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Abstract— The accurate diagnosis of human brain tumours is 

a sensitive medical task, for which radiology experts often must 

rely on indirect signal measurements. There is thus a need for 

developing computer-based decision support tools to assist 

doctors in their diagnostic task. The experiments in this brief 

paper address such problem in the form of binary 

classification, for which the pre-processing of the Magnetic 

Resonance Spectroscopy (MRS) signal is a most relevant data 

analysis stage. A combination of the Discrete Wavelet 

Transform (DWT) for signal decomposition and an energy 

criterion for signal reconstruction is used to pre-process the 

MRS data prior to the feature selection and classification with 

Bayesian Neural Networks.  
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I.  INTRODUCTION  

Diagnosis in neuro-oncology often resorts to 
measurements acquired through non-invasive exploration 
techniques of imaging and spectroscopy. Radiology experts, 
therefore, must rely on their clinical experience, but also on 
indirect information that requires the use of computational 
methods for signal and image processing. These often take 
the form of computer-based medical decision support 
systems (MDSS). 

The current gold standard for diagnostic classification of 
brain tumours is class labeling according to the World Health 
Organization (WHO) system, based on the histopathological 
analysis of biopsy samples. Biopsies require an invasive 
procedure that carries a risk of mortality of 0.2-0.8%, and an 
estimate of morbidity in the range 2.4-3.5% [1, 2]. 
Additionally, only about a 91% of cases are truly identifiable 
through this test, which means that up to 9% of patients 
remain undiagnosed [3]. This reinforces the importance of 
developing at least semi-automated MDSS tools based on 
non-invasively acquired information. 

This study addresses the problem of human brain 
tumours diagnosis on the basis of biological signal data 
obtained by MRS. In vivo MRS enables the quantification of 
metabolite concentrations non-invasively, thereby avoiding 
serious risks of brain damage. We analyze a set of MRS data 
from the multi-centre, international INTERPRET database 
[4]. Previous studies have shown that the pre-processing of 
MRS signal is a very relevant data analysis step, strongly 
influencing the classification results. Here, a DWT for the 
decomposition of the spectra in terms of approximation and 

detail coefficients is combined with an energy criterion for 
signal reconstruction. This is followed by dimensionality 
reduction (DR) through feature selection using Moving 
Window and Variance Analysis (MWVA) or feature 
extraction using Principal Component Analysis (PCA), 
prior to classification using Bayesian Artificial Neural 
Networks (ANN).  

II. MATERIALS 

This paper investigates a multi-centre, international 

database of single-voxel, proton MRS (SV-1H-MRS) 

corresponding to several brain tumour pathologies (Table 1: 

nine tumour pathologies, plus abscesses and normal brain 

tissue). It was created under the framework of the European 

project INTERPRET [4]: Data were collected by CDP 

(Centre Diagnòstic Pedralbes, Barcelona, Spain), IDI 

(Institut de Diagnòstic per la Imatge, Barcelona, Spain), 

SGHMS (St. George's Hospital Medical School, London, 

UK) and UMCN (University Nijmegen Medical Center, 

Nijmegen, Netherlands). For the experiments reported in 

this paper, a set of SV-1H-MRS measured at short echo time 

(SET: 273 patients) were analyzed, comprising a total of 

512  frequency intensity values (measured in parts per 

million (ppm), an adimensional unit of relative frequency 

position in the data vector.) 

 
TABLE I: TUMOUR TYPES IN THE INTERPRET DATABASE 

 

 

Tumour  Class Number of Cases 

a2: Astrocytomas, grade II 22 

a3: Astrocytomas, grade III 7 

ab: Brain abscesses 8 

gl: Glioblastomas 86 

ly: Lymphomas 10 

me: Metastases 38 

mm: Meningiomas grade I 58 

no: Normal cerebral tissue 22 

oa: Oligoastrocytomas grade II 6 

od: Oligodendrogliomas grade II 7 

pn: Primitive neuroectodermal tumours and 

medulloblastomas 

9 



 

III. METHODS 

    The Continuous Wavelet Transform (CWT) of a signal 

x(t) and the mother wavelet  is defined as: 

 

 
 

The transformed signal W(  is a function of the 

translation parameter  and the scale s. The signal energy is 

normalized at every scale by dividing the wavelet 

coefficients by . The original signal can be 

reconstructed with the inverse CWT, defined by: 

  

 
                                                                                                                                  

 
    The spectral data analyzed in this paper are discrete in 

nature and they cannot be processed in a practical way using 

CWT. Instead, DWT [5] is implemented via an octave filter 

bank, as a cascade of low-pass and high-pass filters, 

followed by sub-sampling. Every pair of filters represents a 

decomposition level. The reconstruction of the original 

signal is possible using the synthesis filter bank where the 

signals are upsampled and passed through the filters of 

reconstruction. The reconstruction procedure, except for 

rounding errors, leads to the restoration of the original signal 

if no coefficient is altered. 

