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Abstract— A key question in medical decision support is how
best to visualise a patient database, with especial reference
to cohort labelling, whether this is an indicator function for
classification or a cluster index. We propose the use of the
kernel trick to visualise complete patient databases, in low-
dimensional projections, with class labelling, given a non-linear
classifier of choice. The results show that this method is useful
both to see how individual patient cases relate to each other
with reference to the classification boundary, and also to obtain
a visual indication of the separation that can be obtained with
difference choices of kernel functions.

I. INTRODUCTION

A central task in medical decision support is to provide
statistical inferences of class membership, if at all possible
supplemented by a direct visualisation of the patient data
base with specific reference to the chosen classifier. For linear
classifiers, this can be achieved with linear projective meth-
ods [16]. However, with non-linear classifiers e.g. kernel-
based Support Vector Machines (SVM), it is non-trivial to
obtain a linearly-separable visualisation of the data. Ideally,
this will use the kernel trick to effect the linear separation.
This has the advantage, first, of presenting the totality of the
individual cases recorded in the data base in a single low-
dimensional projection that relates directly to a classification
map. Secondly, the degree of separation that is apparent in
the map will provide useful guidance in the choice of kernels.

Low-dimensional visualisation methods generally fall into
three categories. Purely linear methods frequently utilise
singular values spanning the largest variance in the data
or preserving pairwise inner products, such as the widely
used Principal Component Analysis-based bi-plots [11] or
classical Multi-Dimensional Scaling [22]. A second approach
is to relax the linearity restriction and to define a non-linear
projection to optimise the correspondence between distances
in the original input space and distances in the projected
space, such as in generalised (metric and non-metric) Multi-
Dimensional Scaling [6] (including for example Sammon’s
mapping [18] and Kruskal’s approach [14]) or Isomap [21].
A third approach generates topographic maps by projecting
data onto a curved surface weaving through the data and
cutting through noise, such as in Self-Organizing Maps [13]
or in Generative Topographic Mapping [4].

Most visualisation methods construct the mapping to low-
dimensional spaces in an unsupervised manner (i.e., without
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using the class labels) and then represent differently ob-
jects from different classes for comparison purposes [15].
Although this property makes the method generically appli-
cable, it does not always use all of the information that is
available, for instance clustering labels or prior knowledge
about class membership. This is particularly important if
the objective is to visualise the separation between cohorts,
be they different partition clusters of data from multiple
classes. The most common supervised visualisation methods
are based on Linear Discriminant Analysis (LDA) (see, for
example, [7]) and its non-linear (kernel) version, Kernel
Linear Discriminant Analysis (KLDA) [19]. While KLDA
searches for optimal directions in feature space for which
separation between classes is maximal, this method does not
directly attempt to perform dimensionality reduction, which
is important in data visualisation. It is possible to combine
KLDA with feature space selection by optimising the kernel
parameters directly [24] or, alternatively, to map the data
onto a high-dimensional kernel space and then optimise a
scatter-matrix separation index similar to that used in this
paper, based on the Kernel PCA transformation [23]. Some
relationships between KLDA, Kernel PCA (KPCA) [20] and
LDA can be found in [25]. These methods have been further
extended to kernel quadratic discriminant analysis [17].

This paper takes advantage of a recent result derived for
linear visualisation of labelled data cohorts, typically defined
by cluster membership or class labels, in the context of
scatter-matrix separation measures. In the Cluster-based Vi-
sualisation with Scatter Matrices (CVSM) method, described
in [16], it was shown in that the space spanned by the cohort
means forms a useful basis for dimensionality reduction
while retaining much of the cohort separation measured
by a quadratic index. In particular, when the covariance
matrix of the original data is non-singular, it was proven
that this data compression exactly preserves the value of
the separation index, thus preserving the cohort separation
at the level of second-order statistics. This is a surprising
amount of separation for what can be a drastic reduction in
dimensionality, raising the possibility that a similarly efficient
compression may be possible for non-linearly separable data
cohorts, through a suitable application of kernel methods.
The application of kernels to CVSM may lead to insights
about the data, by generating linearly separable views of non-
linearly separable data.

