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This article investigates methods for the accurate and robust differentiation of metastases from glioblastomas on
the basis of single-voxel 1H MRS information. Single-voxel 1H MR spectra from a total of 109 patients (78 glioblastomas
and 31 metastases) from the multicenter, international INTERPRET database, plus a test set of 40 patients (30
glioblastomas and 10 metastases) from three different centers in the Barcelona (Spain) metropolitan area, were
analyzed using a robust method for feature (spectral frequency) selection coupled with a linear-in-the-parameters
single-layer perceptron classifier. For the test set, a parsimonious selection of five frequencies yielded an area under
the receiver operating characteristic curve of 0.86, and an area under the convex hull of the receiver operating
characteristic curve of 0.91. Moreover, these accurate results for the discrimination between glioblastomas and
metastases were obtained using a small number of frequencies that are amenable to metabolic interpretation, which
should ease their use as diagnostic markers. Importantly, the prediction can be expressed as a simple formula based
on a linear combination of these frequencies. As a result, new cases could be straightforwardly predicted by integrat-
ing this formula into a computer-based medical decision support system. This work also shows that the combination
of spectra acquired at different TEs (short TE, 20–32ms; long TE, 135–144ms) is key to the successful discrimination
between glioblastomas and metastases from single-voxel 1H MRS. Copyright © 2011 John Wiley & Sons, Ltd.
Supporting information may be found in the online version of this article.
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INTRODUCTION

Metastatic brain tumors often arise as multifocal lesions in adults
with a history of malignancy. Before treatment is delivered,
malignant neoplastic tumors (metastasis, high-grade glioma
and malignant lymphoma) must be differentiated. Amongst
these three, metastases and high-grade gliomas are the hardest
to differentiate because of their radiological similarity (1).
The discrimination between glioblastoma and solitary metas-

tasis is a challenging problem that arises when a necrotic mass
appears within the brain. It is also a highly relevant decision, as
maximal surgical resection is the treatment of choice for

glioblastomas, whereas a solitary metastasis is the result of a
systemic tumoral process, and its treatment ultimately depends
on the origin and degree of dissemination of the tumor.

Radiology plays an important role in this type of discrimina-
tion. The diagnosis of metastasis is quite obvious when multiple
brain lesions are found and a primary extracranial tumoral
process is known. The situation is different when a solitary mass
is found, because radiological findings from conventional MRI
may be very similar for both types of tumor. Further diagnostic
support can be obtained from so-called physiological MR tech-
niques. Most use the infiltrative pattern of growth of glioblastomas
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to accomplish the differentiation. Metastasis is, in fact, an
extra-axial process that does not infiltrate into the surrounding
parenchyma and, accordingly, perfusion MR, diffusion MR and
spectroscopy measurements in the adjacent brain parenchyma
should be those of normal parenchyma or edema. However,
glioblastoma is an infiltrative process that should show a tumoral,
or at least abnormal, pattern surrounding the tumoral enhancing
process when using these techniques. A recent example of this
type of study, based on the differences in metabolite ratios in the
enhancing tumor and peritumoral edema, aiming to discriminate
between tumor infiltration (glioblastomas) and tumor-free edema
(metastases), can be found in the work of Server et al. (2).

In this study, we aimed to determine whether certain
characteristics of the focal enhancing mass could aid in the
differentiation between glioblastoma and solitary metastasis.
Our hypothesis was that tumoral processes originating in the
brain should be, at least to some extent, different from those
originating elsewhere, and that these differences should be
found in the single-voxel (SV) 1H MRS signal.

The existing literature (1,3–5) considers this differentiation
problem by SV 1H MRS to be of great difficulty. As stated by
Opstad et al. (4), the radiological appearance of intracranial me-
tastases and high-grade gliomas is often similar and dominated,
in both cases, by large peak intensities corresponding to neutral
lipids, a byproduct of necrosis (6). This problem has often been
circumvented by considering both pathologies as part of a more
general class of high-grade malignant tumors (7–12).

Most of the aforementioned studies that have addressed the
problem of differentiation between glioblastoma and solitary
metastasis have analyzed small patient samples, often from a
single clinical source. Glioblastoma cases usually predominate
in all the analyzed databases, but no active compensation
procedure for the different prevalences of the two pathologies
has been used. With some exceptions (5), the cited studies have
investigated a limited number of peak intensities, or their ratios,
at prescribed frequencies, reflecting prior knowledge of which
metabolites should be considered as relevant to the differentia-
tion problem. As remarked by Huang et al. (13), such an
approach risks throwing away large parts of the spectrum where
useful discriminatory information may be present.

The use of test datasets (that is, independent collections of
unseen cases) is a requisite to prove the validity or generalization
capability of a proposed model (14). It is not enough that we
define a model that correctly classifies a given dataset. The model
must also be able to correctly classify unseen, out-of-sample, data
cases. In other words, not using a test set entails that the results
can only reflect accurately the analyzed data, therefore being of
questionable use for subsequent out-of-sample predictions. In the
cited literature, a test set was only used by García-Gómez et al. (5).

