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The diagnosis of brain tumours is an extremely sensitive and complex clinical task that must rely upon
information gathered through non-invasive techniques. One such technique is Magnetic Resonance Spec-
troscopy. In this task, radiology experts are likely to benefit from the support of computer-based systems
built around robust classification processes. In this paper, a Discrete Wavelet Transform procedure was
applied to the pre-processing of spectra corresponding to several brain tumour pathologies. This proce-
dure does not alleviate the high dimensionality of the data by itself. For this reason, dimensionality
reduction was subsequently implemented using Moving Window with Variance Analysis for feature
selection or Principal Component Analysis for feature extraction. The combined method yielded very
encouraging results in terms of diagnostic discriminatory binary classification using Bayesian Neural Net-
works. In most cases, the classification accuracy improved on previously reported results.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction proteomics, add to the wealth of information about active meta-
The commodification of healthcare is leading to a rapidly
increasing demand for personalization of patients’ treatments. This
demand is crucial in the clinical management of life-threatening
pathologies such as cancer. Meeting this demand requires abun-
dant resources, but also a sophisticated management of informa-
tion systems. One of the reasons for this is that the amount of
medical data available for analysis and knowledge extraction is
also increasing exponentially. The surge in novel techniques for
the non-invasive measurement and acquisition of medically-
relevant data, in various forms including signals and image, is
behind this situation. The resulting vast amount of information
should be understood as a valuable asset for the Pattern
Recognition and Computational Intelligence communities (Vellido
& Lisboa, 2009).

This paper deals with the problem of diagnostic decision mak-
ing in clinical neuro-oncology. Decision making in neuro-oncology
is an obviously sensitive undertaking. Oncology in general is
becoming a data-intensive field, in which new data acquisition
techniques appear at a staggering pace. Nature recently devoted
the cover of one of its issues (Nature, 2009) to advances in cancer
research. Even within the very narrow context of just this journal
issue and research field, several next-generation sequencing ap-
proaches were introduced with the specific target of monitoring
genetic changes in tumour cells. The increasing reliance on micro-
arrays data in genomics, and on protein chips and tissue arrays in
ll rights reserved.
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bolic pathways that is available from other non-invasive data-
acquisition techniques such as functional Magnetic Resonance
Imaging (fMRI), Positron Emission Tomography (PET), or Magnetic
Resonance Spectroscopy (MRS), just to name a few. Neuro-
oncology is indeed an area in which the use of non-invasive
measurement techniques is almost compulsory, unless invasive ac-
tion becomes unavoidable. This means that plenty of data are often
available to the decision maker. For this reason, neuro-oncology
clinicians should benefit from the use of computer-based Medical
Decision Support System (MDSS) tools.

The tumours of the central nervous system (CNS) represent
around the 2% of the total of cancers diagnosed around the world.
Annually, about 175,000 people are diagnosed with tumours that
affect the CNS (Steward & Kleihues, 2003), out of which 29,000 oc-
cur in Europe (Comprehensive Cancer Monitoring Programme in
Europe1). The incidence ratio of this pathology is of 7 persons per
100,000. The current gold standard for classification of brain tu-
mours is class labeling according to the World Health Organization
(WHO) system for diagnosing brain tumours by histopathological
analysis of a biopsy sample. The WHO system lists dozens of differ-
ent brain tumour pathologies, of an extremely diverse etiology and
prognosis.

This paper offers evidence that CI-based tools can be success-
fully used to assist medical decision making in the diagnosis of a
broad palette of brain tumour pathologies, on the basis of MRS
information. MRS resorts to the use of strong magnetic fields for
the generation of energy exchanges between the external magnetic
1 http://www-dep.iarc.fr/hmp/camon.htm.
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Fig. 1. Example of MRS signal: mean ± standard deviation of the spectra acquired through MRS corresponding to the oligoastrocytomas grade II type of brain tumour. The
chemical shift, measured in ppm as described in Section 2, is expressed in the frequency domain.
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field and the protons that are present in abundance in all living tis-
sue. A radio-frequency machine picks up the energy exchanged,
which is coded using mathematical software. The result is a signal
in the frequency domain that peaks at specific frequencies or fre-
quency bands that are known to correspond to the resonances of
specific chemical and biochemical components of the tissue, as
illustrated in Fig. 1. The wave profile is an indication of the quan-
tities in which the components are present. Therefore, those
substances that are present in big quantities in the tissue will
have higher peaks associated than those present in lower
concentrations.

In this study, we analyze a set of MRS data from the multi-cen-
tre, international INTERPRET database (Julià-Sapé, Acosta, Mier,
Arús, & Watson, 2006). Even being one of the few available dat-
abases of this kind, it consists of only several hundred MR spectra
corresponding to a number of pathologies (listed in Table 1). Each
spectral frequency is taken to be a data variable, taking us to a
difficult data analysis setting that involves a small sample of
high-dimensional cases. Such setting requires the use of data
pre-processing techniques. Often, the most determinant step in
computer-based diagnostic classification analysis is precisely data
pre-processing. Previous studies have resorted to different feature
extraction and selection approaches (see, for instance, (Huang,
Lisboa, & El-Deredy, 2003; Ladroue, Howe, Griffiths, & Tate, 2003;
Leardi, 2000). In this study, we first use the Discrete Wavelet
Transform (DWT) and a filtering process for the decomposition of
the spectra in terms of approximation and detail coefficients, in a
change of data representation that entails minimum loss of rele-
vant information. This decomposition process by itself does not re-
duce the high dimensionality of the data. For this reason, the DWT
Table 1
Different tumour types from the INTERPRET database analyzed in this paper, together
with the corresponding number of cases available.