In this paper, a kernel extension of CVSM [16] is pre-
sented. Although the kernel trick cannot be directly applied,
this drawback can be avoided by representing the data in
dual form. With this representation, the projections of the
data onto the sub-space spanned by the (orthonormalised)
class means in the feature space can be easily computed. The
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only parameters of the whole method are the parameters of
the kernel function, and usually requires only the inversion
of an Nc × Nc matrix, where Nc is the number of classes,
rather than the solution of a convex quadratic optimisation
problem [19] or an eigenvalue problem of size N (N is the
number of examples) [3] in KLDA.

The result is a visualisation of the kernel-defined feature
space, which can facilitate to find the most appropriate
kernels for visualisation and, potentially, for kernel-based
classification of a given data set. If we accept that the role
of the kernel is to project the data onto a space where
the projections are linearly separable, then it follows that
measuring the extent of linear separation with the proposed
method helps to short-list the most useful kernels for a given
classification task. Since the proposed method can induce
a linearly separable visualisation for data with non-linear
decision boundaries between population cohorts, it provides
a direct visualisation of complex data sets in a feature space
that is relevant to their categorisation into labelled groups,
be they clusters or classes.

The proposed method is illustrated with three cancer
data sets. The visualisation plots give a good indication of
the effect of the kernels on the data distribution vs. the
classification label.

II. CLUSTER-BASED LINEAR VISUALISATION WITH
SCATTER MATRICES

The method proposed in [16] is linear in nature and it is
based on the decomposition of the invariant scatter matrix
after projecting the data onto the subspace spanned by the
class means. It is well-known that the overall variance of the
data, ST , can be decomposed into the sum of scatter matrices
calculated within and between labelled cohorts [7], [10]
thus generating a within-cluster matrix, SW , and a between-
cluster matrix, SB , such that ST = SW + SB . For a data
matrix X = {xi}N

i=1 comprising N rows with d-dimensional
data points of overall mean m,

ST =
N∑

i=1

{(xi −m)T (xi −m)}

SW =
Nc∑
j=1

Nj∑
i=1

{(xj
i −mj)T (xj

i −mj)}

SB =
Nc∑
j=1

Nj{(mj −m)T (mj −m)},

where the data are partitioned into Nc groups, each with Nj

points and mean mj . Note that ST , SW , and SB are d × d
matrices. This decomposition generates a natural scalar index
for the separation between the data cohorts by taking the
trace of the scatter matrix M = S−1

W SB leading to the class
separation index J = tr(M).

A strength of the index J is its invariance to affine
transformations of the data matrix, which makes it insensitive
to co-linearities in the data and to changes in relative scaling
of the covariates, both of which are useful properties for

exploratory analysis of high dimensional data as in bioin-
formatics. Furthermore, if the covariance matrix is non-
singular, then this invariance can be exploited by applying
a Mahalanobis rotation to de-correlate the covariates, or
sphering the data, thus rendering ST is diagonal. The scatter
matrix decomposition now indicates that the information
contained in the within-cluster scatter matrix is implicit in
the between-cluster matrix, which uses only the values of the
class means {mj}Nc

j=1 as representatives for the classes.
This suggests that the class means form a natural basis

to project the data with minimal loss in class separation as
measured by second-order statistics. It is shown in [16] that
the value of the separation index J is strictly invariant to a
Mahalanobis transformation followed by a linear projection
onto the space of class means. The paper also shows that
when the covariance matrix is singular, then some loss is
induced by this dimensionality reduction, but most of the
class separation is maintained.

However, in cases where the classes are non-linearly sep-
arable, then the scatter-matrix based separation index is not
a reliable measure of class separation since this is no longer
well represented by the second-order statistics of the data. A
better low-dimensional projection may then be obtained by
resorting to non-linear features, for instance through the use
of kernels. To see how this can be done we briefly review
the linear projective method described in [16].

The compression onto the subspace of the class means
is readily achieved by defining an orthonormal set of basis
vectors BT = {bj}Nc

j=1, for instance by Gram-Schmidt
orthogonalisation, generating the projection of X onto the
space spanned by the set of orthonormalised cluster mean
vectors

Xc = X · B.

