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Cerdanyola del Vallès, Spain
a r t i c l e i n f o

Article history:

Received 30 June 2008

Received in revised form

10 March 2009

Accepted 22 March 2009
Communicated by T. Heskes
may jeopardize their classification. In this study, we describe a method to overcome this problem that
Available online 9 April 2009

Keywords:

Proton magnetic resonance spectroscopy

Brain tumours

Outlier detection

Nonlinear dimensionality reduction

Feature selection

Medical decision support systems
12/$ - see front matter & 2009 Elsevier B.V. A

016/j.neucom.2009.03.010

esponding author.

ail address: avellido@lsi.upc.edu (A. Vellido).
a b s t r a c t

Non-invasive techniques such as magnetic resonance spectroscopy (MRS) are often required for

assisting the diagnosis of tumours. Radiologists are not always accustomed to make sense of the

biochemical information provided by MRS and they may benefit from computer-based support in their

decision making. The high dimensionality of the MR spectra obscures atypical aspects of the data that

combines nonlinear dimensionality reduction, outlier detection, and expert opinion. MR spectra

subsequently undergo a feature selection process followed by classification. The impact of outlier

removal on classification performance is assessed.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Decision making in oncology is a sensitive matter, and even
more so in the specific area of brain tumour oncologic diagnosis,
for which the direct and indirect costs—both human and
financial—of misdiagnosis are very high. In this area, in which
most diagnostic techniques must be non-invasive, clinicians
should benefit from the use of an at least partially automated
computer-based medical decision support system (DSS).

AIDTumour (artificial intelligence decision tools for tumour
diagnosis [1]) is a research project for the design and implemen-
tation of a medical DSS to assist experts in the diagnosis of human
brain tumours on the basis of biological signal data obtained by
magnetic resonance spectroscopy (MRS). This is a technique that
can shed light on cases that remain ambiguous after clinical
investigation. The MRS data used in AIDTumour and analysed in
this paper belong to a complex multi-centre set containing cases
of several brain tumour pathologies [16]. These data have
undergone a rigorous pre-processing quality control that validates
them from the viewpoint of the radiologists. Nevertheless, and for
ll rights reserved.
their use in an automated computer-based DSS, the various
origins of these spectra and the complexity of their pre-processing
make further data exploration advisable.

It might be problematic to include some of the spectra in an
automated DSS without further ado for three different reasons.
Firstly, some may contain measurement or acquisition artefacts
that, even if not completely precluding diagnosis by visual
inspection, might induce errors in computer-based diagnosis:
these are what we call here artefact-related outliers. Secondly,
atypical cases that do not contain artefacts but are nevertheless
unrepresentative of the main distributions of the whole dataset:
herein, these will be referred to as distinct outliers [33]. Thirdly,
some cases with a clear biopsy-based diagnosis (tumour type
attribution) may yield spectra that are quantitatively similar to
those of other tumour types, misleading a computer-based
classification system. Even if representative of the data as a
whole, they are still unrepresentative of their own tumour type:
these we will call class outliers. Note that these three outlier
typologies are not always mutually exclusive.

Machine learning (ML) and related methods can play a useful
role [35] in dealing with the uncertainty introduced by the
presence of outliers in a diagnostic setting. Here, we show the
effectiveness of a method to identify and characterize potentially
conflicting MRS data that combines techniques of nonlinear

www.sciencedirect.com/science/journal/neucom
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dimensionality reduction (DR), exploratory visualization, and
outlier detection, with expert knowledge. The introduction of
the latter is paramount, as it will help to skim those cases truly
conflictive out of those shortlisted by blind quantitative criteria.
Dimensionality reduction is not trivial in this setting, as the
available MRS data are scarce and high dimensional. Sammon’s
mapping [29] is used to this end. Generative topographic mapping
(GTM [3]), a manifold learning model, is used to quantify the
atypicality of spectra [33,34].

Overall, the aforementioned method is conceived as a
preliminary step to data classification in the DSS, in which
specific cases are tagged with information regarding their possible
atypicality and its characteristics. The fact that the MRS data
analysed in this study are scarce and of high dimensionality
makes their computer-based automated classification a difficult
undertaking. Most importantly, this high dimensionality also
precludes the straightforward interpretation of the obtained
results, limiting their usability in a practical medical setting.
Consequently, dimensionality reduction, in the form of either
feature selection or feature extraction, would help to reduce the
complexity of the problem at hand. Feature extraction, though,
may not comply with the interpretability requirement. The expert
radiologists who are meant to be assisted by the medical DSS are
not usually trained to make sense of new features extracted from
the MRS frequencies. Instead, they often have knowledge of
specific MRS frequencies related to metabolites of known
significance for tumour type discrimination. Note also that one
goal of exploratory studies of this kind is to understand where the
variables selected by the model fit in relation to prior knowledge
from the medical domain [23]. This may limit the practical
applicability of methods such as PCA or ICA as used, for instance,
in [19,13,24,37] for assisting brain tumour diagnosis. As an
example, in analysing these type of data, ICA will often yield
components that ‘‘would correspond with identifying the inde-
pendent degrees of freedom in MRS, not with individual
metabolites, but with characteristic tissue generators’’ [13].