Tumour class Number of
cases

a2: Astrocytomas, grade II 22
a3: Astrocytomas, grade III 7
ab: Brain abscesses 8
gl: Glioblastomas 86
ly: Lymphomas 10
me: Metastases 38
mm: Meningiomas grade I 58
no: Normal cerebral tissue 22
oa: Oligoastrocytomas grade II 6
od: Oligodendrogliomas grade II 7
pn: Primitive neuroectodermal tumours and

medulloblastomas
9

process is followed by dimensionality reduction using Moving
Window with Variance Analysis (MWVA: Arizmendi, Vellido, &
Romero, 2009) for feature selection or Principal Component Analy-
sis (PCA) for feature extraction. Diagnostic classification is then
accomplished using Artificial Neural Networks (ANN) with Bayes-
ian regularization. The proposed combination of methodologies is
shown to yield high diagnostic classification accuracy for a broad
range of brain tumour pathologies, for some of which this type of
computer-based automated classification has, to the best of the
authors’ knowledge, never previously been reported.
2. Analyzed data

This paper investigates a multi-centre, international database of
single-voxel, proton MRS (SV-1H-MRS) data corresponding to sev-
eral brain tumour pathologies (see Table 1: nine tumour patholo-
gies were analyzed, as well as abscesses and normal brain
tissue). It was created under the framework of the European pro-
ject INTERPRET, an international collaboration of centers from 4
different countries. More specifically, the data were collected by
CDP (Centre Diagnòstic Pedralbes, Barcelona, Spain), IDI (Institut de
Diagnòstic per la Imatge, Barcelona, Spain), SGHMS (St. George’s
Hospital Medical School, London, UK) and UMCN (University Nij-
megen Medical Center, Nijmegen, Netherlands). For detailed infor-
mation on data acquisition and processing, and on database
characteristics, see, for instance, INTERPRET Project: Data Proto-
cols2 and (Julià-Sapé et al., 2006). Class labeling was performed
according to the WHO system for diagnosing brain tumours by his-
topathological analysis of a biopsy sample. In those cases in which
the spectra were obtained from normal volunteers without the
pathology, or corresponded to abscesses or clinically proven metas-
tases, biopsy was not required. For the experiments reported in this
paper, a set of SV-1H-MRS measured at short echo time (SET: 273 pa-
tients) were used. A total of 195 clinically relevant frequency inten-
sity values (measured in parts per million (ppm), an adimensional
unit of relative frequency position in the data vector), were used in
this study.
3. Methodology and results

3.1. Wavelet Transform and its application to MRS data

The extraction of relevant information from in vivo proton MRS
may be a difficult task. The presence of noise, artifacts (Vellido,
2 http://azizu.uab.es/INTERPRET/cdap.html.
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Lisboa, & Vicente, 2006; Vellido et al., 2009) and severe overlaps
among spectral peaks (de Graaf & Bovée, 1990) can contribute to
such difficulty. In current clinical settings, these limitations are
emphasized by the use of SET data acquired at low intensity mag-
netic fields.

The use of wavelet techniques has been proposed to circumvent
these problems (Luca, Mainardi, Pietro, Giuseppe, & Cerutti, 2002).
In (Serrai, Nadal-Desbarats, Poptani, Glickson, & Senhadji, 2000)
and (Serrai, Senhadji, Wang, Akoka, & Stroman, 2003), for instance,
filtering processes based on the continuous Wavelet Transform
(CWT) method were proposed to isolate the lactate signal from
overlapping lipid resonances. An investigation on the use of wave-
let techniques in the specific area of MRS signal-based brain tu-
mour diagnostic analysis, with a similar setting to the one used
in the current study, can be found in (García-Gómez et al., 2009).

The CWT of a signal x(t) with mother wavelet w(�) is defined as:

Wðs; sÞ ¼ 1ffiffiffiffiffi
jsj

p Z 1

�1
xðtÞw t � s

s

� �
dt: ð1Þ

The transformed signal W(s) is a function of the translation
parameter s and the scale s. The signal energy is normalized at
every scale by dividing the wavelet coefficients by 1=

ffiffiffiffiffi
jsj

p
. This en-

sures that the wavelets have the same energy at every scale. The
original signal can be reconstructed with the inverse CWT, defined
by:

xðtÞ ¼ 1
C2

w
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Many real applications, though, need to be defined in a discrete
domain. This is the case of the MRS data analyzed in this study, de-
scribed in a discrete frequency domain. An important development
for the application of wavelet theory in discrete signal processing
was presented in (Mallat, 1999), using Multirresolution Analysis
(MA). The DWT is implemented via an octave filter bank, as a cas-
cade of low-pass L(z) and high-pass H(z) filters, followed by sub-
sampling, as illustrated in Fig. 2. Every pair of filters represents a
Fig. 2. Graphical illustration of a DWT decomposition algorithm with three decompositi
decomposition level. The reconstruction of the original signal is
possible using the synthesis filter bank where the signals are
upsampled and passed through the filters L0(z) and H0(z). The
reconstruction procedure, except for rounding errors, leads to the
restoration of the original signal if no coefficient is altered.