Note that Xc and B are N × Nc and d × Nc matrices,
respectively. Scatter matrices for Xc = {xc

i}N
i=1 can be

calculated in the space of class means, namely:

Sc
W =

Nc∑
j=1

Nj∑
i=1

{(xc
i −mc

j)
T (xc

i −mc
j)}

Sc
B =

Nc∑
j=1

Nj{(mc
j −mc)T (mc

j −mc)}

and, similarly, an invariant scatter matrix Mc = (Sc
W )−1Sc

B

and an invariant class separation index Jc = tr(Mc) can be
defined. Note that Sc

W and Sc
B are Nc×Nc matrices, so that

the computation of (Sc
W )−1 is computationally fast.

In [16] it is shown that the invariant separation measure
J is exactly preserved (i.e., J = Jc) when the projection
is preceded by a sphering of the data. A diagonalisation of
the new scatter matrix Mc shows, typically, that the trace
of the matrix is contained in the largest few eigenvalues.
Their correspondent eigenvectors form the basis for a two-
or three-dimensional visualisation of the data. The whole
visualisation procedure can be summarised in figure 1. Note
that the method is parameter-free.
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Given X = {xi}N
i=1,

1. Optionally, sphere the data: X = X ·Σ−1/2

2. Compute and orthonormalise the class means: BT

3. Project data onto the orthonormalised class means:
Xc = X · B

4. Compute scatter matrices for Xc: Sc
W , Sc

B and Mc

5. Project Xc onto the eigenvectors of the largest
eigenvalues of Mc

Fig. 1. Linear visualisation algorithm proposed in [16].

As previously said, a natural extension of this approach
is to investigate the use of kernel transformations to further
separate the clusters, or class-labelled cohorts, in the low-
dimensional projective space. The next section describes how
this can be done.

III. COHORT-BASED KERNEL VISUALISATION WITH
SCATTER MATRICES

A deeper analysis of the method described in figure 1
reveals that, in order to construct Xc, only inner products are
needed. This allows us to develop a non-linear extension of
the visualisation method in section II by employing the kernel
trick, leading to what we term Cohort-based Kernel Visual-
isation with Scatter Matrices (CKVSM). The core idea is to
map the data into an inner product space F corresponding to
a high-dimensional (maybe infinite-dimensional) non-linear
mapping φ, chosen a priori, where the method could be
applied. A (positive definite) kernel function K(u,v) is used
to evaluate the inner product between the mapped feature
vectors 〈φ(u),φ(v)〉 = K(u,v), so that the mapping
function becomes implicit. This kernel-based procedure has
been widely used to define non-linear versions of classical
linear procedures, such as KPCA (for PCA) or KLDA (for
LDA) [19].

As explained in section II, two levels of projection are
pursued in the cluster-based visualisation: (1) projecting the
sphered data points into the Nc-dimensional space spanned
by the orthonormalised class means; (2) further projecting the
obtained Nc-dimensional data points into an n-dimensional
space spanned by the eigenvectors of the scatter matrix Mc.
In the kernelised version of the above approach, both the
sphering procedure and the construction of the projection
onto the space spanned by the orthonormalised cohort means
in (1) are conducted in the kernel-based feature space, as
explained in the next sections.

A. Sphering in the Feature Space

Given an N × d matrix of centered data points X =
{xi}N

i=1, the covariance matrix can be defined as Σ =
1
N XT X. Since Σ is symmetric, it can be decomposed as
Σ = VΣDΣVT

Σ, where DΣ is a diagonal matrix with the
non-zero eigenvalues of Σ, and VΣ is an orthonormal matrix
whose columns are the corresponding eigenvectors of Σ. The

sphering of the data consists of a rotation of the data by
applying a linear transformation Y = XRΣ, where RΣ =
Σ−1/2 = VΣD−1/2

Σ VT
Σ, so that the covariance matrix of Y

is the identity matrix. The inner product matrix between
the transformed features is YYT = XVΣD−1

Σ VT
ΣXT =

XΣ−1XT .
Suppose now that we have a set of centered data points

Φ = {φi}N
i=1 in the feature space induced by the kernel

function K(u,v). The kernel trick cannot be directly applied
for sphering the data with RΣ, because DΣ and VΣ represent
matrices in the feature space, that may be unknown. Even if
they were known, they could have infinite dimension (recall
that DΣ and VΣ have d columns, where d is the dimension
of the space).