An entropic filtering algorithm (EFA) is used in this study for
feature selection as a fast method to generate a relevant subset of
MR spectral frequencies. Bootstrap resampling techniques are
used to obtain mean performance estimates and their variability.
The main goal is obtaining simple models (in terms of low
numbers of hopefully interpretable MR spectral frequencies) that
generalize well. Outliers might still unduly bias the automated
classification process in the DSS, even if for different reasons. We
hypothesized that, by removing the cases labelled as outliers,
classification accuracy would improve and feature selection
would experiment significant variations. The experimental results
reported in this paper provide partial support for the first
hypothesis but not for the second.

The remaining of the paper is structured as follows. First, the
1H-MRS dataset available for experimentation is briefly described.
This is followed, in Section 3, by a description of the different
analytical methods. Experimental results are presented in Section
4. The paper closes with a section summarizing our conclusions.
2. 1H-MRS brain tumour data

The echo time is an influential parameter in 1H-MRS data
acquisition. In short-echo time (SET) spectra (typically acquired at
20–40 ms) some metabolites are better resolved (e.g. lipids, myo-
inositol, glutamine and glutamate). However, there may be
numerous overlapping resonances (e.g. glutamate/glutamine at
2.2 ppm and NAA at 2.01 ppm) which make the spectra difficult to
interpret [26]. The use of a long-echo time (LET) yields less clearly
resolved metabolites but also less baseline distortion, resulting in
a more readable spectrum. There are a few studies comparing the
classification potential of these two types of spectra (see, e.g.
[26]). In this study, we focus on LET data.

The analysed data correspond to 195 LET single voxel 1H-MR
spectra acquired in vivo from brain tumour patients. They include
55 meningiomas (mm), 78 glioblastomas (gl), 31 metastases (me),
20 astrocytomas grade II (a2), 6 oligoastrocytomas grade II (oa),
and 5 oligodendrogliomas grade II (od). Following a common
procedure [26,24], the clinically-relevant regions of the spectra
were sampled to obtain 195 frequency intensity values (measured
in parts per million (ppm), an adimensional unit of relative
frequency position in the data vector), from 4.25 ppm down to
0.56 ppm. These frequencies become data attributes in the
reported experiments and, as a result, the analysed data consist
of 195 cases and 195 attributes.

These data are extracted from a database resulting from the
international network for pattern recognition of tumours using

magnetic resonance (INTERPRET) European research project [16].
The criteria for the selection of cases to be included in the original
complete database (in which there are more tumour types than
the ones analysed in this study as well as cases corresponding to
normal tissue and abscesses) were: (a) that the case had a single
voxel SET, 1.5 T spectrum acquired from a nodular region of the
tumour; (b) that the voxel was located in the same region as
where subsequent biopsy was obtained; (c) that the short-echo
spectrum had not been discarded because of acquisition artefacts
or other reasons and (d) that a histopathological diagnosis was
agreed among a committee of neuropathologists. In those cases in
which the spectra were obtained from normal volunteers without
the pathology, or corresponded to abscesses or clinically proven
metastases, biopsy was not required. For further details on data
acquisition and processing, and on database characteristics, see,
for instance, [15,16].

Class labelling was performed according to the World Health
Organization (WHO) system for diagnosing brain tumours by
histopathological analysis of a biopsy sample. For the analyses
reported in this study, a subset of spectra from the database were
bundled into three groups, namely: G1: low-grade gliomas (a2, oa

and od); G2: high-grade malignant tumours (me and gl); and G3:
meningiomas (mm). This type of grouping is justified [31] by the
well-known difficulty in distinguishing between metastases and
glioblastomas, due to their similar spectral pattern produced by
the highly necrotic nature of these tumours.
3. Methods

3.1. Outlier characterization

3.1.1. MRS data dimensionality reduction and visualization through

Sammon’s mapping

There are several decisions involved in the choice of a
dimensionality reduction method. To name just a few [22]: hard
vs. soft DR; generative vs. non-generative methods; implicit vs.
explicit mappings; or linear vs. nonlinear DR. For this study, a
nonlinear DR method was preferred in principle (instead of a
linear alternative such as PCA or classical Multi-Dimensional
Scaling, for instance), as there existed no a priori reason to assume
only linear dependencies. Given that DR in this study does not aim
at providing generalization, an explicit mapping procedure was
also preferred. A typical desiderata for the visual representation of
data and knowledge can be formulated in terms of maximizing
structure preservation and, therefore, a method with ‘‘in-built’’
preservation of inter-point distances was also preferred.
The nonlinear Sammon’s mapping method [29] fits all those
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requirements and has been widely and successfully used in many
application fields.

Sammon’s mapping is constructed as to minimize the inter-
point distortions it introduces, quantified by the error measure:

1P
iojdij

X
ioj

ðdij � xijÞ
2

dij
, (1)

where dij is the Euclidean distance between spectra i and j in the
original data space and xij is the Euclidean distance between the
projections of these spectra in the 3-D space. A low Sammon error
means that distances in the original space are preserved in the
3-D visualization space.