The joint application of Mallat’s model, Donoho’s approach for
signal filtering by thresholding (Donoho, 1995) and the computa-
tion of statistical coefficients for data compression, will allow to re-
duce the noise level and to represent the MRS signal without loss of
relevant information, while keeping the dimensionality of the sys-
tem as low as possible.

3.2. Wavelet Filtering

Frequently, the observed signal x(t) can be assumed to consist of
a real signal s(t) plus additive white noise n(t). Shrinkage filtering
aims to denoise the observed signal x(t) and recover x̂ðtÞ, an esti-
mate of s(t). The suggested model allows this through the use of
WT by computing

y ¼W ðw;jÞðxÞ
z ¼ Dðy; kÞ
x̂ ¼W ðW;jÞ�1 ðzÞ

ð3Þ

where D(�,k) is the filtering operator for threshold k and W(w,j) (�)
and W�1

ðw;jÞ (�) denote, in turn, the WT and its inverse, with wavelet
function w and j decomposition levels; y is the Wavelet Transform
of x(t), z the result of the filtering operator and x̂ the estimated sig-
nal after filtering. The computation of the filtering operator D(�,k)
for the denoising of the available MRS spectra was carried out
according to the following three consecutive steps (Guo, 2000), each
described in its own sub-section.

3.2.1. Threshold calculation
Three alternative choices of threshold were considered in the

experiments, according to the following statistical estimators
developed by Donoho (1995):

� Universal threshold (Sqtwolog): the threshold is chosen to be
k ¼ 2� logðnÞ. where n represents the length of the signal.
on and reconstruction levels, represented by, in turn, analysis and synthesis banks.



Table 2
Results of the different quality measures, as described in the main text, for the
selection of the optimal mother wavelet.

Wavelet MSE SNR NDC Q1

Symlet (2) 0.65 191.43 213 0.91
Symlet (3) 0.70 193.58 216 0.95
Coiflet (1) 0.66 192.75 216 0.50
Coiflet (2) 0.75 193.90 238 0.37
Daubichie (2) 0.62 191.58 213 0.93
Daubichie (3) 0.66 193.97 216 0.98
Biortogonal (1.3) 0.77 228.38 216 0.62
Biortogonal (3.3) 0.64 217.38 221 0.65
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� Threshold applying the principle of Stein’s Unbiased Risk
(Rigrsure): the procedure requires obtaining a new vector
NV (k), rearranging data from minimum to maximum and
taking the square root (Donoho, 1995), where k is the index
in the risk algorithm (Guo et al., 2000).

� Threshold Minimax: the threshold is selected following the
minimax principle, commonly used in statistics to design
estimators (Donoho, 1995).

Minimax, Rigrsure and Sqtwolog, are function names taken from
Matlab� wavelet toolbox.
3.2.2. Threshold scaling
The thresholds are usually weighted by a factor r, a scaling of

the mean absolute deviation based on the wavelet decomposition
level. Three types of weighting were considered:
Fig. 3. MSE corresponding to the signals reconstructed by threshold Rigrsure (a) Mini
� One: the weighting term is scalar (e.g., r = 1).
� Sln: the weighting is computed by averaging the detail coef-

ficients of the first level of decomposition, divided by
0.6745 (Misiti, Misiti, Oppenheim, & Poggi, 2002).

� Mln: as Sln but with the calculation of the detail coefficients
level by level.

3.2.3. Implementation of the threshold
Once the threshold is calculated and scaled, the thresholding

process D(y,k) can be implemented through two alternative meth-
ods: Hard thresholding Dh(y,k) and Soft thresholding Ds(y,k)
according to:

Dhðy; kÞ ¼
y; jyj � k

0; jyj < k

�

Dsðy; kÞ ¼
SgnðyÞðjyj � kÞ; jyj � k

0; jyj < k

�
ð4Þ
3.3. Mother wavelet selection for MRS data

3.3.1. Selection of the mother wavelet orders
The DWT was applied to the original SV-1H-MRS data, taking

the decomposition to the maximum allowable level. Different
mother wavelets and, for each, different orders were used to
implement the DWT: Biorthogonals (orders: 1.1, 1.3, 1.5, 2.2, 2.4,
2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, 6, and 8), Coiflet (orders:
1–5), Daubechies (1–43), and Symlet (1–25). For every mother
wavelet, the absolute values of the decomposition coefficients
max (b) and Sqtwolog (c) for different mother wavelets and weighting schemes.