Other studies have gone beyond SV 1H MRS to tackle the
differentiation between metastasis and glioblastoma. Alternative
techniques include MRI and two-dimensional turbo spectro-
scopic imaging information (15), diffusion tensor imaging
(16,17) and multiple-voxel MRS with two-dimensional chemical
shift imaging and peak amplitude ratios (2). Recent studies have
also resorted to morphometric analysis of MR images (18).

In a clinical setting, the discrimination of glioblastomas from
metastases becomes a decision-making problem. For rather
obvious reasons, diagnostic decision making in neuro-oncology
is an extremely sensitive matter. Taking into account that most
diagnostic techniques in this domain must rely on noninvasive
data acquisition methods, clinicians might benefit from at least

partially automated computer-based decision support using
pattern recognition techniques (19). There is no technological
barrier for the use of SV 1H MRS information in computer-based
medical decision support systems (MDSSs), given that this type
of data can be acquired and processed automatically (therefore
becoming part of the routine clinical examination) (4).
In this domain, diagnostic decision support requires methods

that are both robust and interpretable by the radiology
expert. In diagnostic classification-oriented pattern recognition
of MRS data, one way to comply with the interpretability
requirements is through data dimensionality reduction and,
more specifically, through feature selection (FS). A thorough FS
procedure is applied in this article to the problem of discriminat-
ing between metastatic brain tumors and glioblastomas on
the basis of SV 1H MRS from the multicenter, international
INTERPRET database (20).
The proposed FS procedure is seamlessly interwoven with

classification using a simple and linear-in-the-parameters machine
learning model, namely the single-layer perceptron (SLP) (21).
The FS technique is based on the hypothesis that irrelevant
features produce smaller variations than relevant ones in the SLP
output prediction. We hypothesize that the combination of a
thorough and robust FS procedure and a linear classifier will lead
to improved generalization results in the discrimination task for a
test set. We also expect [in accordance with some existing
studies (22)] to obtain the best discrimination results from the
combination of SV 1H MRS data acquired at different TEs.

MATERIALS AND METHODS

The INTERPRET SV 1H MRS database and MDSS

The available data are SV 1H MR spectra acquired in vivo from
patients with brain tumors. They are part of the multicenter,
international, web-accessible INTERPRET project database (20).
They were gathered from hardware produced by several manufac-
turers (GE, Philips and Siemens) and expressed in different formats.
A total of eight clinical centers in five countries contributed cases
to the database: CDP (Centre Diagnòstic Pedralbes-CETIR, with
units at Pedralbes, Barcelona and Esplugues del Llobregat, Spain);
IDI Bellvitge (Institut de Diagnòstic per la Imatge-Unitat Bellvitge,
L’Hospitalet del Llobregat, Spain); SGUL (St George’s University of
London, UK); UMCN (Universitair Medisch Centrum Nijmegen, the
Netherlands); UJF (Unité mixte Université Joseph Fourier/INSERM
U594, Grenoble, France); FLENI (Fundación para la Lucha contra
las Enfermedades Neurológicas de la Infancia, Buenos Aires,
Argentina); MUL (Uniwersytet Medycznyw Lodz, Lodz, Poland). The
data from CDP were, in turn, gathered from six hospitals in the
Barcelona metropolitan area, including: Hospital de Bellvitge,
L’Hospitalet del Llobregat; Hospital de la Santa Creu i Sant Pau,
Barcelona; Hospital Clínic, Barcelona; Hospital Germans Trias i Pujol,
Badalona; Hospital Mútua de Terrassa, Terrassa; and Hospital Sant
Joan de Déu, Esplugues del Llobregat.
The criteria for the inclusion of cases in this study (in which

there are only two tumor types of the many available from the
INTERPRET database) were as follows: (i) that the case had SV
1.5-T spectra acquired at both short and long TEs from a nodular
region of the tumor; (ii) that the voxel was located in the same
region in which a subsequent biopsy was obtained; (iii) that
the spectra had not been discarded because of acquisition
artifacts or other data quality reasons; and (iv) that a histopatholog-
ical diagnosis was agreed among a committee of neuropathologists.
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The analyzed data were acquired at short and long TEs. They
included 78 glioblastomas [World Health Organization (WHO)
9440/3)] and 31 metastases (WHO 8000/6). Processing was
performed with the INTERPRET Data Manipulation Software
(http://gabrmn.uab.es/dms) (23), including UL2 unit length nor-
malization (24). Data were further scaled to zero mean and unit
variance. Clinically relevant regions of the spectra were sampled
to obtain 195 frequency intensity values (data features) spanning
approximately 4.22 to 0.49 ppm. These 109 cases were used in
the FS and classification procedure described in the next section.
TE is an influential parameter in 1H MRS data acquisition. In

short-TE spectra (typically acquired at 20–40ms; in this study:
stimulated echo acquisition mode, 20ms; point-resolved spectros-
copy, 30–32ms), some metabolites are better detected [e.g. lipids,
myo-inositol, glutamine (Gln) and glutamate (Glu)]. However, there
may be numerous overlapping resonances (e.g. Glu/Gln at 2.2 ppm)
which make the spectra difficult to interpret (25). The use of long
TE (in this study: point-resolved spectroscopy, 135–144ms) yields
fewer metabolites, but with more clearly resolved peaks and less
baseline distortion, resulting in a more readable spectrum. Existing
studies have resorted to either short- or long-TE MRS to discrimi-
nate between different types of high-grade tumor. There is evi-
dence, however, that the combined use of both TEs could be
advantageous (22,25). In this study, the spectra acquired at short
and long TE from the same patient (when both TEs were available)
were combined through straight concatenation of the spectra, as in
ref. (22). The combined TEs of the aforementioned 109 cases were
used to build the diagnostic prediction models.
The INTERPRET database forms the core of a computer-based