We must provide quantitative support to the preliminary
choice of Sammon’s mapping as a method for dimensionality
reduction and visualization in a 3-D space. Its performance is
therefore compared to that of an alternative linear method, PCA,
in terms of the Trustworthiness and Continuity measures developed
in [36]. Data neighbourhood relationships that are not preserved
in the low-dimensional representation, hamper the continuity of
the latter, while spurious neighbouring relationships in the low-
dimensional representation that do not have a correspondence in
the observed space limit its trustworthiness. PCA is chosen for
comparison as it is commonly used for dimensionality reduction
in oncology MRS studies [7,20].

Trustworthiness is formally defined as

TðKÞ ¼ 1�
2

NKð2N � 3K � 1Þ

XN

i¼1

X
xj2UK ðxiÞ

ðrðxi; xjÞ � KÞ, (2)

where UkðxiÞ is the set of data points xj for which xj 2 ĈK ðxiÞ ^

xjeCK ðxiÞ and CK ðxiÞ and ĈK ðxiÞ are the sets of K data points that are
closest to xi in the observed data space and in the low-
dimensional representation space, respectively. Continuity is in
turn formally defined as

ContðKÞ ¼ 1�
2

NKð2N � 3K � 1Þ

XN

i¼1

X
xj2VK ðxiÞ

ðr̂ðxi; xjÞ � KÞ, (3)

where VK ðxiÞ is the set of data points xj for which
xjeĈK ðxiÞ ^ xj 2 CK ðxiÞ. The terms rðxi; xjÞ and r̂ðxi; xjÞ are the ranks
of xj when data points are ordered according to their distance
from the data vector xi in the observed data space and in the low-
dimensional representation space, respectively, for iaj.

The Continuity and Trustworthiness results for PCA and
Sammon’s mapping are reported in Table 1. They indicate the
adequacy of the Sammon’s mapping choice, specially for the
preservation of the Trustworthiness.

3.1.2. Outlier detection using t-GTM

Generative topographic mapping [3] is a nonlinear latent
variable model generating a mapping from K points in a low-
Table 1
Trustworthiness and continuity results for PCA and Sammon’s mapping, for different

neighbourhood sizes K .

K ¼ 1 K ¼ 2 K ¼ 3 K ¼ 4 K ¼ 5 K ¼ 10

Trustworthiness

Sammon 0.910 0.908 0.911 0.913 0.916 0.922

PCA 0.887 0.894 0.893 0.897 0.899 0.900

Continuity

Sammon 0.952 0.953 0.953 0.953 0.951 0.952

PCA 0.953 0.950 0.952 0.950 0.947 0.946
dimensional latent space onto the multivariate data space. The
mapping is carried through by a set of basis functions generating a
constrained mixture density distribution. It is defined as a
generalized linear regression model:

y ¼ UW, (4)

where U is a K �M matrix built with the images of M basis
functions, which, in the original GTM formulation, for continuous
data of dimension D, were chosen to be spherically symmetric
Gaussians fmðuÞ ¼ expf�1=2s2ku� mmk

2g, with centres mm and
common width s; W is a matrix of adaptive weights wmd that
defines the mapping and u is a point in latent space. To avoid
computational intractability, a regular grid of K points uk can be
sampled from the latent space. Each of them is mapped, using (4),
into a low-dimensional manifold nonlinearly embedded in the
data space. Therefore, GTM can be considered as a manifold
learning model. A probability distribution for the multivariate
data X ¼ fxng

N
n¼1 can then be defined, leading to the following

expression for a log-likelihood:

L ¼
XN

n¼1

ln
1

K

XK

k¼1

b
2p

� �D=2

exp
�bkyk � xnk

2

2

� �( )
, (5)

where a prototype yk residing in the observed data space is
obtained for each latent space point uk, using (4); and b is the
inverse of the noise model variance. As for finite mixture models,
of which GTM is a manifold-constrained instance, the expecta-
tion-maximization (EM) algorithm is a straightforward alternative
to obtain the maximum likelihood estimates of the adaptive
parameters of the model, namely W and b.

For the standard Gaussian GTM, the presence of outliers is
likely to negatively bias the estimation of the adaptive parameters.
In order to overcome this limitation, the GTM was recently
redefined [34] as a constrained mixture of Student’s t distribu-
tions: the t-GTM, aiming to increase the robustness of the model
towards outliers. The mapping described by Eq. (4) remains, with
the basis functions now being Student’s t distributions and leading
to the definition of the following mixture density:

pðxjW;b; nkÞ ¼
1

K

XK

k¼1

G
nk þ D

2

� �
bD=2

G
nk

2

� �
ðnkpÞD=2

1þ
b
nk
kyk � xnk

2

� �nkþD=2

,

(6)

where Gð�Þ is the gamma function and the parameter n ¼ ðn1; . . . ; nK Þ

represents the degrees of freedom for each component k of the
mixture, so that it can be viewed as a tuner that adapts the level of
robustness (divergence from normality) for each component.