Fig. 4. Comparison of the MSE obtained with the best three thresholds, for several
mother wavelets, when the Sln weighting scheme is applied.

Table 3
Statistics for the final comparison of the performance of the best mother wavelets
once the Rigrsure-Sln-Hard procedure has been selected.

Wavelet MSE SNR EP PD CR Q2

Coiflet (1) 0.037 190.81 99.86 3.30 1.61 2.51
Coiflet (2) 0.033 192.86 99.86 3.08 1.43 2.78
Symlet (2) 0.056 188.23 99.78 3.78 1.68 1.18
Symlet (3) 0.042 191.94 99.83 3.28 1.63 2.10
Daubichie (2) 0.056 188.23 99.78 3.78 1.68 1.18
Daubichie (3) 0.042 191.94 99.83 3.29 1.63 2.10
Biortogonal (1.3) 0.050 182.73 99.92 4.47 1.68 1.25
Biortogonal (3.3) 0.032 193.62 99.81 3.02 1.55 3.20

Fig. 5. The top display is a graphic illustration of the DIM corresponding to the experimen
coefficients of gl and no. The stripes mark the areas that generate the largest differences
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were sorted in descending order, and the signal of each spectrum
was reconstructed by adding consecutive coefficients. The average
mean square error (MSE) and signal-to-noise ratio (SNR) were cal-
culated over the whole set of patients for each wavelet order r, to-
gether with the number of decomposition coefficients (NDC):

MSE ¼ 1
n

Xn

i¼1

½xðiÞ � x̂ðiÞ�2 ð5Þ

SNR ¼ 10 log
Xn

i¼1

½xðiÞ�2

MSE � n

" #
ð6Þ

where x̂ is the reconstructed signal. Finally the Q1 index for the or-
der r was computed with the mean of the aforementioned statistics,
as follows:

Q1ðrÞ ¼ SNRReðrÞ
MSEReðrÞ þ NDCReðrÞ

ð7Þ

The Re subindex corresponds to a rescaling of the data between 1
and 3. The maximum values of Q1 indicate the orders with the best
reconstruction error using the minimum NDC. The two highest val-
ues of Q1 for each wavelet function are reported in Table 2.

3.3.2. Selection of the final mother wavelet
Once the initial set of wavelet orders was chosen, as shown in

Table 2, the filtering methodology described in Section 3.2 was
used to denoise the spectrum signal. In order to determine the
appropriate scaling, we followed Donoho (1995), who establishes
the MSE as a measure in the design of estimators by threshold,
with the condition that the filtered signal be as smooth as the ori-
ginal one. The MSE was thus calculated for each spectrum of the
reconstructed signal, following the scheme described in 3.2: All
the combinations of threshold estimation (Sqtwolog, Rigrsure and
Minimax), threshold scaling (Sln, One and Mln), and Hard threshold-
ing were implemented. The Hard function was used because it of-
ten yields smaller MSE than the Soft one and, furthermore, our
t gl vs. no. The centre and bottom displays correspond, in turn, to the decomposition
between the coefficients of gl and no, which correspond to the highest DIM values.



Fig. 6. Mean ± standard deviation of O, in descending order, as a function of the
number of variables. The O ratio and the number of variables corresponding to a
total of energy of 11% are highlighted.

Table 4
Number of variables selected by the MWVA procedure (Balanced and unbalanced
procedures in 2nd and 3rd columns, respectively) and features extracted by PCA (4th
column) for the problems shown in the 1st column. G1 (low-grade gliomas) is the
union of tumour types a2, oa and od. Meanwhile, G2 (high-grade malignant tumours)
is the union of tumour types gl and me.These groupings are clinically relevant and
have often been used in previous research (Devos & Lukas, 2004; Minguillón, Tate,
Arús, & Griffiths, 2002; Tate, & Underwood. et al., 2006).

Experiments MWVA.B MWVA.UB PCA

G1 vs G2 9 9 14
G1 vs mm 9 9 13
a2 vs a3 19 13 12
a2 vs G2 21 21 11
a2 vs ly 9 17 13
a2 vs oa 7 19 12
a3 vs pn 29 3 13
G2 vs mm 26 3 12
gl vs a3 3 13 18
gl vs ab 3 7 11
gl vs ly 5 6 11
gl vs me 12 15 15
gl vs no 17 17 17
gl vs pn 11 3 13
me vs ly 3 3 12
me vs mm 23 19 15
me vs no 10 11 14
me vs pn 3 7 10
mm vs ab 5 5 12
od vs a2 7 3 14
Average 10.15 11.15 12.52

Table 5
Mean ± standard deviation of AUC and accuracy values for all balanced classification
experiments.

