in the space of class means, namely:

Sc
W ¼

PNc

j ¼ 1

PNj

i ¼ 1fðx
c
i�mc

j Þ
T
ðxc

i�mc
j Þg, Sc

B ¼
PNc

j ¼ 1 Nj fðmc
j�mcÞ

T

ðmc
j�mcÞg and, similarly, an invariant scatter matrix Mc

¼

ðSc
W Þ
�1Sc

B and an invariant class separation index Jc
¼ trðMc

Þ can

be defined. Note that Sc
W and Sc

B are Nc � Nc matrices, so that the

computation of ðSc
W Þ
�1 is computationally fast.

In Lisboa et al. [15] it is shown that the invariant separation
measure J is exactly preserved (i.e., J¼ Jc) when the projection is
preceded by a sphering of the data. The paper also shows that
when the covariance matrix is singular, then some loss is induced
by this dimensionality reduction, but most of the class separation
is maintained. A diagonalisation of the new scatter matrix Mc

shows, typically, that the trace of the matrix is contained in the
largest few eigenvalues. Their correspondent eigenvectors form the
basis for a 2D or 3D visualisation of the data. The whole visualisation
procedure can be summarised in Algorithm 1. Note that the method
is parameter-free.

As previously said, a natural extension of this approach is to
investigate the use of kernel transformations to further separate
the clusters, or class-labelled cohorts, in the low-dimensional
projective space. The next section describes how this can be done.



E. Romero et al. / Pattern Recognition 45 (2012) 1436–14541438
Algorithm 1. Linear visualisation algorithm proposed in Lisboa
et al. [15].
Given a labelled data set X¼ fxig
N
i ¼ 1,

1. Optionally, sphere the data: X¼X �R�1=2 with the
covariance matrix R

2. Compute and orthonormalise the class means: BT

3. Project data onto the orthonormalised class means:

Xc
¼X � B

4. Compute scatter matrices for Xc : Sc
W , Sc

B and Mc

5. Project Xc onto the eigenvectors of Mc with the largest
eigenvalues
3. Cohort-based kernel visualisation with scatter matrices

A deeper analysis of the method described in Algorithm 1 reveals
that, in order to construct Xc , only inner products are needed. This
allows us to develop a non-linear extension of the visualisation
method in Section 2 by employing the kernel trick, leading to what
we term Cohort-based Kernel Visualisation with Scatter Matrices
(CKVSM). The core idea is to map the data into a kernel-based
feature space F , where the method could be applied. This kernel-
based procedure has been widely used to define non-linear versions
of classical linear procedures, such as KPCA (for PCA) or KLDA (for
LDA) [21].

Based on the Mercer’s theorem [18], a (positive definite) kernel
function Kð�,�Þ : Rd

�Rd/R defines a dot product / � , �S : F �
F/R in a (maybe infinite-dimensional) feature space F .
Let f : Rd/F denote the nonlinear mapping that transforms
the original d-dimensional data to this infinite kernel-based
feature space F , and K¼ ½kij� denote the N�N kernel matrix
between N data points. The ijth entry of K is kij ¼ Kðxi,xjÞ ¼

//ðxiÞ,/ðxjÞS. Using the kernel function K, the mapping f
becomes implicit.

As explained in Section 2, two levels of projection are pursued
in the cluster-based visualisation: (1) projecting the sphered data
points into the Nc-dimensional space spanned by the orthonor-
malised class means; (2) further projecting the obtained
Nc-dimensional data points into an n-dimensional space spanned
by the eigenvectors of the scatter matrix Mc . Working in the
infinite feature space F , we are looking for an 1� k transforma-
tion matrix to project the infinite kernel-based features to a
k-dimensional space. In this kernelised version, both the sphering
procedure and the construction of the projection onto the
space spanned by the orthonormalised cohort means are con-
ducted in the kernel-based feature space, as explained in the next
sections.
3.1. Cohort-based kernel visualisation with scatter matrices and

dual-form representation

The kernel trick cannot be directly applied in the method

described in Algorithm 1, because BT would represent points in
the feature space, that may be unknown. This affects to steps 2
and 3 of Algorithm 1. However, this drawback can be avoided by
representing the data in dual form, which is one of the key points
of the proposed method. Let us define the dual space D¼
f
PN

i ¼ 1 ai/ðxiÞ9a1,a2, . . . ,aN ARN
gDF (recall that fxig

N
i ¼ 1 is the

original data). Let a¼ ða1,a2, . . . ,aNÞARN represent the point

â ¼
PN

i ¼ 1 ai/ðxiÞAD in dual form. With this representation:
1.
 Vector space operations in RN have a direct correspondence
in D.
2.
 The mean of class Cj in the feature space is represented as
mj ¼ ðmj1,mj2, . . . ,mjNÞ, where

mji ¼
1=Nj if xi belongs to Cj,

0 otherwise:

(
ð1Þ
3.
 Inner products in the feature space between two vectors
â,b̂AD without sphering can be computed as usual:

/â,b̂S¼
XN

i,j ¼ 1

aibjKðxi,xjÞ ¼ aT Kb, ð2Þ

where K is the kernel matrix. Inner products between two
vectors â,b̂AD after sphering can be computed as

/â,b̂S¼ aT Ksb, ð3Þ

where Ks is defined in Eq. (9) (see Section 3.2). Let

!¼
K if no sphering in the feature space is performed,

Ks otherwise:

(

ð4Þ
4.
 The Gram–Schmidt orthonormalisation procedure can be
applied as usual, since only inner products and vector spaces
operations are needed. The set of orthonormalised class means
B̂ can also be represented in dual form by a N � Nc matrix (see
Section 3.3). Abusing of notation, we will also denote B̂ to this
matrix.
5.
 Using Eq. (4), the projection of the data onto the orthonorma-
lised cohort means in the feature space can be obtained as:
Xc
¼!B̂ (recall that the projection of fðxjÞ can be computed

as uT
j !B̂, where uT

j is the N-dimensional vector with a 1 in
position j and 0 elsewhere).
6.
 Once Xc has been obtained, steps 4 and 5 of Algorithm 1 can be
performed.

The computation of the sphered inner product matrix Ks and
the Gram–Schmidt orthonormalisation procedure in dual form
are described in Sections 3.2 and 3.3, respectively.

3.2. Sphering in the feature space

In the input space, given an N� d matrix of centered data
points X¼ fxig

N
i ¼ 1, the covariance matrix can be defined as R¼

ð1=NÞXT X. Since R is symmetric, it can be decomposed as R¼
VSDSVT

S, where DS is a diagonal matrix with the non-zero
eigenvalues of R, and VS is an orthonormal matrix whose columns
are the corresponding eigenvectors of R. The sphering of the data
consists of a rotation of the data by applying a linear transformation
Y¼XRS, where RS ¼R�1=2

¼ VSD�1=2
S VT

S, so that the covariance
matrix of Y is the identity matrix. The inner product matrix between
the transformed features is YYT

¼XVSD�1
S VT

SXT
¼XR�1XT .

Suppose now that we have a set of centered data points
U¼ ffðxiÞg

N
i ¼ 1 in the feature space induced by the kernel function

K. We can represent U as an N �1 matrix. For sphering the data
in the feature space the kernel trick cannot be directly applied
simply changing X by U, because DS and VS represent matrices in
the feature space, that may be unknown. Even if they were
known, they have infinite dimension (recall that DS and VS have
d columns, where d is the dimension of the space). However, as
we have seen (see Section 3.1), to work with sphered data in the
feature space we only need to know the inner product of any two
sphered data points, instead of the representation of the sphered
data itself. The rest of the section explains how to compute
the inner product matrix of sphered data in the feature space,
by studying the relationship between the eigenvectors of the
covariance matrix in the feature space and the eigenvectors of the
kernel matrix.
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3.2.1. Eigendecomposition of the covariance matrix in the

feature space

The inner product matrix of U can be computed as K¼UUT ,
where K is the N�N kernel matrix. Since K is symmetric, it can be
decomposed as K¼VK DK VT

K or, equivalently

KVK ¼VK DK , ð5Þ

where DK is a diagonal matrix with the non-zero eigenvalues of K,
and VK is an orthonormal matrix whose columns are the corre-
sponding eigenvectors of K. Note that VK may not be a square
matrix, since only contains the set of eigenvectors of K that
correspond to non-zero eigenvalues. The covariance matrix in the
feature space R0 can be defined as usual R0 ¼ ð1=NÞUTU, and can
also be decomposed as

R0VS0 ¼VS0DS0 , ð6Þ

where DS0 is a diagonal matrix with the non-zero eigenvalues of
R0, and VS0 is an orthonormal matrix whose columns are the
corresponding eigenvectors of R0.

We will express the eigenvectors of R0 as a function of VK to
compute the inner product of two sphered points in the feature
space.

As shown in Schöolkopf et al. [22], the eigendecomposition
of the covariance matrix in the kernel-based feature space
can be solved by computing the eigendecomposition of the kernel
Fig. 1. Distribution of the four classes in the original artificial data set.

Fig. 2. 2D visualisations of the projections of PCA (left) and C
matrix: UVS0 are eigenvectors of K with the corresponding eigen-
values NDS0 and, conversely, UT VK are eigenvectors of R0 with
corresponding eigenvalues ð1=NÞDK . As a consequence, R0 and K
have the same number of eigenvectors with non-zero eigenvalue. Let
nrN be the number of eigenvectors of K with non-zero eigenvalue.
Then, VS0 has n columns and DK ¼NDS0 (note that since DK and DS0

only contain the non-zero eigenvalues, both are n�n matrices).
When the eigenvectors of the covariance matrix R0 are com-

puted from VK , the orthogonality condition, given as VT
S0VS0 ¼ I,

requires to be imposed. Let S be a n�n scaling diagonal matrix of
VS0 , such that VS0 ¼UT VK S. Then we have

I¼VT
S0VS0 ¼ ST VT

KUUT VK S¼ ST VT
K KVK S: ð7Þ

By incorporating Eq. (5) and VT
K VK ¼ I into Eq. (7), we simply have

ST DK S¼ I. Therefore, S¼D�1=2
K , and equivalently,

VS0 ¼UT VK D�1=2
K : ð8Þ

3.2.2. Sphered inner product matrix in the feature space

Let us return to the problem of computing the inner product of
two sphered data points in the feature space. Similar to the input
space, we can define the rotation matrix RS0 ¼VS0D