MDSS (23), designed to assist radiologists in the diagnosis and
grading of brain tumors using in vivo SV 1H MRS. It includes
automated pattern recognition techniques (such as linear
discriminant analysis classifiers), and the results corresponding
to certain classification problems are displayed in a two-
dimensional representation space that can be navigated using
an intuitive graphical user interface that links the representation
of a case with the corresponding underlying data (spectra and,
eventually, image). The final goal of the INTERPRET MDSS is to
facilitate the incorporation of the results of pattern recognition
analysis into an overall diagnostic procedure in which the
possible algorithmic and mathematical intricacies are transpar-
ent to the clinician. The latest official release of the MDSS is
version 3.0.2 (http://gabrmn.uab.es/dss) (23).
A test dataset of 40 cases (30 glioblastomas and 10metastases)

was kept aside to test the generalization capability of the selected
model in the classification task. As mentioned in the Introduction,
this is the capability of correctly classifying unseen, out-of-
sample, data cases. These data came from three different clinical
centers in the Barcelona metropolitan area: CETIR-CDP (Centre
Diagnòstic Pedralbes, Unitat Esplugues, Esplugues del Llobregat),
CRC-Corporació Sanitaria-IAT (Institut d’Alta Tecnología, Barcelona)
and IDI-Badalona (Institut de Diagnòstic per la Imatge, Unitat
Badalona, Badalona), and were acquired as part of the EU-funded
eTUMOUR research project (http://www.etumour.net) (26). Ethics
committee approval for data accrual was gathered in the context
of the INTERPRET and eTUMOUR projects.

FS and classification methods

As some of the studies briefly reviewed in the Introduction
reflect, most of the available spectral frequency range in the SV
1H MRS data is likely to be of little relevance to the discrimination

between high-grade glioblastomas and metastases. This reveals
the importance of using an adequate and quantitatively moti-
vated FS automated procedure. Such a procedure should be suf-
ficiently robust to yield a selection of frequencies that is not only
relevant to the sample of patients under study, but is also able to
yield good diagnostic predictions for unseen data in test sets.

In this study, we propose the use of an exhaustive FS proce-
dure associated with a simple pattern recognition classification
model: the SLP (21) artificial neural network. In the mathematical
specification used in this study (and detailed in the Appendix),
the SLP is similar to logistic regression, although the adaptive
parameters of the model are obtained through standard back-
propagation techniques. The SLP is preferred as a partner for
FS rather than more complex alternative pattern recognition
classifiers, such as multilayer perceptrons (27,28) or linear
support vector machines (29) for several reasons: the former
may be computationally too expensive for the number of MRS
frequencies analyzed in the available database; multilayer
perceptron parameters are also more difficult to adjust appropri-
ately, and the saliency (relevance) of every feature is also likely to
be more independent for SLP than for linear support vector
machines. In addition, linear models, such as the proposed SLP,
have performed well with these data in previous studies (7),
and their classification can be straightforwardly interpreted in
terms of the original features.

Two components of the FS procedure must be specified
explicitly: the feature subsets evaluation measure and the search
procedure through the space of all possible feature subsets. The
first is computed as the sum of the individual saliencies of the
features, which are a simple function of the adaptive weights
(parameters) of the SLP. This method is based on the hypothesis
that irrelevant features produce smaller variations in the output
values than do relevant features, with smaller output variations
being the result of small model weights. The search is implemen-
ted as a backward selection procedure with an iterative selection
process controlled by the previously defined saliency measure.
All the technical details of the proposed SLP-based FS process
are explained in the Appendix.

All the reported results were obtained with SLP classifiers whose
training processes were balanced to account for the different
tumor type prevalences, that is to compensate for the different
numbers of cases corresponding to each of the two analyzed
pathologies. In doing so, this prevented the SLP favoring the
accurate classification of only the most prevalent class. In our
experiments, the balancing process involved modification of the
back-propagated error of the metastases, which was multiplied
by the ratio of glioblastomas tometastases. This has a similar effect
to oversampling the least frequent class (metastases).

The FS procedure is decremental and was repeated, starting
from the complete data, a number of times under different
initialization conditions to ensure the reliability of the FS
outcome (that is, to ensure the consistency of the selected
subsets of features). The results reported and discussed in the
following sections were the best obtained for the test set.