As we will see, to work with sphered data in the inner
product (kernel-based feature space) we only need to know
how to compute the inner product of any two sphered data
points, instead of the representation of the sphered data
itself. The rest of the section explains how to compute the
inner product matrix of sphered data in the feature space,
by studying the relationship between the eigenvectors of the
covariance matrix in the feature space and the eigenvectors
of the kernel matrix.

1) Eigendecomposition of the Covariance Matrix in the
Feature Space : We represent Φ as an N ×∞ matrix. The
inner product matrix of Φ can be computed as K = ΦΦT ,
where K is the n×n kernel matrix. The covariance matrix in
the feature space can be defined as usual Σ̂ = 1

N ΦT Φ. Since
K is symmetric, it can be decomposed as K = VK DKVT

K

or, equivalently
KVK = VK DK , (1)

where DK is a diagonal matrix with the non-zero eigenvalues
of K, and VK is an orthonormal matrix whose columns are
the corresponding eigenvectors of K. The covariance matrix
in the feature space Σ̂ can also be decomposed as

Σ̂VΣ̂ = VΣ̂DΣ̂, (2)

where DΣ̂ is a diagonal matrix with the non-zero eigenvalues
of Σ̂, and VΣ̂ is an orthonormal matrix whose columns are
the corresponding eigenvectors of Σ̂.

In [20] it is proved that the eigenvectors of Σ̂ can be
expressed as a function of the eigenvectors of K and vice-
versa:

1) The eigenvectors VΣ̂ of Σ̂ satisfy that ΦVΣ̂ are eigen-
vectors of K with corresponding eigenvalues NDΣ̂

2) the eigenvectors V
K

of K satisfy that ΦT V
K

are eigen-
vectors of Σ̂ with corresponding eigenvalues 1

N D
K

As a consequence, Σ̂ and K have the same number
of eigenvectors with non-zero eigenvalue, and, in addition,
DK = NDΣ̂. Let n 6 N be the number of eigenvectors of K
with non-zero eigenvalue. Note that VΣ̂ has n columns and
the dimension of DΣ̂ is n. We will express the eigenvectors
of Σ̂ as a function of V

K
to compute the inner product of

two sphered points in the feature space.
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2) Orthogonality Condition : The orthogonality condition
of the eigenvectors of the kernel matrix, given as VT

KVK = I,
is automatically preserved during the computation of the
eigendecomposition of K. However, when the eigenvectors
of the covariance matrix Σ̂ are computed from VK instead
of the direct computation of its eigendecomposition, the
orthogonality condition, given as VT

Σ̂
VΣ̂ = I, requires to be

imposed. Let S be a n × n scaling diagonal matrix of VΣ̂,
such that VΣ̂ = ΦT V

K
S. When the orthogonality condition

is imposed, we have

I = VT
Σ̂

VΣ̂ = ST VT
K
ΦΦT V

K
S = ST VT

KKVKS. (3)

By incorporating Eq. (1) and VT
KVK = I into Eq. (3),

we simply have ST DKS = I. Therefore, S = D−1/2
K , and

equivalently,
VΣ̂ = ΦT VKD−1/2

K . (4)

3) Sphered Inner Product Matrix in the Feature Space :
Let us return to the problem of computing the inner product
of two sphered data points in the feature space. Similar to
the input space, we can define the rotation matrix RΣ̂ =
VΣ̂D−1/2

Σ̂
VT

Σ̂
, and apply the linear transformation Φ̂ = ΦRΣ̂.

By incorporating Eq. (4), the new kernel matrix of inner
products after sphering in the feature space can be computed
as K̂ = Φ̂Φ̂T = ΦΦT VKD−1/2

K D−1

Σ̂
D−1/2

K VT
KΦΦT . Since

D−1/2
K D−1

Σ̂
D−1/2

K = ND−2
K and using Eq. (1), this leads to

a sphered inner product matrix, finally computed as

K̂ = NVKVT
K , (5)

in the kernel-based feature space. If n = N , then K̂ is N
times the identity matrix.