�1=2
S0 VT

S0 , and
apply the linear transformation U0 ¼URS0 . By incorporating Eq. (8),
the new kernel matrix of inner products after sphering in the feature
space can be computed as Ks ¼U0U0T ¼UUT VK D�1=2

K D�1
S0 D�1=2

K

VT
KUUT . Since D�1=2

K D�1
S0 D

�1=2
K ¼ND�2

K and using Eq. (5), this leads
to a sphered inner product N�N matrix, finally computed as

Ks ¼NVK VT
K ð9Þ

in the kernel-based feature space. If n¼N, then Ks is N times the
identity matrix. If noN, then Ks is rank deficient and usually is not a
diagonal matrix.
3.3. Kernelised Gram–Schmidt orthonormalisation

Algorithm 2. Gram–Schmidt orthonormalisation algorithm in
the feature space.
Given fijg
Nc

j ¼ 1,

i1 ¼ i1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/m̂1 ,m̂1S

p
for j¼ 2 . . .Nc do

bj ¼mj�
Pj�1

i ¼ 1 /m̂j ,b̂iSbi

bj ¼ bj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/b̂j ,b̂jS

q
end for
VSM (right) for the four classes of the data set in Fig. 1.
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Here, we describe the extension of the Gram–Schmidt ortho-

normalisation in the feature space of vectors represented in dual

form. Recall that inner products /â,b̂S in the feature space are

computed with Eq. (2) or (3). Given a set fmjg
Nc

j ¼ 1 of vectors in RN

representing vectors fm̂j g
Nc

j ¼ 1AD in dual form, the set fbjg
Nc

j ¼ 1 of

vectors in RN defined in Algorithm 2 represent a set of orthonor-

mal vectors fb̂j g
Nc

j ¼ 1AD in dual form that span the same subspace

than fm̂j g
Nc

j ¼ 1.
Fig. 3. 2D visualisations of the projections of CKVSM with Gaussian kernel for the da

g parameter.
3.4. Pseudo code of the proposed algorithm for CKVSM

For the sake of simplicity, we have made the assumption that
the data are centered. If this was not the case, the previously
showed results are still valid changing K by K ¼K�K 1N�1N Kþ
1NK 1N , where 1N is an N�N matrix such that ð1NÞij ¼ 1=N (see
[22] for details).

Since aT Kb¼ ðaT�aT 1NÞKðb�1NbÞ ¼ aT ðI�1NÞKðI�1NÞb, using K
with the original data is equivalent to using K with centered data.
Centering data in dual form can be done by subtracting 1/N from
ta set in Fig. 1 without sphering in the feature space for increasing values of the
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each component: a centered data point fðxiÞ is represented as
ðai1,ai2, . . . ,aiNÞ where

aij ¼
1�1=N if i¼ j,

�1=N otherwise:

(

This claim is also valid for Eq. (3).

Algorithm 3. Algorithm for CKVSM.

Given a labelled data set X¼ fxig
N
i ¼ 1,
Fig. 4. 2D visualisations of the projections of CKVSM with Gaussian kernel for the dat

g parameter.
0. Represent the mean of class Cj in the feature space mj in

dual form with Eq. (1)

1. If sphering, compute the final inner product matrix ! with
Eq. (3), otherwise Eq. (2)

2. Orthonormalise the class means in the feature space:

B̂
T

3. Project data onto the orthonormalised cohort means in

the feature space: Xc
¼!B̂

4. Compute scatter matrices for Xc : Sc
W , Sc

B and Mc
a set in Fig. 1 after sphering in the feature space for increasing values of the
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5. Project Xc onto the eigenvectors of Mc with the largest
eigenvalues

The whole cohort-based kernel visualisation procedure is
described in Algorithm 3. After computing the orthonormalised
cohort means in the feature space B̂ (step 2), the data is then
projected onto B̂ as Xc

¼!B̂ (step 3), where ! is computed with
Eq. (3) or (2) depending on whether the data is sphered or
not. Once Xc has been obtained, steps 4 and 5 are the same than
Fig. 5. 2D visualisations of the projections of KLDA with Gaussian kerne
those of Algorithm 1. Regarding the dimensions of the matrices
involved in the algorithm, recall that ! is an N�N matrix, B̂ and
Xc are N � Nc matrices, and Sc

W , Sc
B and Mc are Nc � Nc matrices.

Note that the only parameters of the method are the parameters
of the kernel.

The computational cost depends on whether sphering in the
feature space is performed or not. When sphering is performed,
the computational cost is dominated by the computation of Ks in
Eq. (9), which involves solving an eigenvalue problem of size N.
l for the data set in Fig. 1 for increasing values of the g parameter.



Table 1
Description of the benchmark data sets.

Data set #Variables #Classes #Examples

Gene 120 3 3175

Glass 9 6 214

Vehicle 18 4 846

Wine 13 3 178
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Otherwise, the computation is dominated by the orthonormalisa-
tion and projection steps, which are OðN2

� NcÞ. Note that the
eigenvalue problem involved in the computation of the eigenvec-
tors of Mc has size Nc.