Discrimination quality measures

Several quality measures were used to report the classification
(discrimination) results. They all use the concepts of true and
false predictions [true positives (TPs) correspond to correct
metastasis predictions and true negatives (TNs) correspond to
correct glioblastoma predictions; likewise, false positives (FPs)

DIFFERENTIATION OF METASTASES FROM GLIOBLASTOMAS USING SV 1H MRS

NMR Biomed. 2012; 25: 819–828 Copyright © 2011 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/nbm

821



correspond to false metastasis predictions and false negatives
(FNs) correspond to false glioblastoma predictions]. Measures
include the accuracy (percentage of total correctly classified
cases, that is, ratio of true cases, TP + TN, to all cases), sensitivity
(ratio of TP to all metastases) and specificity (ratio of TN to all
glioblastomas), measured at the mid-range threshold.

The receiver operating characteristic (ROC) curve represents
the values of sensitivity with respect to (1 – specificity) obtained
by varying the values of the discrimination threshold across its
range. ROC analysis has its roots precisely in the radiology area
(30,31). The areas under the ROC plot [AUC; (32,33)] and under
the convex hull of the ROC plot [AUCCH; (34)] are routinely used
as appropriate measures for the qualification of classification
results. As stated by Metz (35), ‘ROC analysis provides the most
comprehensive description of diagnostic accuracy available to
date, because it estimates and reports all of the combinations
of sensitivity and specificity that a diagnostic test is able to
provide’. In our study, these areas approximate the probability
that the SLP will rank a randomly chosen positive case (a
metastasis) higher than a randomly chosen negative one (a
glioblastoma), and are closely related to the Mann–Whitney
U-test. Both areas are reported because the AUC may underesti-
mate the quality of the prediction for small data samples (such as
the test set in this study), whereas the AUCCH can, at most,
slightly overestimate such quality.

RESULTS

Maximum overall accuracies of 85% in the test set were obtained
for several, extremely parsimonious, selected combinations of
long- and short-TE frequencies. They are summarized in Table 1.
These maximum test accuracies corresponded to training accu-
racies (using the 109 INTERPRET concatenated spectra) of, in turn
and following the same order as in Table 1, 79%, 79.8%, 82.6%
and 80.7%. It should be noted that the selections reported in this
table are very similar to each other, which is a clear indication of
the stability of the FS procedure. Some frequencies (such as
those at 2.29, 2.32 and 3.01 ppm, for instance) appear repeatedly
in the selection. Interestingly, in one case (2.32 ppm), they are
selected at both TEs. They are, in any case, extremely consistent:
that is, they repeatedly come up as the final result over the
battery of performed experiments.

Experiments were also carried out using only long- or short-TE
data separately. Using long TE, a maximum accuracy of 77.5% in
the test set was achieved. Using only short TE, the result
decreased to 75%. Removing the short-TE features from the

selected subsets listed in Table 1 (one frequency in the first three
subsets and two in the fourth) reduced the accuracy from 85% to
77.5% (subset 1), 80% (subset 2) and 82.5% (subsets 3 and 4). The
removal of the long-TE frequencies decreased the performance
to values in the range 62.4–65.1%.
Importantly, the simplicity of the SLP classifiers (combined

with the parsimony of the frequency subset selections) allows
us to express these predictions as simple formulae. These are
expressed as a linear combination of frequencies, as listed in
Table 2. These formulae can be used for classification by
expressing the SLP output (prediction) y for a given case
(spectrum) x as:

y xð Þ ¼ tanh a xð Þ½ � [1]

so that y(x)2 [�1,1].
Given a mid-range classification threshold of y(x) = 0, a value

of y(x)> 0 would correspond to a metastasis diagnostic predic-
tion; therefore, an output of unity would correspond to a fully
confident metastasis prediction. Likewise, a value of y(x)< 0
would correspond to a glioblastoma diagnostic prediction, with
an output of –1 indicating a fully confident glioblastoma
diagnosis. Moreover, the higher the absolute value of a positive
coefficient in the formula, the stronger the influence of the
corresponding frequency in a metastasis prediction; likewise,
the higher the absolute value of a negative coefficient, the
stronger the influence of the corresponding frequency in a
glioblastoma prediction. These criteria provide the expert with
an explicit quantitative ranking of the relevance of individual
frequencies on the diagnostic prediction. To help interested
users, a protocol to process and evaluate new cases is provided
as Supporting information. A simple spreadsheet that can be
used to obtain predictions for new cases is also available online
(http://gabrmn.uab.es/GBM-MET-formula.xls).
Detailed test predictions, together with sensitivity and

specificity values [corresponding to confusion matrices at the
mid-range classification threshold of y(x) = 0], AUC and AUCCH
results, are listed in Table 3.
According to the quality measures reported in Table 3, the

second and fourth subsets of selected frequencies yield the best
and most adequately balanced results in the diagnostic
prediction with the test set. The best AUC value of 0.86 and
AUCCH value of 0.91 must be compared with an AUC value of
0.84 reported in ref. (4) using the lipid peak area ratio, but no
independent test set. The results should also be compared with
those reported by García-Gómez et al. (5). In that study, for short-
TE spectra acquired at 1.5 T, the best results for a balanced test