B. Projection onto the Space Spanned by the Orthonor-
malised Cohort Means in the Feature Space

1) Dual-form Representation: The kernel trick cannot be
directly applied in the method described in figure 1, because
BT represent points in the feature space, that may be un-
known. This affects to steps 2 and 3 of the algorithm in figure
1. However, this drawback can be avoided by representing
the data in dual form, which is one of the key points of the
proposed method: let a = (a1, a2, . . . , aN ) ∈ RN represent
the point â =

∑N
i=1 aiφ(xi) in the feature space F (recall

that {xi}N
i=1 is the original data). With this representation:

1) Vector space operations in RN have a direct correspon-
dence in F .

2) Inner products in the feature space between two vectors
â, b̂ ∈ F in dual form (without sphering) can be
computed as usual:

〈â, b̂〉 =
N∑

i,j=1

aibjK(xi,xj) = aT Kb, (6)

where K is the kernel matrix. Inner products between
two vectors â, b̂ ∈ F in dual form after sphering can
be computed as

〈â, b̂〉 =
N∑

i,j=1

aibjK̂(xi,xj) = aT K̂b, (7)

where K̂ is defined in Eq. (5). Let

Υ =
{

K if data is not sphered in the feature space,
K̂ otherwise.

(8)
3) The mean of class Cj in the feature space is repre-

sented as mj = (mj1,mj2, . . . ,mjN ), where

mji =
{

1/Nj if xi belongs to Cj ,
0 otherwise. (9)

4) The Gram-Schmidt orthonormalisation procedure can
be applied as usual, since only inner products and
vector spaces operations are needed. In this case,
however, the orthonormal set of basis vectors B̂ is a
N ×Nc matrix (it is also represented in dual form).

5) Since B̂ represents the orthonormal set of basis vectors
in dual form, and using Eq. (8), the projection of the
data onto the orthonormalised cohort means in the
feature space can be obtained as: Xc = ΥB̂ (recall that
the projection of φ(xj) can be computed as uT

j ΥB̂,
where uT

j is the N -dimensional vector with a 1 in
position j and 0 elsewhere).

6) Once Xc has been obtained, steps 4 and 5 of the
algorithm in figure 1 can be performed.

2) Kernelised Gram-Schmidt Orthonormalisation: Here,
we describe the extension of the Gram-Schmidt orthonor-
malisation in the feature space of vectors represented in
dual form. Recall that inner products 〈â, b̂〉 in the feature
space are computed with equations (6) or (7). Given a set
{mj}M

j=1 of vectors in RN representing vectors in dual form
{m̂j}M

j=1 in the feature space, the set {bj}M
j=1 of vectors in

RN defined in the algorithm described in figure 2 represent
a set of orthonormal vectors in dual form {b̂j}M

j=1 in the
feature space that span the same subspace than {m̂j}M

j=1.

b1 = m1/
√〈m̂1, m̂1〉

for j = 2 . . .M

bj = mj −
∑j−1

i=1 〈m̂j , b̂i〉bi

bj = bj/
√
〈b̂j , b̂j〉

end for

Fig. 2. Gram-Schmidt orthonormalisation algorithm in the feature space.

3) Non-centered Data: For the sake of simplicity, we have
made the assumption that the data are centered. If this was
not the case, the previously showed results are still valid
changing K by K = K−K1N −1N K+1N K1N , where 1N

is an N × N matrix such that (1N )ij = 1/N (see [20] for
details).

C. Pseudo Code of the Proposed Algorithm

The whole cohort-based kernel visualisation algorithm is
described in figure 3. After computing the orthonormalised
cohort means in the feature space B̂, the projected data is
then given as Xc = ΥB̂, where Υ is computed with Eq. (7)
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Given X = {xi}N
i=1,

0. Represent the mean of class Cj in the feature space
mj in dual form with Eq. (9)

1. If sphering, compute the final inner product matrix
Υ with Eq. (7), otherwise Eq. (6)

2. Obtain the orthonormalised class means in the

feature space: B̂
T

3. Project data onto the orthonormalised cohort means
in the feature space: Xc = ΥB̂

4. Compute scatter matrices for Xc: Sc
W , Sc

B and Mc

5. Project Xc onto the eigenvectors of the largest
eigenvalues of Mc

Fig. 3. Cohort-based kernel visualisation algorithm.

or (6) depending on whether the data is sphered or not. Note
that the only parameters of the method are the parameters
of the kernel. The projection of a new point y (in a test
set, for example) can be computed as follows: (1) compute a
row vector Y = (K(x1,y),K(x2,y), . . . ,K(xN ,y)); (2)
compute Y c = Y B̂; and (3) project Y c onto the eigenvectors
of the largest eigenvalues of Mc.