 

 The DWT processing requires the selection of an 

adequate mother wavelet function. In this study, Daubichie 

and Symlet mother wavelets were investigated. An energy 

criterion was subsequently employed to decide on the 

number of wavelet coefficients that should be retained for 

further analysis.  

 

Dimensionality reduction was implemented according to 

two strategies: feature selection using MWVA and feature 

extraction using PCA (of common use in radiology data 

analysis). MWVA is a feature selection filter method first 

proposed in [6]. It is based on a combination of the moving 

window technique and the analysis of between/within group 

variance. It should be able to identify those spectral 

frequencies, or intervals of frequencies, with greater ability 

to discriminate between tumour types.  

 

Feed-forward Bayesian ANNs with one hidden layer were 

used for classification. The networks were trained with 

Bayesian regularization to avoid data overfitting [7] and 

back-propagation, updating the weights and bias according 

to the Levenberg-Marquardt algorithm [8]. One run of a 5-

fold cross-validation was performed for each network. 

 

IV. RESULTS 

A. Mother Wavelet Selection  

 

    The first task in DWT implementation is the selection of 

the most adequate mother wavelet. Symlet and Daubichie 

mother wavelets over a wide range of orders were 

investigated. 

 

    The wavelet decomposition yields some redundant 

information, and the most significant information is to be 

found in the lower sub-band [9], the Energy Packing 

Efficiency (EPE) criterion was used to eliminate this 

redundancy without significant distortion in the 

reconstructed signal. The EPE is a ratio of the total 

preserved energy of a certain subband, after thresholding, 

with respect to the total energy [10]. Histograms of the 

distribution of the magnitude of the calculated coefficients 

were first computed and the magnitude of the coefficients 

was then ranked in ascending order. The histogram and the 

accumulated energy percentage of all the spectra was 

calculated, observing, for all mother wavelets, that 

approximately 90% of the energy concentrated in a small 

number of coefficients. 

    Different quality indexes were used to help determining 

the optimal wavelet for our study. The first is 

the standardized energy, obtained by retaining those 

coefficients yielding a total energy percentage closest to 

90%, divided by the number of coefficients. Fig. 1 shows 

the mean of the standardized energy for Daubichie and 

Symlet mother wavelets over a range of orders. The second 

index is the average mean square error (MSE) resulting 

from the difference between the reconstructed and the 

original signals. The spectra were reconstructed by retaining 

the coefficients of decomposition that make up 99% of total 

accumulated energy. Fig. 2 shows the MSE and the number 

of coefficients for Daubichie and Symlet mother wavelets.  

    In Fig. 1, the highest standarized energy value (10.1) is 

obtained with a Daubichie of order 2, using 12 

decomposition coefficients. The best result for Symlet is a 

lower 3.9, obtained for wavelets of order 1, using 23 

decomposition coefficients. The decomposition based on 

Daubichie wavelets is therefore preferred. 

    Note also that the differential in MSE between the 

Daubichie of order 1 and the Daubichie of order 45 is a 

meager 1.6, while the difference in the number of 

coefficients is of almost 50: too high an increase of system 

dimensionality for such small error improvement. It could 

therefore be argued that the selection of a Daubichie mother 

wavelet of order 2 is a good compromise for retaining a high 
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Figure 1. The top row displays correspond to the standarized energy and 

number of coefficients when Daubichie is computed, while the bottom row 

correspond to the standarized energy and number of coefficients when 

Symlets are computed. 

Figure 2. The top row displays correspond to the MSE and number of 

coefficients when Daubichie is computed, while the second bottom 

correspond to the MSE and number of coefficients when Symlets are 

computed. 

standarized energy using the minimum number of 

coefficients for the reconstruction of the spectra, while not 

suffering an excessive increase of MSE. 

B. Dimensionality Reduction and Classification 

    Once the spectra were decomposed using Daubichie 

wavelets of order 2, feature selection and extraction were 

implemented using, in turn, MWVA and PCA, starting from 

the obtained decomposition coefficients. For PCA, principal 

components were added one at a time until the differential 

accumulative variance between components was less than 

1%, this way obtaining a 94.833% of average of variance 

explained.  