Table 1. The four subsets of frequencies from the concatena-
tion of long-TE and short-TE data for which an accuracy of 85%
in the test set was achieved in the experiments with the single-
layer perceptron (SLP). Frequencies expressed in parts per
million (ppm) (rounded to two decimal places). Letter prefixes
stand for long-TE (L) and short-TE (S) frequencies

Subset Features selected

1 L2.32–L2.29–S2.32
2 L2.32–L2.29–S2.17–L2.02–L3.01
3 L2.32–L2.29–S2.32–L3.42–L3.36–L3.01
4 L2.32–L2.29–S2.17–L2.02–L3.01–S2.15

Table 2. Classification formulae for each of the selections
listed in Table 1 (presented in the same order). Coefficients
rounded to the third decimal place

Subset Classification formula

1 a(x) = 3.473 – 0.548L2.32 + 0.484L2.29 – 0.493S2.32
2 a(x) = 1.383 – 0.088L3.01 – 0.377L2.32 + 0.250L2.29

+ 0.153L2.02 – 0.261S2.17
3 a(x) = –0.612 + 0.349L3.42 – 0.214L3.36 – 0.049L3.01

– 0.436L2.32 + 0.453L2.29 – 0.160S2.32
4 a(x) = 0.671 + 0.090L3.01 – 0.375L2.32 + 0.249L2.29

+ 0.156L2.02 – 0.205S2.17 – 0.053S2.15
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set were obtained using peak integration techniques and a linear
discriminant analysis classifier. An error rate of 0.22 and a
corresponding balanced error rate of 0.21 were reported. From
the results in Table 3, an error rate of 0.15 and a balanced error
rate of 0.13 were achieved in our experiments.
It should be noted that the fourth solution is almost identical

to the second, but for the addition of short-TE 2.15 (contiguous
to the also selected short-TE 2.17). Therefore, and following a
lex parsimoniae criterion, the second solution, including five
frequencies, was chosen for implementation in the INTERPRET
computer-based MDSS described in The INTERPRET SV 1H MRS
database and MDSS section. This new development, which pro-
vides predictions for new cases, will shortly be available in version
3.1 of the MDSS. Figure 1 displays the five selected frequencies on
top of the mean amplitudes of both tumor types.
The direct three-dimensional data visualization for this best

solution is not possible, as it consists of five frequencies. Instead,

a visualization of the SLP predictions y can be provided, as in
Fig. 2. In this figure, the further is the case from the threshold
y(x) = 0 and the closer to the left limit y(x) =�1, the more confi-
dent is the glioblastoma prediction. Correspondingly, the further
is the case from the threshold y(x) = 0 and the closer to the right
limit y(x) = 1, the more confident is the metastasis prediction.

Instead, the first selection reported in Table 1, which only
includes three frequencies, allows direct three-dimensional visu-
alization, as illustrated in Fig. 3. Importantly, for interpretation
purposes, the differentiation surface generated by the SLP classi-
fier, separating glioblastomas from metastases, can also be ex-
plicitly displayed.

DISCUSSION

The importance of using a test set to qualify the results must
again be stressed at this point. If only the original INTERPRET
data had been used to create the SLP prediction models, there

Table 3. Detailed test set classification results for each of the
selections listed in Table 1 (presented in the same order). First
column: number of subsets as in Tables 1 and 2. Second
column: total number of correctly classified cases (CCCs) out
of 40. Third column: true positives (TPs) and negatives
(TNs), and false positives (FPs) and negatives (FNs). Fourth
column: corresponding sensitivity (Sen) and specificity (Spe)
as a percentage. Fifth and sixth columns: area under the
receiver operating characteristic curve (AUC) and area under
the receiver operating characteristic curve convex hull
(AUCCH) results (maximum area possible value, 1)

Subset CCC TP, TN, FP, FN Sen/Spe AUC AUCCH

1 34/40 7 TP, 27 TN, 3 FN, 3 FP 70/90 0.78 0.86
2 34/40 9 TP, 25 TN, 1 FN, 5 FP 90/83.3 0.86 0.91
3 34/40 6 TP, 28 TN, 4 FN, 2 FP 60/93.3 0.83 0.87
4 34/40 9 TP, 25 TN, 1 FN, 5 FP 90/83.3 0.86 0.91
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Figure 1. Location of the frequencies of the best subset selected (L2.32–
L2.29–S2.17–L2.02–L3.01) on the long-TE+ short-TE concatenated
dataset used in the feature selection (FS) procedure [single-layer percep-
tron (SLP) training data]. Long-TE spectra on the left (LTE) and short-TE
spectra on the right (STE). Mean metastasis amplitudes are shown as a
full gray line and mean glioblastoma amplitudes as a full black line.
Selected frequencies are shown as broken vertical lines. The vertical axis
is unlabeled, as it corresponds to normalized intensity arbitrary units.
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Figure 2. Visual representation of the single-layer perceptron (SLP)
predictions y(x) for the test set, corresponding to the best selection of
frequencies, as described in the text. True positives (correctly classified
metastases) are represented as black stars, false negatives as red stars
(there is only one misclassified metastasis), true negatives as black dots
and false positives (misclassified glioblastomas) as red dots. The decision
threshold is set at y(x) = 0. This representation of the data is provided in a
forthcoming version of the INTERPRET medical decision support system
(MDSS).
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Figure 3. Visual representation of the data (amplitudes) corresponding
to the subset of three selected spectral frequencies (L2.32–L2.29–S2.32)
from the long-TE+ short-TE dataset, as described in Table 1. Each of the
axes is one of the frequencies, as labeled. Glioblastomas are represented
in red and metastases in green. The data used to create the classifier are
represented by stars, and the data of the test set are represented by
squares. The differentiation surface is displayed almost in profile in order
to better appreciate the separation of cases. Given that the single-layer
perceptron (SLP) is a linear classifier, the decision surface is a plane. A
case that falls within this surface would correspond to an SLP prediction
y(x) = 0. It should be noted that the Euclidean distance from the points to
the differentiation plane can be used directly as a measure of our
confidence on the diagnostic prediction provided by the classifier.
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would be no guarantee against the possibility that the models
only reflected accurately those data, therefore being of no use
for subsequent out-of-sample predictions.