As a byproduct of this reformulation of GTM, a statistic
quantifying to what extent t-GTM considers a data case xn to be
an outlier can be defined, following [28], as

On ¼
X

k

pðukjxnÞbkyk � xnk
2. (7)

The larger the value of Eq. (7), the more likely the case is to be
an outlier. Notice that pðukjxnÞ is the responsibility assumed by a
latent point k for the data case n and, the same as for the standard
GTM, it is obtained as part of the Maximum Likelihood estimation
of the model’s parameters, in the M-step of the EM algorithm.

3.1.3. Shortlisting outlier cases of interest

The process of shortlisting outlier cases of potential interest is
structured in four stages:
�
 Sammon’s mapping, as described in Section 2, is first used to
produce a nonlinear dimensionality reduction of the data to
three dimensions.
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�
 The free software package KING [17] is then used to visualize in
3-D the Sammon’s mapping of the spectra, enabling a
preliminary data exploration by experts.

�
 The data projections obtained with Sammon’s mapping are

then modelled by t-GTM (using all the spectra for finding
artefact-related outliers and distinct outliers, but only spectra
belonging to, in turn, G1, G2 and G3 for finding class outliers),
from which a value of On is obtained for each data case that
quantifies the corresponding degree of atypicality. Histograms
of On were generated to shortlist potentially conflictive cases of
the three types described in the Introduction. Loose thresholds
of the statistic were set for the selection of the lists of outlier
candidates.

�
 Using all this information, two experts then singled out those

spectra they considered to be truly atypical in any sense and
compared them to the characteristic spectra corresponding to
their tumour type. Cases were only accepted as outliers when
both experts singled them out as truly atypical in any sense
and any of them deemed that this would preclude the correct
interpretation of the case by the diagnostic decision maker.
When agreed to be artefact-related outliers, spectra were tagged
in the database with information about the artefacts, and
recommendations on the suitability of their use for classifica-
tion were made. When agreed to be distinct outliers, they were
tagged as such. When agreed to be class outliers, a warning was
included in the tags so that it could be taken into account
before attempting classification.

3.2. Feature selection and classification

3.2.1. Feature selection

Let X ¼ fX1; . . . ;XDg be the original feature set. Mutual
information (MI) measures the mutual dependence of two
random variables from the point of view of information theory.
It has been used with success as a criterion for feature selection in
machine learning tasks. In this study, we use this concept
embedded in a fast algorithm that calculates the MI between
the class variable and a set of variables t ¼ ft1; . . . ; tkg by
computing the MI between the class variable and a ‘‘super-
feature’’ Vt, whose possible values are the concatenations of all
possible values of the features in t. The conditional entropy
between t and the class feature Y is then calculated as

HðY jt1; . . . ; tkÞ ¼ HðY jVtÞ ¼ �
X

v2Vt

X
y2Y

pðv; yÞ log
pðv; yÞ

pðyÞ
. (8)

In this way, the MI can be determined as a simple bivariate case:
IðVt;YÞ ¼ HðYÞ � HðY jVtÞ. An index of relevance of the feature Xi 2

X to a class Y with respect to a subset t � X, inspired on [2], is
given by

RðXi;Y jtÞ ¼
IðXi;Y jVtÞ

HðY jVtÞ
¼

HðYjVtÞ � HðY jXi;VtÞ

HðY jVtÞ
. (9)

This measure RðXi;YjtÞ can be regarded as a conditioned
coefficient of constraint [4], taking values between zero
(no relevance) and one (maximum relevance). A discretization
process is required in order to compute the conditional entropies
in Eq. (9). Many dimensionality reduction studies use discretiza-
tion schemes as a way to favor classification tasks (such as
[27,21]). This change of representation does not often result in a
significant loss of accuracy (on the contrary, sometimes signifi-
cantly improves it); it also offers large reductions in learning time.
The CAIM algorithm [18] is here selected because it is able to work
with supervised data and does not require the user to define a
specific number of intervals for each feature.
Let Dp�ðDþ1Þ ¼ ðdi;jÞ be a discrete data matrix described by D

variables X ¼ fX1; . . . ;XDg (plus the class variable Y , in column
Dþ 1). The matrix D is first sorted using lexicographical order,
which accelerates future computations (this is done only once).
Then the conditional entropy of the class variable given a super-
feature can be incrementally computed in only one pass over the
observations. This way of calculating feature subset relevance is
used to evaluate subsets of spectra, embedded into a fast filter
forward-search strategy, conforming the entropic filtering algo-

rithm. A detailed description of a fast implementation of this
algorithm can be found in [11].

3.2.2. Classification

Cross-validation (CV) is often used for the estimation of
prediction errors in classification, providing almost unbiased
estimation. However, estimating misclassification error with
small samples such as the one available for this study raises
concerns over its performance, since CV presents large variability.
One way around this potential problem involves combining the
bootstrap with CV (by performing CV on each of the bootstrap
samples), in a method called bootstrap CV or BCV [9]. Bootstrap
methods are well-suited for the construction of standard error
estimates and their confidence intervals (CIs) when sample size is
small or the distribution of the statistic is unknown.