Experiments MWVA PCA MWVA PCA
AUC AUC ACCURACY ACCURACY

G1 vs G2 0.97 ± 0.04 0.91 ± 0.07 93.19 ± 5.04 88.74 ± 2.52
G1 vs mm 0.98 ± 0.01 0.97 ± 0.03 95.00 ± 8.14 92.25 ± 3.12
a2 vs a3 0.90 ± 0.16 0.95 ± 0.05 68.00 ± 17.9 68.00 ± 17.90
a2 vs G2 0.98 ± 0.02 0.95 ± 0.06 96.70 ± 3.47 88.53 ± 7.38
a2 vs ly 1.00 ± 0.00 0.95 ± 0.04 92.00 ± 10.9 84.00 ± 21.90
a2 vs oa 1.00 ± 0.00 1.00 ± 0.00 100.00 ± 0.00 74.00 ± 13.40
a3 vs pn 1.00 ± 0.00 0.70 ± 0.00 93.33 ± 14.9 53.33 ± 29.80
G2 vs mm 0.98 ± 0.01 0.96 ± 0.00 96.73 ± 2.28 92.12 ± 4.95
gl vs a3 0.99 ± 0.01 0.80 ± 0.10 94.91 ± 5.25 80.66 ± 8.02
gl vs ab 1.00 ± 0.00 0.80 ± 0.12 97.50 ± 3.42 84.66 ± 7.72
gl vs ly 1.00 ± 0.00 0.87 ± 0.08 90.00 ± 7.12 85.00 ± 8.38
gl vs me 0.90 ± 0.05 0.67 ± 0.12 71.23 ± 8.66 50 ± 16.66
gl vs no 1.00 ± 0.00 1.00 ± 0.00 100.00 ± 0.00 93.33 ± 12.00
gl vs pn 0.98 ± 0.02 0.93 ± 0.04 93.75 ± 6.25 82.50 ± 15.60
me vs ly 0.95 ± 0.06 0.90 ± 0.06 90.00 ± 5.59 72.50 ± 13.70
me vs mm 0.99 ± 0.01 0.99 ± 0.01 95.00 ± 6.84 92.50 ± 5.22
me vs no 1.00 ± 0.00 1.00 ± 0.00 100.00 ± 0.00 96.00 ± 5.47
me vs pn 1.00 ± 0.00 1.00 ± 0.00 100.00 ± 0.00 85.00 ± 16.30
mm vs ab 1.00 ± 0.00 1.00 ± 0.00 100.00 ± 0.00 78.18 ± 15.21
od vs a2 1.00 ± 0.00 1.00 ± 0.00 84.00 ± 16.73 64.00 ± 32.86
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results indicated that Soft thresholding could result in a decrease
in the height of the resonance frequencies with a high degree of
skewness, decreasing the importance of certain metabolites that
are useful for classification. The results displayed in Fig. 3 show
that, for all wavelets, the lower MSE is achieved when applying
the Sln weighting scheme, regardless of the threshold calculation.
The MSE of the three types of thresholds when Sln scaling is ap-
plied can be compared in Fig. 4, which shows that the Rigrsure-
Sln-Hard procedure yields the best results among all combinations.

In order to determine the final wavelet, the average values of
several statistics were computed for the Rigsure-Sln-Hard combina-
tion. They include: SNR, Energy Preserved (EP), Percentage of Dis-
tortion (PD) and Compression Ratio (CR) defined as:

EP ¼
Pn

i¼1½x̂ðiÞ�
2Pn

i¼1½xðiÞ�
2 � 100 ð8Þ

PD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1½xðiÞ � x̂ðiÞ�2Pn

i¼1½xðiÞ�
2

s
� 100 ð9Þ

CR ¼ L0=Lc ð10Þ

where Lo is the cardinality of the decomposition coefficients of the
original signal, and Lc the cardinality of decomposition coefficients
that are different from zero. This set of statistics has been used to
choose the optimal wavelet in previous related works concerning
ECG signal filtering (Olarte & Sierra, 2007) and classification tasks
(Rivas, Burgos, & García-Prada, 2009), among others. For a further
objective criterion in choosing the optimal wavelet function, the
Q2 index was computed:

Q2ðrÞ ¼ SNRReðrÞ þ EPReðrÞ þ CRReðrÞ
MSEReðrÞ þ PDReðrÞ

: ð11Þ

Again, the Re subindex corresponds to a rescaling of the data be-
tween 1 and 3. The Q2 values for the wavelet functions of Table 2
are shown in Table 3. The maximum value for this index was ob-
tained for the Biortogonal (3.3) wavelet. Therefore, this wavelet
was chosen for further experimentation.

3.4. Dimensionality reduction and classification

After processing the MR spectra with the Biortogonal (3.3)
wavelet and filtering them with the combination Rigsure-Sln-Hard,
the next necessary step of the analysis entails using the obtained
decomposition coefficients as input in a dimensionality reduction
process, using MWVA or PCA. This should help the subsequent
classification process by removing redundant and unnecessary
information from the input.
3.4.1. Dimensionality reduction with MWVA and PCA
The MWVA is a feature selection filter method proposed in

Arizmendi, et al. (2009), which consists of the combination of the
Moving Window technique in conjunction with the calculation of
a standard ratio X, defined as the quotient between the be-
tween-groups variance (BGV) and the within-groups variance
(WGV) for a particular width w of the window:

WGVðw; iÞ ¼
Xn1

a¼1

kc1a;w;i � lc1w;ik2

n1
ffiffiffiffi
w
p þ

Xn2

a¼1

kc2a;w;i � lc2w;ik2

n2
ffiffiffiffi
w
p ð12Þ

BGVðw; iÞ ¼ klc1w;i � lc2w;ik2ffiffiffiffi
w
p ð13Þ

Xðw; iÞ ¼ BGVðw; iÞ
WGVðw; iÞ : ð14Þ



Table 6
Mean ± standard deviation of AUC and (100-BER) values for all unbalanced classifi-
cation experiments.