The best FS results are not only parsimonious, but also quite
consistent. It should be noted that the signs of the coefficients
in the formulae reported in Table 2 remain stable when the same
frequencies are selected in different experiments. It should also
be noted that all selected subsets include frequencies from both
TEs, although with a clear preponderance of long-TE frequencies.
This is a definite indication that the combination of TEs is neces-
sary for the improvement of the differentiation capabilities of the
model. The results reported in the previous section show that
the combination of TEs yields better results that the separate
use of either TE. Furthermore, the performance has been shown
to deteriorate if frequencies of either TE are removed from the
subsets selected when both TEs are used.

The well-balanced test accuracy achieved with the proposed
method for both metastases and glioblastomas also validates
our approach for the design of SLP classifiers, in which the train-
ing procedure includes a mechanism to actively compensate for
the different tumor type prevalences. This is explicitly reflected
by the excellent balanced error rate and ROC analysis results.

The frequencies in the best discriminating subset (L2.32–
L2.29–S2.17–L2.02–L3.01) belong to well-known frequency
ranges that are relevant for brain tumor pattern recognition.
The long-TE frequency at 3.01 ppm mostly represents total crea-
tine, whereas the long-TE frequency at 2.02 ppm, depending on
the size, infiltrative nature and degree of necrosis of the tumor,
will mostly be contributed by either N-acetylaspartate (NAA) (as
a result of partial volume effects) or, when mobile lipid reso-
nances are apparent at c. 1.3 and 0.9 ppm, by the –CH=CH–
CH2– methylene group of the fatty acyl chain of these mobile
lipids, because of their low T2. In ref. (1), a qualitative analysis
concluded that the presence of intratumoral creatine is a marker
for gliomas, whereas its absence might be an indicator of metas-
tasis. In this respect, ref. (36) reported significantly higher total
creatine content in glioblastoma (3.15� 0.30 mmol/g fresh wet
weight, n=59) than in metastases (1.85� 0.28 mmol/g fresh
wet weight, n=18) in quantitative data from hydrosoluble
metabolites in extracts of biopsies. This is in qualitative
agreement with the average unit length normalized tumor type
pattern shown in Fig. 1.

However, quantification from in vivo MRS data using the
LCModel approach (4) failed to find significant differences in
creatine content between cases of glioblastoma (n=23) and
metastasis (n= 24), although further work from the same
institution (37) using 1H high-resolution magic angle spinning
analysis of brain tumor biopsies did indeed find higher creatine
in glioblastomas (2.99� 0.39mM, n= 24) than in metastases
(1.24� 0.21mM, n= 8). Nevertheless, it should be taken into
account that the current study does not use the absolute metab-
olite content directly, but unit length UL2 normalized intensities
instead. As a result, higher mobile lipid contents, especially at
long TE, will contribute to an apparent metabolite content
decrease in metastases versus glioblastoma after normalization.

A definite lipid signal was also concluded in ref. (1) to indicate
cellular necrosis in glioblastoma and metastasis, whereas no lipid
signal at short TE should lead to the exclusion of a diagnosis of
metastasis.

Finally, 2.32 and 2.29 ppm at long TE, together with 2.17 ppm
at short TE, may show contributions from Glu/Gln at 2.32 and
2.17 ppm and g-aminobutyric acid (GABA) at 2.29 ppm (38),

whereas 2.02 ppm at long TE will have a strong contribution
from necrotic mobile lipids and/or NAA. In summary, small
changes in the normalized intensity of creatine, mobile lipids,
NAA and Glu/Gln/GABA resonances seem to provide the best
discrimination for the problem addressed in this study. It may be
of interest to recall here a previous study on pattern recognition-
based discrimination of glioblastoma and metastasis biopsies
from 1H high-resolution magic angle spinning information
(39), for which these spectral ranges were also relevant to
the discrimination.
The parsimonious nature of the best frequency subset

selections obtained has been shown to ease the visualization
of both the data used to create the classifier and those in the test
set, as illustrated by Figs 2 and 3. This visualization can be an
important element in facilitating the expert interpretation of
the results as implemented in the INTERPRET MDSS.
There exist alternative approaches to the use of SV 1H MRS for