The 1H-MRS dataset S was used to generate B ¼ 1000 bootstrap
samples S1; . . . ; SB that played the role of training sets. Denote Ti ¼

SnSi the corresponding test sets. The training sets were used for the
feature selection process itself (by the EFA), a posteriori classifier
induction and model selection (by CV). The test sets were used to
ascertain the generalization ability of the developed classifiers.

Seven different classifiers were first designed using the
training sets by means of leave-one-out CV (LOOCV) and the full
set of frequencies. They are: the nearest-neighbour technique
with Euclidean metric (kNN) and parameter k (number of
neighbours), the Naı̈ve Bayes classifier (NB), a linear discriminant

classifier (LDC), a quadratic discriminant classifier (QDC), logistic

regression (LR), a support vector machine with quadratic kernel

ðSVM2
Þ and a support vector machine with linear kernel (SVM-L):

both SVMs with a parameter C (regularization constant). EFA was
applied to the discretized 1H-MRS data (the training parts only) to
obtain what we call Best Spectral Subsets (BSS). Note that the EFA,
being a filter method, does not require an inducer. The classifiers
are then built in the training sets using the original continuous
frequencies (both in the full set and in the obtained BSSs) and
evaluated in the corresponding test sets.

There is an unavoidable inconvenience resulting from the
application of a feature selection algorithm on every boostrap
sample: the process yields a different (though probably quite
similar) solution for each and every sample. Bias-variance for
feature selection is a promising research field, but there is no
consensus yet on how to derive a single solution from multiple
ones. In the present setting, this situation is aggravated by the fact
that the EFA is capable of delivering more than one solution, if
desired. This is so because there may be several possibilities of
reaching maximum relevance by the addition of the last feature.
Given the importance of a correct assessment of feature
importance, it was decided in this study to track them all. Hence,
the application of the EFA yields a collection of solutions
S1; . . . ;SB, which are sets of feature subsets.

Every Si was first collapsed into a single subset si by
computing the following function:

IðSÞ ¼
X

aab2S

MIða; bÞ, (10)

where MI is the mutual information between features a and b and
setting si ¼ argminS2Si

IðSÞ. By construction of the EFA solutions,
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all the Si are of the same size, so normalization is not necessary,
given that all the summations in (10) have the same number of
terms. This way of proceeding ensures that the chosen feature
subset has maximum relevance (because it was one of the sets
delivered by the EFA) and hopefully minimum redundancy among
its features—because it is the minimizer of (10).

Once the boostrap feature sets s1; . . . ;sB are obtained, we
explored in this work four different strategies to obtain a single
bootstrap solution s�, as follows. First, we created the set F as the
union of all the si and defined the frequency of a feature as the
number of times it belongs to any of the si, divided by B.

R ¼ 1: Elements in F are fed into a forward selection
algorithm sorted by descending frequency, where the stopping
condition is met when reaching the maximum relevance ðR ¼ 1Þ.

20% cum.: For many events, 80% of the effects (viz. classifica-
tion ability) come from 20% of the causes (viz. spectral
frequencies). Following this Pareto principle, spectral points in
F were included in the final subset until reaching approximately
20% of the normalized cumulative frequency.

20% fea.: Similarly to the previous strategy, the 20% of the most
frequent spectral points in F are included.

Peaks: The elements in the sets s1; . . . ;sB are considered as a
distribution, which can be displayed. Some of the most dominant
and interpretable peaks of the resulting histogram are then
selected with the advice of the expert radiologist (see Figs. 6
and 8).
4. Experimental results and discussion

4.1. Outlier characterization

In this study, the minimization of the Sammon’s error was
performed by the Newton method. A collection of models was
obtained by varying the initial points (100 different random
values) and the step size (nine different values), for a total of 900
runs. The models with lowest Sammon’s error were selected for
further analysis. The visualization of the high-dimensional spectra
through Sammon’s nonlinear mapping is illustrated in Fig. 1 (left).
High-grade malignant tumours are displayed in black, low-grade

gliomas in white, and meningiomas in gray. Overall, these three
groups look well-defined and show a reasonable degree of
separation, but it is also clear that some cases do not conform
to this behaviour and that some of the issues outlined in the
Introduction should be considered. The level of distortion
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Fig. 1. A 3-D view of the projected MRS data obtained by Sammon’s mapping (left: Hig

meningiomas in gray) and the projected vs. original interpoint distances (right).
resulting from Sammon’s mapping is illustrated in Fig. 1 (right).
A perfect diagonal would correspond to a mapping with no
distortion.

Several spectra of interest are also displayed in Fig. 2 for
illustration, highlighted from different views of the 3-D data: two
cases (I0105, a glioblastoma, and I1090, a meningioma) in Fig. 2
(top row) that are both distinct and class outliers. The meningioma
I0009, in Fig. 2 (middle row), which is a class outlier, but not a
distinct outlier. Finally, in Fig. 2 (bottom row), two artefact-related

outliers, which the experts described as being contaminated by
noise and affected by alignment (this without consensus between
experts) and polispiculated artefacts (in the case of I0175, a
glioblastoma), and affected only by a polispiculated artefact
(I0420, a meningioma).