Experiments MWVA.AUC PCA.AUC MWVA 100-BER PCA 100-BER

G1 VS G2 0.97 ± 0.03 0.93 ± 0.06 90.22 ± 5.10 84.69 ± 10.76
G1 vs mm 0.98 ± 0.02 0.96 ± 0.00 96.23 ± 3.67 92.12 ± 4.52
a2 vs a3 0.89 ± 0.11 1.00 ± 0.00 55.00 ± 10.55 66.67 ± 24.90
a2 vs G2 0.99 ± 0.00 0.90 ± 0.00 94.05 ± 1.18 91.58 ± 28.56
a2 vs ly 1.00 ± 0.00 1.00 ± 0.00 86.67 ± 21.26 95.00 ± 21.38
a2 vs oa 1.00 ± 0.00 0.95 ± 0.10 100.00 ± 15.42 70.84 ± 6.84
a3 vs pn 1.00 ± 0.00 0.70 ± 0.00 85.00 ± 23.73 50.00 ± 9.77
G2 vs mm 0.99 ± 0.00 0.98 ± 0.00 93.46 ± 22.36 93.06 ± 0.00
gl vs a3 0.97 ± 0.00 0.93 ± 0.00 90.05 ± 0.00 83.01 ± 1.82
gl vs ab 0.99 ± 0.00 0.82 ± 0.14 93.62 ± 13.74 65.86 ± 21.54
gl vs ly 0.91 ± 0.00 0.88 ± 0.00 70.15 ± 18.18 75.24 ± 6.89
gl vs me 0.90 ± 0.00 0.70 ± 0.10 77.24 ± 7.18 56.96 ± 6.33
gl vs no 1.00 ± 0.00 1.00 ± 0.00 100.00 ± 0.00 98.67 ± 20.62
gl vs pn 0.97 ± 0.00 0.97 ± 0.00 87.86 ± 5.46 76.62 ± 5.69
me vs ly 0.96 ± 0.00 0.92 ± 0.00 85.24 ± 0.00 76.19 ± 4.37
me vs mm 0.98 ± 0.00 0.98 ± 0.00 95.23 ± 3.36 93.89 ± 5.13
me vs no 1.00 ± 0.00 1.00 ± 0.00 100.00 ± 12.24 95.24 ± 26.14
me vs pn 1.00 ± 0.00 0.98 ± 0.00 100.00 ± 0.00 87.39 ± 14.52
mm vs ab 1.00 ± 0.00 1.00 ± 0.00 99.00 ± 2.23 90.78 ± 7.47
od vs a2 1.00 ± 0.00 0.85 ± 0.13 81.67 ± 20.75 60.84 ± 10.86
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For every group, c1a,w,i and c2a,w,i are w-dimensional vectors
that represent the window of width w of the element a that starts
at position i. Here, the elements in the two groups (tumour types in
this study) are represented in numerical matrices X1 (of dimension
n1 � n) and X2 (of dimension n2 � n), where n1 and n2 are the
Fig. 7. Boxplot of the accuracy and 100-BER values corresponding to the unbalanced an
(bottom line), median (line in the middle), and upper quartile (top line) values. The whisk
the data. Classification problems with atypical results are left outside the limits of the b
number of elements in groups 1 and 2, respectively, and n is the in-
put dimension. Therefore, c1a,w,i and c2a,w,i are the w-dimensional
vectors in row a starting at column i of X1 and X2, respectively.
Vectors lc1w,i and lc2w,i are the mean w-dimensional vectors of
c1a,w,i and c2a,w,i over a (the centroids of every group for a fixed
width and starting point).

In order to determine the final width of the window, the values
of X(w, t) were computed for increasing values of w (from 1 to n)
and i (from 1 to n � w + 1) and stored in a triangular matrix with
zeros on its upper diagonal called Dissimilarity Index Matrix
(DIM). As an example, Fig. 5 displays a graphic illustration of the
DIM matrix for the specific experiment gl vs. no (see tumour labels
in Table 1), where good values for the width of the window can be
visually inspected by looking for large values of X(w, t). In our
study, and following the procedure described in (Arizmendi, et al.
2009), the value of the optimal width w was found to be 1. There-
fore, every window corresponds to a single variable.