The projection of new data Y¼ fyig
M
i ¼ 1 (a test set, for example)

onto the projection space defined by a data set X¼ fxig
N
i ¼ 1 (a training

set, for example) is described in Algorithm 4. In essence, after
computing B̂ and Mc with algorithm 3, the new data is projected
first onto B̂ and then onto the eigenvectors of Mc with the largest
Fig. 6. 2D visualisations of the projections of KPCA with Gaussian kernel for the data set in Fig. 1 for increasing values of the g parameter.
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eigenvalues. If sphering, the whole data is used to compute the inner
product matrix. Anyway, only the data set X is used to compute the
projection space.
Algorithm 4. Projection of new data with CKVSM.

Given a labelled data set X¼ fxig
N
i ¼ 1 and a data set Y¼ fyig

M
i ¼ 1,

If sphering then
Fig. 7. 2D visualisations of the projections in the ‘‘Projectionþ1NN’’ models for the Gene d

(left) and m-CKVSM Gaussian (right). Bottom row: 3-KPCA polynomial (left) and m-CKV
1. Define K¼
KXX KXY

KYX KYY

 !
, where KAB is the kernel matrix

for data sets A and B
2. Compute the final ðNþMÞ � ðNþMÞ inner product

matrix ! with Eq. (3)

3. Use X and !XX to obtain B̂ and Mc with steps 0, 2, 3 and 4
of Algorithm 3

4. Compute Yc
¼!YXB̂
ata set. Top row: 3-PCA (left) and m-CVSM (right). Middle row: 3-KPCA Gaussian

SM polynomial (right).



Fig. 8. 2D visualisations of the projections of KLDA for the Gene data set. Left: Gaussian kernel. Right: polynomial kernel.
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else
1. Define K¼KXX

2. Compute the final N�N inner product matrix ! with
Eq. (2) (i.e., !¼K)

3. Use X and ! to obtain B̂ and Mc with steps 0, 2, 3 and 4
of Algorithm 3

4. Compute Yc
¼KYX B̂

end if

Project Yc onto the eigenvectors of Mc with the largest
eigenvalues

Note that the labels of the new points in Y may be unknown,
since they are not used in the projection. This allows to validate
the goodness of the projection not only by measuring the
invariant index J but also by measuring the accuracy of a classifier
on the projected data. In this case we can run any standard
classifier in the projected space, as follows. Given a training set
X¼ fxig

N
i ¼ 1 and a test set Y¼ fyig

M
i ¼ 1:
1.
 Construct B̂ and Mc with Algorithm 4.

2.
 Compute Xc and Yc , and project them onto the eigenvectors of

the largest eigenvalues of Mc .

3.
 Construct a standard classifier using the projection of Xc as

training set.

4.
 Test the classifier with the projection of Yc .

We will include this scheme in the ‘‘ProjectionþClassifier’’
experiments (see Section 4).
1 For CKVSM, recall that not labelled data can be projected onto the space

defined by a labelled data set, so that the classifier can be constructed with a

labelled projected training set and tested on an unlabelled projected data set, as

pointed out in Section 3.4. The same happens for CVSM and, obviously, for pure

unsupervised projection methods such as PCA or KPCA.
4. Experiments

Several visualisations and performance measures, together
with the computational cost, are benchmarked for the proposed
method, and compared to other models, such as PCA, CVSM, KPCA
or KLDA. In the visualisations, data was projected onto the two
most important directions of the final models and the numbers in
the axes are the reference values of the projected data.

4.1. Validation of the model on an artificial data set

An artificial data set, consisting of 1000 2D examples and four
classes, was constructed to validate the proposed model. The
input values were randomly generated in [0.1,0.9]� [0.1,0.9]. The
class value was assigned in a similar way to the well-known Two

Spirals problem, as shown in Fig. 1.
As expected, linear projections do not show useful information

for this data set, as shown in Fig. 2: both PCA and CVSM give
visualisation without any structure. It is worth pointing out that if
the spirals were not coplanar, then PCA would mix them up, as
does CVSM. In contrast, the visualisations obtained by CKVSM
allow to imagine more clearly the structure of the data and, for
some values of the kernel parameter, separate the classes. This
can be seen in Figs. 3 and 4, where the visualisations of CKVSM
with Gaussian kernel are shown for increasing values of the g
parameter. Fig. 3 are the visualisations obtained without sphering
in the feature space and Fig. 4 are those obtained after sphering in
the feature space. Note that it is quite difficult to decide, only by
visual inspection, whether it is better sphering or not.

Fig. 5 displays the equivalent visualisations for KLDA showing a
similar behaviour to CKVSM. The visualisations results of KPCA
indicate a certain structure of the data but do not allow to separate
the classes (see Fig. 6).

4.2. Experiments on benchmark data sets

A quantitative evaluation of the visualisation plots is difficult
to define. For this reason, we opted to measure the separability of
the kernel mapped data. For labelled data, it may be measured by
the invariant index J or by the classification accuracy of a classifier
that takes as input the projected data. In our experiments, some
J-indexes were abnormally large or showed numerical problems.
Therefore, we decided to measure the separability of the kernel
mapped data by the classification accuracy of a classifier on the
projected data. We will call this scheme ‘‘ProjectionþClassifier’’.
That is the idea followed in our experiments with benchmark data
sets, and used for the comparison of CKVSM1 with other projec-
tion schemes, such as CVSM, PCA and KPCA: the ‘‘Projection’’ part
was used for the comparison of the visualisations and the
computation of the J-index values; the ‘‘Classifier’’ part was used
to compare the accuracies of the resulting classifiers. In addition,
since KLDA can also be decomposed into a first step of projection
and a second step of classification, its projections can also be



Fig. 9. 2D visualisations of the projections in the ‘‘Projectionþ1NN’’ models for the Glass data set. Top row: 3-PCA (left) and m-CVSM (right). Middle row: 3-KPCA Gaussian

(left) and m-CKVSM Gaussian (right). Bottom row: 3-KPCA polynomial (left) and m-CKVSM polynomial (right).
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visualised and compared to those of CKVSM and the rest of
projection methods. Since the inclusion of supervised information
in the mapping process may introduce potential sample bias, we
measured the out-of-sample generalisation of the classifiers in
response to different kernels.