The histogram in Fig. 3 displays the distribution of the On

measure in Eq. (7) for the complete MRS dataset. A threshold of
On ¼ 15 was set to shortlist outlier candidate spectra. This yielded
21 potential outliers that were inspected by the experts. The first
expert decided that 18 of them qualified as such (3 distinct outliers

and 15 artefact-related outliers. The three shortlisted potential
outliers not considered as such by the first expert are represented
and described in Fig. 4). The second expert also singled out 18
outliers (although not exactly the same: there was lack of
coincidence in 2 cases, one proposed by each expert, which
were therefore not included in the final list). Out of the 17
remaining candidates, both experts agreed on that 4 of them, even
if atypical in some sense, could still be interpreted correctly by a
trained decision maker. Consequently they were not included in
the final list either.

The corresponding full outlier characterization is presented in
Table 2. Interestingly, there is no low grade glioma amongst them
on which the experts could agree upon and, instead, high-grade

malignant outliers predominate (69% of all the agreed outliers,
while only 56% of all data).

As mentioned in the Introduction, spectra can also be atypical
specifically with respect to their group of tumours. These are what
we call class outliers and we now turn our attention to them. Their
corresponding histograms for statistic On are displayed in Fig. 5.
Nine low-grade gliomas, seven high-grade malignant tumours and
10 meningiomas were shortlisted and inspected by the experts.
Both experts considered that, out of these, none of the low-grade

gliomas qualified as class outliers. There was more disagreement on
high-grade malignant tumours: the first expert only accepted 2,
whereas the second expert singled out these 2 plus another 4.
Finally, the first expert singled out five meningiomas, all but one of
200
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0
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Original Interpoint Distances

h grade malignant tumours are displayed in black, low grade gliomas in white, and
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Fig. 2. 3-D Sammon’s mapping view of several cases of interest (with groups of tumours displayed in black, gray and white, as in Fig. 1), on the left column, and their

corresponding individual spectra (dotted lines) and mean spectra (solid lines) of the tumour groups they belong to, on the right column (case numbering as coded in the

original INTERPRET database [14]). The abscissa axis displays frequency in ppm.
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them agreed by the second expert. Some of these cases also
contain artefacts, and they are characterized in full in Table 3.
The decision to keep class outliers in the final list was, in this case,
more conservative: they were not included if there was no
agreement between the experts to single them out as truly
atypical or if both of them deemed that atypicality would not
preclude the correct interpretation of the case by the diagnostic
decision maker. It is worth noting that the small number of class

outliers identified in this dataset suggests the existence of quite
compact and homogeneous tumour groups. This is most evident
for low-grade gliomas, amongst which the experts did not agree
upon any of the cases.
4.2. Feature selection and classification

For every feature selection experiment, the size of the
corresponding BSSs, their test set performance, basic sample
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Table 2
Outlier characterization of the complete 1H MRS LET dataset.

Id Tum Dis Artefact-relat. outl.

noi wat ali bas pol edd

I1061(R) G1(a2)y X1

I0062� G2(gl)z X1 X2 X1 X1

I0105� G2(gl)z X2

I0172 G2(gl)z X1 X2 X2

I0175� G2(gl)z X2 X1 X2

I0354� G2(gl)z X1 X2

I0428� G2(gl)z X1 X2

I1044��(R) G2(gl)z X2

I1057��(R) G2(gl)z X2 X2 X2

� 2 2
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statistics and bootstrap confidence intervals are reported in this
section.

The average computation times for the different procedures
(all carried out in a node of a computation cluster including 2
CPUs at 2.21 MHz) were as follows: for the application of EFA to
one bootstrap sample: 65 s. For the obtention of one (final) subset
of spectral points per bootstrap sample: 1.87 s for the slowest
method. For the obtention of the final subset of spectral points
(i.e. for the whole process): 4.04 h. The average times for the
development of a classifier from one bootstrap sample (including
model selection, when necessary) ranged between 0.3 and 4.2 s.

The spectral frequencies corresponding to the features in the
final BSSs derived from the four strategies described in Section 3.2
(R1, 20% cum., 20% fea. and Peaks) are reported in full in Table 4.
Their relative frequency of selection is displayed in Fig. 6. They are
also summarily depicted in Fig. 7, shown against the average
spectra for all classes (tumour groups).