The initial feature selection was carried out by obtaining a rank-
ing (in descending order) of the values of X. The variables were di-
vided in groups corresponding to the set of variables whose energy
gradually provided 1% of the total energy. Fig. 6 provides the aver-
age of the X ratio for the 20 tumour classification experiments
investigated. The value of X can be seen to decrease exponentially
as new variables are added, starting its linear trend with the vari-
able 26 (11% of the total energy). Therefore, variables added from
this point are not likely to contribute significantly to the classifica-
tion task.
d balanced experiments of Tables 5 and 6. Each box represents the lower quartile
ers are lines extending from each end of the box to represent the extent of the rest of
oxplots.
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In the feature extraction experiments with PCA, principal com-
ponents were added one at a time until the differential cumulative
variance between two consecutive components was less than 1%.

A number of dimensionality reduction experiments were carried
out and their results are summarized in Table 4. The number of
selected (MWVA) and extracted (PCA) features varies widely
depending on the problem at hand, as it would be reasonable to ex-
pect. These numbers vary from as little as three selected (for gl vs. a3,
gl vs. ab, me vs. ly, me vs. pn) and extracted (for G2 vs. mm, a3 vs. pn,
gl vs. pn, me vs. ly, od vs. a2) features, to as much as 29 selected fea-
tures (a3 vs.c pn, which is a particularly complicated classification
problem). These mostly parsimonious data representations yielded
by the dimensionality reduction techniques should also ease the
biomedical interpretation of the associated classification results.
3.4.2. Classification
Classification problems in this context are binary in nature (one

tumour class against another, as multiple-class approaches are
hindered by the limited number of MRS cases available; also, as re-
marked in (Luts et al., 2007), in medical practice, doctors fre-
quently face situations of doubt between two different diagnosis,
(i.e. types of tumour).

Feed-forward ANNs were used in the classification experiments
starting from the features selected and extracted through dimen-
sionality reduction, as reported in Table 4. Different network archi-
tectures between 5 and 40 units in the only hidden layer were
employed. Given that all classifications are binary, one unit in
the output layer does suffice. In order to avoid data overfitting,
the networks were trained with Bayesian regularization (MacKay,
1992) as part of a back-propagation process. The adaptive weights
Fig. 8. Boxplots, as in Fig. 7, of the AUC values corresponding to
and biases were updated according to the Levenberg-Marquardt
algorithm (Foresee & Hagan, 1997).

One run of a five-fold cross-validation was performed for each
network, allowing a maximum of 500 epochs.

To address the issue of class imbalance (the number of cases
available from each tumour type is always small, but widely vary-
ing, as reported in Table 1), the original datasets were re-sampled,
by over-sampling the minority class and under-sampling the
majority class (Japkowicz, 2000).

Tables 5 and 6 show the detailed best results for all the ana-
lyzed problems. They include several quality indicators, including
the balanced error rate (BER), the area under the ROC curve
(AUC), and the accuracy for the balanced (B) and unbalanced
(UB) groups.
3.4.3. Comparison with other studies using the INTERPRET database
The binary classification of low grade gliomas (G1) vs. meningi-

omas (mm), glioblastomas (gl) vs metastases (me), and me vs. mm
was addressed in (García-Gómez et al., 2009). This study used a
variation of the INTERPRET SET database analyzed here, which
makes the comparison especially relevant. The authors reported
a BER result of 0.91 for G1 vs. mm, with cross-validation, feature
extraction with Independent Component Analysis (ICA) and a
Least-Squares Support Vector Machine (LS-SVM) classifier (to be
compared with a BER of 0.96 reported in Table 6); a BER result of
0.60 was reported for gl vs. me, with spectral Peak Integration
(PI) and a Linear Discriminant Analysis (LDA) classifier (to be com-
pared with a BER of 0.77 reported in Table 6); finally, a BER result
of 0.95 was reported for me vs. mm, with PCA and a MLP classifier
(identical to our result reported in Table 6).
the unbalanced and balanced experiments of Tables 5 and 6.
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Some similar diagnostic classification problems were explored
in (Lukas, 2004). They involved data from the same general INTER-
PRET database, but acquired at long echo time (LET). Experiments
were reported for gl, me, mm, and low-grade astrocytomas (a2).
More specifically, the following binary problems were considered:
gl vs. mm, gl vs. me, gl vs. a2, mm vs. me, mm vs. a2, and me vs. a2.
Data were classified using linear and nonlinear methods, namely,
LDA, SVM and LS-SVM. Experiments with and without dimension-
ality reduction (with PI and heuristic spectral sub-regions selec-
tion) were performed. Results were qualified using the AUC
measure. Only two of their experiments correspond to our setting:
The best reported mean AUC for the gl vs. me problem is 0.64 with
PI and LS-SVM (although not directly comparable due to the use of
different echo times, our corresponding result is 0.90 with MWVA,
as reported in Table 6). For mm vs. me, the best mean AUC in (Lu-
kas, 2004) was 0.97 for LS-SVM without dimensionality reduction
(corresponding to our 0.99 with both MWVA and PCA, in Table 6).

The work by Luts and colleagues (Luts et al. 2007) goes beyond
our approach as they combined imaging and spectroscopy informa-
tion, also from the same database, by employing magnetic resonance
spectroscopic imaging (MRSI). All spectra were pre-processed
through PI. Unfortunately, results from this study cannot be directly
compared with ours, as multiple voxels from a very limited number
of patients are used, instead of single voxels from multiple patients.