IV. EXPERIMENTS AND RESULTS

A. Data Sets

The data used in the experiments were: the Wisconsin
Breast Cancer data set from the UCI repository [2], Magnetic
Resonance Spectroscopy (MRS) data from the INTERPRET
project [1], and breast cancer survival prognostic data ([9],
[8]). A brief description of the data is provided in table I.

The MRS data analyzed in this study were extracted from
an international and multi-centre web-accessible database
resulting from the International Network for Pattern Recogni-
tion of Tumours Using Magnetic Resonance (INTERPRET)
European research project [1]. These data correspond to 304
single voxel short echo time 1H MR spectra acquired in vivo
from brain tumour patients, out of which 115 are used in this
study: glioblastomas (86) and astrocytomas grade II and III
(29). For details on data acquisition and processing, see [12].
Class labelling was performed according to the World Health
Organization (WHO) system for diagnosing brain tumours by
histopathological analysis of a biopsy sample. The clinically-
relevant regions of the spectra were sampled to obtain 195
frequency intensity values (data covariates), from 4.25 parts
per million (ppm) down to 0.56 ppm. This data set will
referred to as MRS-Ast-Gl.

For the Prognostic data, two data sets were used. The
first one was obtained by survival analysis of 743 breast
cancer case records from Christie Hospital (CH), Manchester,
recruited between 1990-93, following the method described
in [8]. The second one was a database of 4,016 cases acquired
by the British Columbia Cancer Agency (BCCA), Vancouver,
during the period 1989-93. The CH and BCCA data set

were used as training and validation data sets, respectively.
The CH data set includes 16 explanatory variables, in ad-
dition to outcome variables. The BCCA data set contains
10 explanatory variables, as well as the outcome variables.
Model selection was carried out through Cox regression
(proportional hazards) [9], where six predictive variables
were identified: age at diagnosis, node stage, histological
type, ratio of axillary nodes affected to axilar nodes removed,
pathological size (i.e. tumour size in cm) and oestrogen
receptor count. Using the CH data set and a prognostic
index derived from the survival predictions for each patient
at 5 years of follow-up, a stratification methodology was
developed, based on regression trees, to group the patients
into four different prognostic risk groups [8]. This obtained
stratification methodology obtained with the CH data set was
then applied to the BCCA data set. The covariates used for
visualisation comprise the six original predictive variables.
The class label was the prognostic index.

TABLE I
DESCRIPTION OF THE DATA SETS.

Data Set #Covariates #Classes #Examples
Wisconsin 9 2 699

MRS-Ast-Gl 195 2 115
Prognostic CH (training) 6 4 743

Prognostic BCCA (validation) 6 4 4,016

B. Experimental Setting

The Gaussian kernel k(x, y) = e−γ‖x−y‖2 was the non-
linear kernel function used. In order to obtain the kernel
parameters for the projection, a grid search was performed
with γ ranging from 2−20 to 210 and C ranging from
2−10 to 210 for standard 1-norm soft margin Support Vector
Machines (SVM) with the LIBSVM software [5]. The pa-
rameters corresponding to the best 10-fold cross-validation
accuracy were kept to build the subsequent models. For the
Prognostic data, only the CH data set was used to obtain the
parameters.

Binary data (Wisconsin and MRS-Ast-Gl) was split into
six categories, previous to the projection with CVSM and
CKVSM, with the output values of the SVM model obtained:

1) New class 1: Misclassified points of original class 1
2) New class 2: Correctly classified of original class 1

under the median
3) New class 3: Correctly classified of original class 1

over the median
4) New class 4: Misclassified points of original class 2
5) New class 5: Correctly classified of original class 2

under the median
6) New class 6: Correctly classified of original class 2

over the median
For non-binary data (Prognostic), the original classes were
used for the projection.