discrimination between glioblastomas and metastases, based on
a multivoxel approach (2,40). These have the advantage of not
compelling the radiologist to decide a priori which is the best
placement location for the sampled volume. They also use
differences in the infiltrative pattern among glioblastomas and
metastases, and the corresponding peritumoral MRS pattern
differences, to discriminate between the two tumor types. More-
over, even though a multivoxel examination can easily detect
the presence of infiltration, as shown by Server et al. (2), the
same study can also detect differences not only in the peritu-
moral edema but also in the NAA/creatine ratio of the long-TE
results in the tumoral core [a higher ratio in metastasis
(1.43� 1.09) than in glioblastoma (0.87� 0.89)], indicating that
differences in the spectral pattern also exist. Although certainly
advantageous, this approach is not free from controversy
(41,42) and, moreover, not all clinical centers are equipped to
perform good-quality multivoxel data acquisition and post-
processing. Therefore, our approach based on SV 1H MRS should
be of practical use, especially in clinical settings in which no
multivoxel analysis is available, or in cases in which a single mass
is located near the skull. Mixing both approaches with a focus on
the peritumoral area may be an interesting goal for future
research, aiming to improve the 80% specificity achieved by
Server et al. (2) by decreasing the number of FPs.

Analysis of the misclassified cases from the test set

All six misclassified cases from the test set (corresponding to the
best solution) were analyzed further. In most, the spectra
showed an unusual pattern with respect to the mean spectrum
of the tumor class.
One metastasis, namely case et2893, was classified as a

glioblastoma. An unusual spectral pattern was found with
metabolite signals in addition to necrotic lipids (Fig. 4), despite
the voxel being correctly located in the solid part of the tumor,
avoiding normal tissue.
The other five misclassified cases were glioblastomas. Three

showed a marked lactate signal in the long-TE spectrum (Fig. 5).
However, there were other reasons for their misclassification: the
three cases showed atypically low levels of Glu/Gln at short TE;
moreover, et2042 showed atypically low values for all the
features selected at long TE, et3010 showed high levels of NAA
at long TE and et2054 showed low levels of total creatine.
A further two cases, et3496 and et3194, showed an unusual

pattern: the short-TE spectrum of case et3496 (Fig. 6, left) was
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judged by the expert spectroscopists of eTUMOUR as having
poor, unexpected signals, possibly because of scalp lipid
contamination and poor phasing. In case et3194 (Fig. 6, right),
spectra at both TEs were more characteristic of a lower grade,
although the histopathological diagnosis was clearly glioblas-
toma, with three consulting pathologists, as well as the

originating pathologist, agreeing on the diagnosis. This may be
a result of heterogeneity within the tumor, which has been
described in refs. (43,44). This is corroborated by the
corresponding imaging, which reveals that the tumor consists
of a cyst with adjacent solid regions. The voxel was correctly
positioned over the solid region of the tumor.
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Figure 4. Single misclassified metastasis: case et2893. Left: voxel correctly placed over hyperintense area. Right: spectrum as a full black line. Mean
metastasis amplitudes are shown as a full gray line. The long-TE part shows an unusually high choline-containing compound peak. At short TE, the
choline-containing compound signal is also the second highest intense peak after necrotic lipids. The high choline signal at long TE will produce an
apparent decrease in other signals on UL2 normalization. It should be noted, however, that, given that the classification procedure is based on the five
selected features, the misclassification of this case seems to be caused mainly by an atypically low level of N-acetylaspartate (NAA) at long TE and high
levels of glutamate/glutamine (Glu/Gln) and g-aminobutyric acid (GABA) at long TE. The locations of the frequencies of the best subset selected from
the long-TE+ short-TE concatenated data (L2.32–L2.29–S2.17–L2.02–L3.01) are represented as broken vertical lines. Long-TE data on the left and
short-TE data on the right of the middle vertical full black line.
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Figure 5. Three misclassified glioblastomas with marked lactate signal at long TE. Representation as in Fig. 4. Left: at long TE, case et2042 shows
overlapping lipid–lactate signals. Middle: also at long TE, case et3010 shows a large inverted lactate doublet overlapping some contribution from lipid
at 1.28 ppm. In this case, the voxel reference image was positioned over a heterogeneous necrotic area. The patient also had large areas of edema
surrounding the solid part of the tumor. Right: for case et2054, the voxel was positioned over post-contrast images showing a predominant contribu-
tion from necrosis and a small percentage of hyperintense viable tissue; hence, the overlapping lipid–lactate peaks and the choline-containing
compounds are the most intense signals in the spectrum.
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Figure 6. Two further misclassified glioblastomas: cases et3496 (left) and et3194 (right), as described in the text. Representation as in Figs 4 and 5.