    An average of 10.2 and 10.7 features were respectively 

obtained for MWVA and PCA. This is a drastic reduction of 

dimensionality that should ease the classification task, as 

well as improve the interpretability of the results. 

    Starting from the selected and extracted features, 

Bayesian ANNs with one hidden layer consisting of 

between 5 and 40 hidden units were used in the 

classification experiments. The networks were trained as 

described in the methods section. To address the issue of 

class imbalance (the number of cases available from each 

tumour type is always small, but widely varying, as reported 

in Table 1), the original datasets were re-sampled, by over-

sampling the minority class and under-sampling the 

majority class [11]. 

    Table II summarizes, the best results of the area under the 

ROC curve (AUC) and the accuracy for all experiments.  G1 

(low grade gliomas) is the union of a2, oa and od. G2 (high-

grade malignant tumours) is the union of gl and me. With 

only a few exceptions, the MWVA feature selection strategy 

yielded better accuracy results than PCA-based feature 

extraction. Some experiments (those involving normal 

tissue, as well as mm vs. ab) achieved perfect accuracy. 

Accuracy fell below 90% in only four problems, all of them 

well-know for their difficulty: the discrimination between 

astrocytomas of similar grade (a2 vs. a3, see, for instance 

[12]); the discrimination between high-grade malignant 

tumours (gl vs. me, see [13], and two problems involving 

the differentiation of lymphomas from high-grade 

tumours(gl vs. ly and me vs. ly), which have received little 

attention in the neuro-oncology literature. 

V. CONCLUSIONS 

 

    Data pre-processing is known to be of great importance in 

problems of tumour type classification based on MRS 

signal. A combination of the Discrete Wavelet Transform 

(DWT) for signal decomposition and an energy criterion for 

signal reconstruction was used in this brief paper as a 

previous step to data dimensionality reduction and 



 

classification using Bayesian ANNs. The diagnostic tumour 

type differentiation yielded very encouraging results using 

this data analysis methodology. The accurate discrimination 

of pathologies that have seldom been analyzed in a similar 

setting should be of special interest to radiology experts. 

 
TABLE II.  MEAN ± STANDARD DEVIATION OF AUC AND 

ACCURACY VALUES FOR ALL THE EXPERIMENTS 
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 MWVA PCA MWVA PCA 

Experiments AUC ACCURACY 

G1 vs G2     0.95±0.05 0.95±0.05 91.73±4.86 89.544±5.41 

G1 vs mm     0.99±0.02 0.96±0.04 94.75±5.55 89.75±7.15 

a2 vs a3     0.92±0.11 0.96±0.04 88.00±10.95 64.00±21.90 

a2 vs G2     0.99±0.02 0.96±0.05 96.73±3.36 91.80±0.18 

a2 vs ly     1.00±0.00 1.00±0.00 96.00±8.94 88.66±10.43 

a2 vs oa     1.00±0.00 1.00±0.00 96.00±8.94 66.00±13.41 

a3 vs pn     1.00±0.00 0.80±0.00 93.33±14.90 73.33±27.88 

G2 vs mm     0.97±0.02 0.97±0.02 92.71±4.39 94.10±2.66 

gl vs a3     0.91±0.12 0.98±0.01 93.50±4.71 91.08±5.50 

gl vs ab     0.95±0.08 0.88±0.06 94.91±2.84 84.91±10.37 

gl vs ly     0.94±0.06 0.94±0.05 87.50±4.41 90.00±12.18 

gl vs me     0.75±0.11 0.66±0.12 76.04±8.72 55.90±8.56 

gl vs no     1.00±0.00 1.00±0.00 100.00±0.00 96.66±3.04 

gl vs pn     0.98±0.03 0.94±0.06 91.25±7.12 87.50±7.65 

me vs ly     0.96±0.03 0.93±0.06 87.50±8.83 75.00±12.5 

me vs mm     0.99±0.01 0.94±0.04 93.75±0.00 87.50±6.25 

me vs no     1.00±0.00 1.00±0.00 100.00±0.00 96.00±8.94 

me vs pn     1.00±0.00 1.00±0.00 95.00±6.84 87.50±8.83 

mm vs ab     1.00±0.00 1.00±0.00 100.00±0.00 94.54±8.13 

od vs a2     1.00±0.00 0.95±0.06 92.00±10.95 60.00±28.28 