The intention of the quantitative results (Section 4.2.5) that
complement the subjecting reading of the figures that follow
(Section 4.2.4) is to assess how well the kernel element in CKVSM
aggregates together examples from the same labelled cohort and
how well the cohorts are separated. The use of classifiers in the
evaluation is not intended to suggest that CKSVM is an alternative
design for the metric of nearest neighbour classifiers, since
kernel methods can be specifically designed to optimise their value
for that purpose. Instead, the use of LDA is to measure the extent
of linear separation between cohorts in the projective space and
k-Nearest Neighbours is used to measure the uniformity, by
cohort, of the neighbourhood structure around each example when
projected.



Fig. 10. 2D visualisations of the projections of KLDA for the Glass data set. Left: Gaussian kernel. Right: polynomial kernel.
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Therefore, we expect that a projective structure that reflects
well the cohort labels in near neighbour relationships will have
optimal k-Nearest Neighbours classification for a small number of
neighbours. If it generates linear separating boundaries then it
will perform well with LDA also, while the J-index provides an
overall merit figure that balances intra-cohort homogeneity with
inter-cohort separation.
4.2.1. Data sets

Several benchmark data sets from the UCI repository [1] were
used for the experiments: Splice-junction Gene Sequences (Gene),
Glass Identification (Glass), Vehicle Silhouettes (Vehicle) and Wine.
A brief description of these data sets is provided in Table 1. The
motivation of the selection of these different data sets was to find
representative examples with different dimensionality and different
sample sizes, within public domain repositories, so that our work
can be replicated and benchmarked in the future.
4.2.2. Performed experiments

The ‘‘ProjectionþClassifier’’ experiments were performed as
follows:
1.
 The projections performed were
(a) No projection (the classifier was applied in the input

space).
(b) Linear projections:

(i) 3-PCA (three first components of PCA)
(ii) m-CVSM (m first components of CVSM), where

m¼minð3,Nc�1Þ.
(c) Non-linear projections:

(i) 3-KPCA (three first components of KPCA)
(ii) m-CKVSM (m first components of CKVSM), where

m¼minð3,Nc�1Þ.

2.
 The classifiers applied were

(a) 1NN: 1-Nearest Neighbour.
(b) LDA: Linear Discriminant Analysis.
2 Available at http://asi.insa-rouen.fr/enseignants/�arakotom/toolbox/

index.html.
3 Also available at http://www.kernel-machines.org/software.
4 Available at http://www.prtools.org.
Finally, a series of experiments were performed to compare m-
CKVSM with KLDA. For these models, several issues were com-
pared: visualisation of the projected data, accuracy, J-index and
execution times.
4.2.3. Experimental setting

Data preprocessing: Two different preprocessings were applied
to the input data: normalisation to zero mean and unit variance
and sphering. For m-CKVSM, the data was (as in Algorithm 1)
optionally sphered in the feature space.

Kernel and kernel parameter: The kernel functions used were
1.
 The Gaussian kernel kðx,yÞ ¼ e�gJx�yJ2
.

2.
 The polynomial kernel kðx,yÞ ¼ ðgx0yþ1Þ2.
The tested values of the parameter g were 0.000001, 0.000002,
0.000005, 0.00001, 0.00002, 0.00005, 0.0001, 0.0002, 0.0005,
0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, and 4.

Software: The experiments were performed in MATLAB. For
m-CKVSM and m-CVSM we used our own implementation. The
software used for 3-KPCA and KLDA was the ‘‘SVM and Kernel
Methods Matlab Toolbox’’.2 The KLDA version used was that of
Baudat and Anouar [2].3 For the rest of models, we used the
PRTools software.4

Selection of the parameters and final models: For every combi-
nation of preprocessing and parameters, a stratified 10-fold cross-
validation was performed. For the Glass data set, a fivefold
cross-validation was performed, because one of the six original
classes contained only nine examples, inadequate for a stratified
10-fold cross-validation. The final models were those with the
best 10-fold cross-validation accuracies, obtained with the ‘‘one-
versus-all’’ scheme. Note that the labels of new data are not used
for the projection (see Algorithm 4).

Normalisation of the plots: In order to obtain similar ranges of
the axes for the different plots, the projections were normalised
subtracting the mean and dividing by the standard deviation of
every dimension. Subsequently, the figures were plotted in fixed
ranges for every data set. A different approach would be to scale
the projective axes using the corresponding eigenvalues of the
scatter matrix. However, this form of preprocessing proved less
effective as it resulted in too different ranges among the plots.