The difficult problem of discriminating between different
grades of astrocytomas a2 and a3 is addressed in (Ladroue,
2003). Here, PCA was used for dimensionality reduction and LDA,
LS-SVM and K-Nearest Neighbor (K-NN) were used as classifiers.
The author reports a mean test accuracy of just under 70% for 20
PCs and LS-SVM. This can be compared with our result of around
68% (although with a very high standard deviation of 17.9%), in Ta-
ble 5. Another classically difficult problem: me vs. gl is also dealt
with in (Ladroue, 2003). A maximum accuracy of only 55% is re-
ported. This compares to our result of 71.23%, using MWVA for
dimensionality reduction.

A rather easier classification problem, that of discriminating be-
tween low-grade gliomas (G1) and high-grade malignant tumours
(G2), has been far more commonly analyzed in the literature. Using
PCA followed by LDA to distinguish between G2 and mm, a mean
AUC of 0.94, with 6 principal components was reported in (Devos,
2005); this must be compared with our results of 0.97, for both bal-
anced and unbalanced experiments with MWVA, reported in Ta-
bles 5 and 6. The same method was used in (Devos, 2005) to
distinguish between G2 and a2, obtaining a mean AUC of 0.92, also
using 6 principal components; this must be compared with our re-
sults of 0.98 and 0.99 for balanced and unbalanced experiments
with MWVA, respectively reported in Tables 5 and 6.

All in all, these comparisons with previous results reported in
similarly-oriented literature hint at the possibility that the differ-
ential advantage provided by our proposed method lies mainly in
the wavelet-based spectra pre-processing stage of data analysis
as well as in the use of MWVA for dimensionality reduction.
3.4.4. Discussion
Figs. 7 and 8 provide a telling summary of the results for all

problems. All indicators consistently show that dimensionality
Table 7
p-Values corresponding to the Wilcoxon test of the comparison between classification
results obtained with the feature selection provided by MWVA and the feature
extraction provided by PCA.

PCA MWVA P-values

PCA.B.AUC MWVA.B.AUC 0.005
PCA.B.ACCURACY MWVA.B.ACCURACY 0.001
PCA.UB.AUC MWVA.UB.AUC 0.004
PCA.B.BER MWVA.UB.BER 0.007
reduction using MWVA tends to achieve better and more homoge-
neous results than PCA throughout the experiments. This is an
encouraging outcome, given that feature selection provides solu-
tions that are easier to interpret clinically than those obtained with
feature extraction (González-Navarro et al., 2010). A Wilcoxon test
was carried out to statistically compare the classification results
corresponding to MWVA and PCA, looking for evidence of signifi-
cant differences between the results obtained through both meth-
ods. Results of this test are reported in Table 7 and sustain the
previous comments.

The few atypically poor results highlighted in these figures alert
us of the special difficulty of some classification experiments. In
some cases, such difficulty is well reported in the existing litera-
ture, as for astrocytomas of similar grade: a2 vs. a3 (see for in-
stance, (Ladroue, 2003), or high-grade malignant tumours: gl vs.
me (see Romero, Vellido, Julià-Sapé, & Arús, 2009). In a few other
cases (gl vs. ly, a3 vs. pn), such difficulty has not been reported.

Finally, the results obtained with balanced datasets are consis-
tently better than those obtained with the original unbalanced
datasets, although not in a statistically significant way, as evalu-
ated through a Wilcoxon test. This holds both for feature selection
with MWVA and extraction with PCA. These results can only justify
to a certain extent the use of the class-balancing strategy.

4. Conclusion

The diagnosis of neuro-oncology pathologies is a critical task for
medical experts in hospital environments. Most decisions in this
context bound to be made on the basis of a combination of doctors’
experience and background knowledge, and information gathered
through non-invasive measurement techniques.

Human brain tumours are a very diverse family of pathologies,
and require an accurate diagnosis of both type and grade of malig-
nity, in order to select those tailored therapies that could maximize
the chances of survival. The availability of tumour information in
the form of signal and image makes the use of computer-based
diagnostic assistance advisable.

A sensitive stage in the computer-based analysis of tumour
information is that of data pre-processing. In this paper, we have
outlined and evaluated a method in which MRS signal information
is first processed using DWT techniques, a data transformation that
is followed by feature selection or extraction for dimensionality
reduction. All this is a preliminary step for diagnostic-oriented bin-
ary classification using Bayesian ANNs.

The comparison of the results obtained in our experiments with
those previously reported in the recent scientific literature provide
evidence of the adequacy of the proposed data pre-processing ap-
proach. To the best of the authors’ knowledge, some of the classi-
fication experiments in which encouraging results have been
obtained had never previously been investigated as a problem of
binary classification. Such experiments should therefore provide
medical experts in neuro-oncology with some preliminary knowl-
edge related to the discriminability of the concerned tumour
pathologies on the basis of MRS information.

In this study, spectroscopy data acquired at short echo time
were analyzed. Future work should involve similar experiments
with data acquired at long echo times or even with data obtained
by combination of different acquisition echo times.
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