Five general regions of specially relevant spectral frequencies
can be easily observed: the first, between 3.89 and 3.72 ppm,
corresponds to the presence of glutamate/glutamine-containing
compounds (2CH-groups) and of alanine (2CH-group), which
mostly separates meningiomas from the other groups of tumours.
The second has its centre in the creatine peak at 3.03 ppm; this
metabolite plays a role in the maintenance of energy metabolism
[7]. The third, from 2.52 to 2.18 ppm, corresponds again to
glutamate and glutamine metabolites (this time 4CH2-groups),
with characteristically high values for glioblastomas and menin-

giomas. The fourth, from 1.67 to 1.32 ppm, is roughly located
nearby the Alanine (1CH3-group) peak. Finally, the fifth region,
from 1.38 to 1.15 ppm, covers the area where lactate and lipids are
0 10 20 30 40 50 60 70
0

5
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20

25
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35
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Fig. 3. Histogram of statistic On obtained using t-GTM for the whole dataset. The

selected threshold at value 15 is represented as a vertical dotted line.
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Fig. 4. Plots of the individual spectra (dotted lines) and mean spectra of the tumor g

considered as such by the first of the experts. The statistic On for all these three cases was

reduced range of frequencies over 4 ppm that do not correspond to metabolites of know

the lactate area due to partial cancelation of the lactate/lipids doublet signals. (Right) A
neatly identified; high-grade malignant tumours show very high
values in this area, which indicate the existence of anaerobic
metabolism resulting from lack of blood irrigation.

Notice the fact that the feature selection histogram in Fig. 6 is
quite smooth, with several spectral frequencies out of those
around the most frequently selected ones being also often picked
up as relevant. Correspondingly, we also observe the existence of
several frequency intervals of low relevance. All this is consistent
with the fact that contiguous spectral points in a peak region will
in most cases be highly inter-correlated [32].

Complete test-set performances are reported as follows. In
Table 5, the five rows include information on the size of the used
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roups they belong to (solid lines) for the three shortlisted potential outliers not

very close to the selected threshold. (Left) A glioblastoma with an artefact in a very

n relevance. (Centre) A clear glioblastoma with an unusual narrow inverted peak in

n easily identifiable meningioma with unusually high-lipid/macromolecule levels.

I1379 G2(gl)z X X

I0027 G2(me)z X2 X1

I0368��(R) G2(me)z X1 X2

I1070 G2(me)z X2

I0055(R) G2(me)y X1

I0390��(R) G3(mm)z X1 X2

I0420� G3(mm)z X2

I1074 G3(mm)z X2

I1090� G3(mm)z X2

I1378 G3(mm)z X2 X1 X2

Columnwise, Id is an anonymized case identifier from the INTERPRET database

[14]; star superscripts in this column indicate that there are artefacts that do not

preclude the expert’s correct interpretation of the case (one star if only one expert

agrees with this; two stars if both experts agree); (R) indicates that the case is

rejected from the final list. Tum refers to tumour type (see labels in Section 2); in

this column, ‘‘y’’ indicates that only one expert selected this case, whereas ‘‘z’’

indicates that both experts selected it. Dis refers to distinct outliers. Six types of

artefacts were found: noi stands for noise; wat for bad water signal suppression; ali

for alignment; lin, linebase; pol for the polispiculated artefact and edd for eddy

currents. See main text for details. In the Dis column, and in all the artefact-related

ones, the superscript figure indicates if only one expert or both of them identified

the corresponding type of artefact.
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Fig. 5. Histogram of statistic On for each of the tumour groups in the dataset. (Left) Low grade gliomas; (centre) High-grade malignant tumours; (right) Meningiomas. The

selected thresholds are represented as vertical dotted lines.

Table 3
Class outlier characterization of the 1H MRS dataset, by groups of tumours.

Id Tum Artefacts

noi wat ali bas pol edd

Low grade gliomas (G1)

;

High-grade malignant (G2)

I0175 gly X1 X1 X1

I0105� glz

I0172 gly X1 X1 X1

I0428 gly X1 X1

I0055 mey

I1070 mez

Meningiomas (G3)

I0114�(R) mmy

I1090 mmz

I1378 mmz X1 X1

I0002��(R) mmz

I0009� mmz

Label description as in previous table.

Table 4
Final subsets of spectral points (features) obtained by each strategy on the

complete 1H-MRS data set.

Reduction jBSSj ppm

R ¼ 1 24 3.81, 3.79, 3.77, 3.76, 3.74, 3.36, 3.05, 3.03, 2.94, 2.79, 2.52, 2.33

2.20, 2.14, 1.55, 1.53, 1.51, 1.32, 1.29, 1.27, 1.23, 1.21, 1.19, 1.17

20% cum. 4 3.76, 3.03, 1.53, 1.27

20% fea. 39 3.81, 3.79, 3.77, 3.76, 3.74, 3.72, 3.36, 3.05, 3.03, 3.00, 2.94, 2.79,

2.52, 2.48, 2.46, 2.39, 2.35, 2.33, 2.22, 2.20, 2.16, 2.14, 1.57, 1.55,

1.53, 1.51, 1.49, 1.44, 1.34, 1.32, 1.30, 1.29, 1.27, 1.25, 1.23, 1.21, 1.19,

1.17, 1.15

Peaks 8 3.76, 3.36, 3.03, 2.33, 2.14, 1.53, 1.32, 1.27
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Fig. 6. Relative frequency distribution of spectral points selected by the EFA in the

1000 bootstrap samples from the complete 1H-MRS data. Frequencies selected by

the Peaks procedure are labelled for reference (3.76 ppm: glutamate/glutamine

compounds; 3.36 ppm: unidentified; 3.03 ppm: creatine; 2.33 and 2.14 ppm:

second type of glutamate/glutamine compounds; 1.53 ppm: nearby alanine;
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BSS and the mean classification performances for different
classifiers in the form m� � s�=

ffiffiffi
B
p

, where m� and s� are the test
set mean and standard deviation for accuracy in the bootstrap
samples, respectively. These figures give a first impression of
mean test-set performance and its stability. Each row corresponds
to a different method of choosing the BSS. More specifically, NR
stands for ‘‘no reduction’’, and the other four are the strategies
described in Section 3.2.