DIFFERENTIATION OF METASTASES FROM GLIOBLASTOMAS USING SV 1H MRS

NMR Biomed. 2012; 25: 819–828 Copyright © 2011 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/nbm

825



In summary, the analysis of the misclassified cases indicates
that, in order to increase the reliability of the computer-based
classifier in the classification of new cases, the expert should
ensure that the voxel is positioned according to the criteria used
to acquire the cases used to develop the classifier. This analysis
also exemplifies that if the spectrum is artifactual, or suffers from
deficient water suppression or low signal-to-noise ratio, the
classification results are likely to be unreliable.

CONCLUSIONS

In the Introduction section, it was hypothesized that tumoral
processes originating in the brain should be, at least to some
extent, different from those originating elsewhere, and that
these differences should be detected in the SV 1H MRS signal.
The reported experimental results confirm this hypothesis and
show that a robust FS method, coupled with a simple linear-
in-the-parameters SLP model, can differentiate metastases and
glioblastomas to a high degree of accuracy from SV 1H MRS.
The generalizability of these differentiation results is reinforced
by the fact that they were obtained for a retrospective and
multicenter independent test set of cases. The combination of
SV 1H MRS acquired at different TEs is crucial to this classification
success, although long-TE data predominate in the selected
subsets of frequencies.

A differential advantage of the proposed procedure is that it
allows us to obtain a simple linear prediction formula for such
a difficult problem, based on metabolically interpretable
frequencies. Such a prediction formula could be applied directly
by interested clinical centers for performance evaluation, yield-
ing predictions for new cases. This could be accomplished
manually or through the INTERPRET MDSS.
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APPENDIX

Feature selection (FS) with classification us-
ing single-layer perceptrons (SLPs)

The FS problem can be defined as follows: given a set of d
features, let us select a subset that performs best under a certain
evaluation measure. From a computational point of view, the
definition of FS usually leads to a search problem in a space of
2d elements. In this case, two components must be specified:
the feature subsets evaluation measure and the search proce-
dure through the space of feature subsets. If any of these two
components depends on an external model, it must also be
specified.

In the remainder of the Appendix, the constituent elements of
the proposed FS procedure associated with the SLP model are
outlined in some detail.

FS with SLP: the model

SLP artificial neural networks with sigmoidal output units were
used in the reported experiments both for the feature subsets
evaluation measure (within the FS process) and to obtain the test
set accuracy (within the learning and generalization process).
The number of output units was set to the number of classes
of the problem. Therefore, the activation yj of the output unit
j for a d-dimensional input vector x is computed as:A1

yj ¼ g
Xd
i¼1

xi�oji þ bj

 !
(A1)

where oji is the weight that connects the input unit i with the
output unit j, bj is the bias of the output unit j and g(z) is a
sigmoidal function. The SLPs were trained in this study so as to
minimize the sum-of-squares error.

FS with SLP: feature subsets evaluation
measure

The evaluation measure (the relevance) of a feature subset was
computed as the sum of the individual saliencies of its features.
The saliency si of a feature i over O outputs was computed as:

si ¼
XO
j¼1

ô ji

�� ��
where ô ji are the weights of the trained SLP.

This method is based on the hypothesis that irrelevant
features produce smaller variations in the output values than
do relevant features. Hence, a natural way to compare the
relevance of two features is to compare the absolutes values of
the derivatives of the output function with respect to their
respective input units in the trained model.

Formally, the derivative in the trained model of the output
function yj in Equation [A1] with respect to an input feature xi is:

@yj
@xi

¼ g′
Xd
i¼1

xi�ô ji þ bj

 !
�ô ji

and, for every j:
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@yj=@xi1
�� ��
@yj=@xi2
�� �� ¼ ô ji1

�� ��
ô ji2

�� ��

Therefore, the variation (in absolute value) of the output
function is smaller for input features with smaller weights (in
absolute value), and they are the main candidates to be
eliminated in an FS process. In summary, for linear discriminant
functions, such as SLP, the magnitude of the weights
corresponding to a feature is considered as an indicator of its
importance. Similar ideas can be found elsewhere [see, for
example, refs. (29) or (45)].

FS with SLP: search procedure

A backward selection procedure was used as an iterative
selection process guided by the previously defined saliency
measure. Starting from the complete set of available features, a
subset was removed at every step of the algorithm according
to the evaluation measure. As the evaluation measure of a
feature subset is computed as the sum of the saliencies of its
features, the features to be removed at every step are those with
the smallest saliency. The number of features removed at every
step is a parameter of the system that controls the granularity
of the selection and the computational cost.

FS with SLP: the algorithm

The FS algorithm applied in this study consists of three general
phases.

(1) Perform a backward selection procedure starting with the
whole set of features. At every step:

(i) train an SLP with the remaining features;
(ii) compute the saliency of every feature;
(iii) remove 50% of the remaining features.

For every feature subset obtained, estimate its generalization
performance through five-fold cross validation. From all the
results, keep the previous to the best result for the next phase
(to avoid missing a possible generalization maximum in interme-
diate, not analyzed, subsets).

(2) The second phase is similar to the first, except for:

(i) the initial feature subset is that obtained in the first
phase;

(ii) at every step, 20% of the remaining features are removed.

(3) The third phase is similar to the second, except for:

(i) the initial feature subset is that obtained in the second
phase;

(ii) at every step, one feature is removed.
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