Data were projected with the algorithms for CVSM and
CKVSM described in figures 1 and 3. The first two or three
components were selected for visualisation. No sphering
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of the data was performed. For the Prognostic data, the
directions of projection were computed with th CH data set
and applied to the BCCA data set.

C. Results

For comparative purposes, a grid search was performed
with linear SVM, with C ranging from 2−10 to 210. Table
II shows the SVM accuracies for the selected data sets with
the original classes. The visualisations of the projected data
can be seen in figure 4. The relationship between classes and
colors is: 1-red, 2-green, 3-blue, 4-yellow, 5-magenta and 6-
cyan.

For the Wisconsin data, the Gaussian and linear kernels
are similar for separating the data points by class label. It is
interesting that one of the original binary groups has a much
wider spread than the other. This would be apparent without
a low-dimensional visualisation of the complete data set.

In the case of the MRS data, the linear kernel gives
a better impression of the continuum of tumours. In fact,
in the selected view the y-axis is a good classification
direction, since allocating low and medium (astrocytomas)
vs high grade (glioblastomas) astrocytic tumours either side
of a threshold around 0 seems to have about the same
classification performance as the original classifier.

In the case of the prognostic data set, the linear kernel
shows the categorical nature of the data with some strati-
fication of red-green-yellow, but the category blue does not
separate from the others. Therefore the Gaussian kernel plots
are better for visualisation with reference to membership of
each risk groups, labelled 1:4. This is especially the case for
3D projections, where the data can be rotated to better place
each individual case in the context of its neighbours and their
risk group allocations.

V. CONCLUSIONS

This paper combines kernel methods with dimensionality
reduction using class means, to visualise complete data
bases of medical data. The visualisation plots give a good
indication of the effect of the kernels on the data distribution
vs. the classification label, being useful also to directly see
how each individual case is located in relation to decision
boundaries between classes or specific probabilistic bands.
The banding of predicted class membership probabilities
makes it possible to derive 3D views of the data in the case
of binary classification.

It is proposed as a novel tool for the direct visualisation
of complex data, in a way that is meaningful for clinical
users. In particular, it provides linearly separable renditions
of non-linearly separable data sets, opening a window into
the classification of the data, which is not readily available
by other methods. In addition, this methodology also permits
the exploration of different classification kernels.

ACKNOWLEDGEMENT

This work was supported in part by the Ministerio de
Ciencia e Innovación (MICINN), under project TIN2009-
13895-C02-01. Authors gratefully acknowledge the former

INTERPRET (EU-IST-1999-10310) European project part-
ners. Data providers: Dr. C. Majós (IDI), Dr. À.Moreno-
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[17] E. Pȩkalska and B. Haasdonk. Kernel Discriminant Analysis for
Positive Definite and Indefinite Kernels. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(6):1017–1032, 2009.

[18] J. W. Sammon. A Non-linear Mapping for Data Structure Analysis.
IEEE Transactions on Computers, C-18:401–408, 1969.

[19] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press,
2002.

[20] B. Schölkopf, A. J. Smola, and K. R. Müller. Nonlinear Component
Analysis as a Kernel Eigenvalue Problem. Neural Computation,
10(5):1299–1319, 1998.

1254



TABLE II
ACCURACIES AND CONFUSION MATRICES OF SVM WITH THE SELECTED DATA SETS (ORIGINAL CLASSES).

Accuracy Confusion Matrix
Wisconsin (linear SVM) 96.85 [446 12; 10 231]

Wisconsin (Gaussian SVM) 97.28 [445 13; 6 235]
MRS-Ast-Gl (linear SVM) 92.17 [25 4; 5 81]

MRS-Ast-Gl (Gaussian SVM) 91.30 [22 7; 3 83]
Prognostic BCCA (linear SVM) 83.42 [1451 59 0 0; 98 945 173 0; 0 111 521 0; 0 56 169 433]

Prognostic BCCA (Gaussian SVM) 99.15 [1508 2 0 0; 0 1216 0 0; 2 25 605 0; 0 4 1 653]

Fig. 4. 2D-visualisations of the 3D-projections for the Wisconsin (top row), MRS-Ast-Gl (middle row) and Prognostic BCCA (bottom row) data sets.
Left plots correspond to linear projections and right plots correspond to Gaussian projections.
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