4.2.4. Visualisation results

Two-dimensional visualisations of the projected data for
the final models can be seen in Figs. 7–14. The visualisations

http://asi.insa-rouen.fr/enseignants/~arakotom/toolbox/index.html
http://asi.insa-rouen.fr/enseignants/~arakotom/toolbox/index.html
http://asi.insa-rouen.fr/enseignants/~arakotom/toolbox/index.html
http://www.kernel-machines.org/software
http://www.prtools.org


Fig. 11. 2D visualisations of the projections in the ‘‘Projectionþ1NN’’ models for the Vehicle data set. Top row: 3-PCA (left) and m-CVSM (right). Middle row: 3-KPCA

Gaussian (left) and m-CKVSM Gaussian (right). Bottom row: 3-KPCA polynomial (left) and m-CKVSM polynomial (right).
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were computed on the whole data set. Figs. 7, 9, 11, 13 are the
visualisations of the projected data in the ‘‘Projectionþ1NN’’
scheme (see Section 4.2.2), and Figs. 8, 10, 12, 14 are the projected
data of KLDA. As already mentioned, data was projected onto the
two most important directions of the final models. Although data
was projected (when possible) to 3D previous to the classification,
2D visualisations are shown for the sake of clarity. In general,
visualisations in 3D show a similar behaviour, except for the
Vehicle data set (see below). The relations between colours and
classes can be found in Table 2.

In the case of the Gene data set the first thing to note from
Fig. 7 is that m-CVSM enhances a better separation between
cohorts, compared with 3-PCA. This is as expected. The effect of
involving a non-linear kernel in the cluster-based method is to
compress the data from each cohort and so further separate them.
This is not achieved using 3-KPCA but it is with the m-CKVSM



Fig. 12. 2D visualisations of the projections of KLDA for the Vehicle data set. Left: Gaussian kernel. Right: polynomial kernel.
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approach showing that the visualisation space corresponds to a
non-linear distortion of the original data space in the directions
along class separating boundaries. The visualisations with the KLDA
polynomial approach in Fig. 8 are similar to those of m-CKVSM
polynomial. The visual artefacts for KLDA with Gaussian kernel in
Fig. 8 are due to singularities in the scatter matrix (see results of
KLDA in Table 3, Section 4.2.5). This pathological behaviour was not
observed with m-CKVSM.

The number of different classes in the Glass data set means
that there is greater loss in inter-class separation when projecting
onto a low-dimensional visualisation space. In general, the
similarities between plots are more defined by the method than
by the kernel (for example, m-CKVSM Gaussian is more similar to
m-CKVSM polynomial than to 3-KPCA Gaussian or KLDA Gaus-
sian, see Figs. 9 and 10). The cohort based methods m-CVSM and
m-CKVSM are more stable in the visual representation of the data,
compared with 3-KPCA, although noticeable class mixing remains.
The kernel approach spreads out the data better than its linear
equivalent and the stability of the visualisation arguably points in
the direction of the Gaussian kernel for this data set.

For the Vehicle data set, the visualisations of m-CKVSM and
KLDA clearly show the best separation between cohorts (see
Figs. 11 and 12). Similar to the Gene data set, 3-PCA and 3-KPCA
in Fig. 11 do not obtain good separation, and in this case there
exists a remarkable mixing between the classes. The linear
m-CVSM projects the classes in different directions, although
does not separate them. Again, the effect of using a non-linear
kernel in the cluster-based method is to further separate the
cohorts. In addition, the projections to 3D with m-CKVSM and
KLDA are the only ones that separate classes red and green (see
Fig. 15).

The visualisations for the Wine data set in Figs. 13 and 14
show, for all models, a good separation of the cohorts. This is an
expected result, since the Wine data set has well defined
class structures [1]. Note, however, that the visualisations of
3-PCA and 3-KPCA in Fig. 13 show a greater mixing between
the classes than m-CVSM, m-CKVSM and KLDA. In the case of
3-KPCA, in addition, the classes are separated in a clearly different
way that will be reflected in the classification results (see Table 3,
Section 4.2.5).

In general, visualisations of m-CKVSM are more informative
than those of 3-PCA, 3-KPCA, LDA and m-CVSM, and similar
to KLDA visualisations, although KLDA tends to produce
visualisations (previous to the normalisation) in a small range of
values.
4.2.5. Classification results

Table 3 show the accuracies and J-indexes of the final ‘‘Projec-
tionþClassifier’’ (top) and KLDA models (bottom). The J-indexes
were those of the projected data for the final models, and were
computed on the whole data set. Figures in boldface underlined
indicate the best results, and figures in boldface not underlined
indicate the second best results, both for the accuracies and
J-indexes. J-indexes and accuracies are positively correlated showing
better accuracies models with higher J-indexes. Some J-indexes are
abnormally large or show numerical problems (see, for example, the
values for KLDA with Gaussian kernel).

For the Gene data set, 3-PCA and 3-KPCA obtain poor accuracies
and low J-index values. Results of m-CVSM are slightly worse than
those of m-CKVSM and KLDA. The best results are obtained by m-
CKVSM and KLDA with J-index values in a similar range and likewise
for the classification accuracies of both models. This is also reflected
in the visual appearance of the m-CKVSM polynomial projection that
is comparable to that obtained with the KLDA polynomial approach
(see Figs. 7 and 8). Results for this data set indicate that the data
may be moved toward being almost linearly separable, even for
this large sample size. This is consistent with the relatively high
classification accuracy for the linear method m-CVSM, which also
retains, in 3D, the full separation J-index value from the original
120D space. However, the application of kernels improves both
classification accuracy and J-index further, significantly exceeding
the values obtained in the original data space.

In the case of the Glass data set, the classification accuracies do
not return to the value obtained with the original data, coming
closest for the m-CKVSM Gaussian projection (note that the
visualisation results point in the direction of the Gaussian kernel
for this data set, see Section 4.2.4). The Glass data set has the
least number of variables and the largest number of classes of
the studied data sets (see Table 1). Although it has also a small
number of examples to fit the model, results in Table 3 suggest
that the classes are highly non-linearly separable since the data
set favours the 1NN classifier and a local kernel, poor accuracies
are obtained using the LDA projections and, although the applica-
tion of KLDA achieves clearly better cohort separation measured
by the J-index, it does not improve the classification accuracy. The
last observation indicates that the unexpected linear envelope in
the visualisation introduced by KLDA may be an artefact.

The results of the Vehicle data set show several similarities
with those of the Gene data set. On the one hand, 3-PCA and
3-KPCA have poor accuracies and low J-index values. On the other
hand, m-CKVSM and KLDA have similar behaviour. In the Vehicle



Fig. 13. 2D visualisations of the projections in the ‘‘Projectionþ1NN’’ models for the Wine data set. Top row: 3-PCA (left) and m-CVSM (right). Middle row: 3-KPCA

Gaussian (left) and m-CKVSM Gaussian (right). Bottom row: 3-KPCA polynomial (left) and m-CKVSM polynomial (right).
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data set, however, results of m-CVSM show larger differences
with those of m-CKVSM and KLDA. The fact that the projections
to 3D with m-CKVSM and KLDA are the only ones that separate
classes red and green (see Fig. 15) is consistent with the high
accuracies and J-index values for this data set.

The well defined class structures observed in the visualisations
of the Wine data set are confirmed by the classification results.
Accuracies and J-index values are very high for m-CVSM,
m-CKVSM and KLDA. The clear linear separability of the classes
means that both the LDA and 1NN classifiers perform similarly
well. The worse results of 3-PCA and 3-KPCA can be explained by
looking at Figs. 13 and 14, where it is apparent that 3-PCA and
3-KPCA do not separate the classes in the same way the rest of
methods. This is reflected in the respective values of the classi-
fication accuracies.

In summary, results in Table 3 indicate that ‘‘m-CKVSMþ
Classifier’’ outperforms ‘‘3-PCAþClassifier’’, ‘‘3-KPCAþClassifier’’,
‘‘m-CVSMþClassifier’’, 1NN and LDA, and has similar performance



Fig. 14. 2D visualisations of the projections of KLDA for the Wine data set. Left: Gaussian kernel. Right: polynomial kernel.

Table 2
Relations between colours and classes in the visualisations of the benchmark data sets.

Colour Gene Glass Vehicle Wine

Red EI Building windows float Opel Wine of cultivar 1

Green IE Building windows non-float Saab Wine of cultivar 2

Blue Neither Vehicle windows float Bus Wine of cultivar 3

Yellow Containers Van

Magenta Tableware

Cyan Headlamps

Table 3
Results of the ‘‘ProjectionþClassifier’’ (top) and KLDA final models (bottom).

Model Gene Glass Vehicle Wine

Projection Classifier Accuracy J-index Accuracy J-index Accuracy J-index Accuracy J-index

Original features 1NN 73.51 2.83 72:43 5.49 77.78 4.62 95.49 13.21

3-PCA 1NN 74.71 1.70 65.42 3.86 54.85 0.35 93.24 7.50

m-CVSM 1NN 86.55 2.83 66.37 4.62 75.29 4.62 98.30 13.21

3-KPCA Gaussian 1NN 74.68 1.70 69.68 3.84 55.20 0.35 97.78 7.31

3-KPCA polynomial 1NN 76.44 1.85 66.84 3.54 55.09 0.34 95.49 6.90

m-CKVSM Gaussian 1NN 87.81 4.77 71.05 6.00 81.09 22.76 99:44 15.49

m-CKVSM polynomial 1NN 90.14 7.21 67.76 4.62 81.57 22.19 99:44 12.98

Original features LDA 87.47 2.83 14.03 5.49 77.41 4.62 98.89 13.21

3-PCA LDA 77.99 1.70 13.19 3.86 41.96 0.39 96.11 7.50

m-CVSM LDA 87.47 2.83 27.97 1.03 77.41 4.62 99:44 13.19

3-KPCA Gaussian LDA 74.27 1.61 29.44 0.33 33.95 0.52 96.83 7.52

3-KPCA polynomial LDA 75.42 1.68 24.22 0.03 27.54 0.01 95.32 7.16

m-CKVSM Gaussian LDA 90.96 4.77 26.17 7.10 83.10 22.76 99:44 15.01

m-CKVSM polynomial LDA 93:13 7.01 28.85 7.68 83.56 24.05 99:44 13.85

KLDA Gaussian 91.31 NumP 65.90 19.26 86:40 48:95 98.89 25:02

KLDA polynomial 87.53 7:82 65.90 19:44 83.44 21.02 98.89 14.58
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than KLDA. In general, the lowest accuracies have been obtained
by ‘‘3-PCAþClassifier’’ and ‘‘3-KPCAþClassifier’’. They can be
justified because of the unsupervised nature of these models
that do not profit from the known labels. Note that these models
also show low values of the J-indexes. As expected, the linear
nature of ‘‘m-CVSMþClassifier’’ allows to obtain better results
when the data is almost linearly separable, as for the Wine
data set.
Table 4 shows a comparison of the accuracies of the
‘‘m-CKVSMþ1NN’’ models between sphering and not sphering
in the feature space. Figures in boldface indicate the best results.
Although better results are usually obtained without sphering, it
will probably be dependent on the problem at hand. Anyway, the
goodness of the results without sphering is encouraging, since
sphering in the feature space is computationally more expensive
(see Sections 3.4 and 4.2.6).



Fig. 15. Vehicle data set: 2D visualisations of the projections to 3D showing the separation between classes red and green. Left: KLDA Gaussian. Right: m-CKVSM Gaussian.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Comparison of accuracies between sphering and not sphering in the feature space

(‘‘m-CKVSMþ1NN’’ models).

Model Sphering Gene Glass Vehicle Wine

m-CKVSM Gaussian Yes 79.80 60.31 81.09 99.44
m-CKVSM polynomial Yes 78.66 60.27 81.57 98.33

m-CKVSM Gaussian No 87.81 71.05 79.52 98.89

m-CKVSM polynomial No 90.14 67.76 76.47 99.44

Table 5
Execution times (in seconds) of the projection models and KLDA.

Model Sphering Gene Glass Vehicle Wine

m-CVSM – 1.64 0.81 0.84 0.80

3-KPCA Gaussian – 949.26 1.09 20.99 0.92

3-KPCA polynomial – 1090.81 1.05 17.34 0.92

m-CKVSM Gaussian Yes 912.74 1.07 15.90 0.94

m-CKVSM Gaussian No 2.79 0.79 0.97 0.80

m-CKVSM polynomial Yes 1043.61 1.06 13.37 0.93

m-CKVSM polynomial No 1.72 0.79 0.95 0.80

KLDA Gaussian – 1720.09 1.63 21.26 1.38

KLDA polynomial – 1246.28 1.60 14.43 1.42
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Fig. 16 shows the accuracies of the ‘‘3-KPCAþ1NN’’, ‘‘m-CKVSMþ
1NN’’ and KLDA models as a function of the parameter g for the
four studied data sets. The behaviour of ‘‘3-KPCAþLDA’’ and
‘‘m-CKVSMþLDA’’ was similar to that of ‘‘3-KPCAþ1NN’’ and
‘‘m-CKVSMþ1NN’’. In general, it has the typical appearance with an
area of parameters that lead to good results, getting worse as we
move away from that area, sometimes smoothly and sometimes
abruptly. The first thing to note from Fig. 16 is that, for m-CKVSM and
KLDA, the polynomial kernel is more stable than the Gaussian one. It
can be clearly seen in the plots for the Gene and Vehicle data sets.
Regarding the models, it seems clear that KLDA has a wider area of
good parameters than m-CKVSM, specially for the Gaussian kernel.
The shape of 3-KPCA is similar to those of m-CKVSM and KLDA, but
in a lower level, confirming the lowest accuracies obtained by
‘‘3-KPCAþClassifier’’. Finally, note that the worst results are always
in the largest values of the parameter suggesting to test small values
of g first.
4.2.6. Execution times

Table 5 shows several execution times of different models.
As it can be seen, m-CKVSM is faster than 3-KPCA and KLDA.
This is particularly significant when no sphering is performed,
and it can be explained because 3-KPCA and KLDA must solve an
eigenvalue problem of size N (N in the number of examples),
whereas m-CKVSM solves an eigenvalue problem of size Nc (Nc is
the number of classes). When sphering is performed, m-CKVSM
also must solve an eigenvalue problem of size N. Note that results
are many times better without sphering (see Table 4), and in this
case the execution times of m-CKVSM are of the same order than
those of m-CVSM.
5. Conclusions

This paper combined kernel methods with dimensionality
reduction using class means to obtain accurate data classification
in low-dimensional feature spaces that are suitable for direct
visualisation of the data. A projective framework defined for
linearly separated data in Lisboa et al. [15] was extended using
the kernel trick and empirically shown to generate well-separated
low-dimensional visualisations of benchmark externally-labelled
data of moderate and high dimensions, resulting in a novel tool
for data exploration and for class-specific data visualisation in
human–computer interfaces.

The method of cohort-based kernel projection improves the
visualisation of the linear method when the cohorts are not
linearly separable. It is competitive with the best of Fisher and
KPCA for cohort separation, classification, and data visualisation,
provided a suitable kernel is used, and was found to be numeri-
cally more stable than KPCA and KLDA. It is proposed as a novel
tool for the exploration of different kernels through data visua-
lisation, and for obtaining linearly separable renditions of non-
linearly separable data sets.

The classification results serve to measure the extent of near-
neighbour uniformity with respect to classes and the extent of
linearity in the separation between classes that the use of the
proposed algorithm achieves. These results provide evidence for
the effectiveness of the algorithm to linearise non-linearly separ-
able data and so to aid visualisation of the separation between
classes.



Fig. 16. Evolution of the accuracy as a function of the parameter g (in log10 scale).
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