Test set confidence intervals, as shown in Table 6, can be
obtained by the bootstrap percentile method, as follows: let e� ¼

ðe�1; . . . ; e
�
BÞ denote the error obtained by a given configuration

(classifier plus reduction strategy) on the bootstrap samples
S1; . . . ; SB. The CI is constructed by ordering e� in ascending order
and choosing critical value observations as the endpoints of the
confidence intervals. For instance, for B ¼ 1000, observations 26
and 975 are the endpoints of the 95% CI.

In addition, a statistical significance analysis of the observed
differences between classification accuracies was performed using
the Wilcoxon signed rank test (at the 95% level). We mainly aimed
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Table 5
Bootstrap mean classification performance on the 1H-MRS test sets.

Reduction jBSSj NB kNN LDC QDC LR SVM2 SVM-L

NR 195 83:2� 0:1 78:4� 0:1 � � 72:0� 0:2 77:8� 0:1 84:7� 0:1

R ¼ 1 24 85:0� 0:1 84:1� 0:1 82:9� 0:1 � 76:6� 0:2 79:4� 0:1 80:1� 0:1

20% cum. 4 82:4� 0:1 80:3� 0:1 82:4� 0:1 82:6� 0:1 84:4� 0:1 80:2� 0:1 84:2� 0:1

20% fea. 39 85:3� 0:1 83:6� 0:1 81:8� 0:1 � 76:7� 0:1 79:3� 0:1 82:1� 0:1

Peaks 8 84:1� 0:1 85:7� 0:1 85:6� 0:1 80:7� 0:1 86:1� 0:1 79:1� 0:1 84:5� 0:1

Results marked with ð�Þ indicate numerical problems (number of observations equal or less than number of features). NR stands for ‘‘no reduction’’.

Table 6
Confidence intervals by percentile method of bootstrap mean classification performance on the 1H-MRS test sets.

Reduction NB kNN LDC QDC LR SVM2 SVM-L

NR (74.7,90.3) (68.9,86.7) � � (61.2,81.1) (68.9,86.3) (76.5,91.7)

R ¼ 1 (76.6,91.9) (75.7,90.9) (74.6,90.4) � (65.5,84.8) (70.0,87.8) (71.4,87.7)

20% cum. (74.3,90.4) (72.3,88.1) (74.0,90.3) (74.7,90.1) (76.7,91.5) (71.0,88.1) (76.8,91.4)

20% fea. (77.3,92.9) (75.3,91.1) (73.5,89.6) � (67.1,85.3) (69.2,87.5) (73.9,89.6)

Peaks (76.9,91.6) (76.0,90.8) (76.7,91.3) (71.2,88.6) (76.1,91.5) (71.0,87.9) (75.7,91.7)

Results marked with ð�Þ indicate numerical problems (number of observations equal or less than number of features). NR stands for ‘‘no reduction’’.
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to ascertain whether the results obtained using the four reduction
methods were significantly different to those of the NR
(no reduction) method. All differences reported were found to
be significant, with the single exception of the SVM-L classifier
using the ‘‘Peaks’’ method.

Previous published work analysing similar 1H-MRS data (but in
a more simple setting that involves binary classification) used PCA
followed by LDA to distinguish between high-grade malignant

tumours and meningiomas, obtaining a mean AUC (area under the
ROC curve) of 0.94, using six principal components [7]. The same
method was used to distinguish between high-grade malignant

tumours and astrocytomas grade II (part of the low-grade gliomas

group), obtaining a mean AUC of 0.92, also using six principal
components. (Note, though, that AUC results cannot be directly
compared to classification accuracies such as the ones we report
in our experiments.) In [32], a basic linear model (LDA) with six
spectral frequencies (3.72, 3.04, 2.31, 2.14, 1.51 and 1.20 ppm)
achieved a 83% of correct classification on an independent test set,
this time using exactly the same multi-class setting with three
groups of tumours that we have analysed in this study. Similar
results were found in [24] for a combination of PCA and LDA and
for different versions of support vector machines.

Our results, reported in Table 5, are very consistent with these,
achieving a maximum 86% average correct classification with the
Peaks procedure (eight mostly interpretable spectral frequencies,
see Fig. 6) and a substantial 84% with just four interpretable
frequencies, namely 3.76 (2CH-groups of glutamate/glutamine-
containing compounds), 3.03 (creatine), 1.53 (nearby the 1CH3-
group alanine peak) and 1.27 (lipids).

In view of the results reported in Figs. 6 and 7, and in Tables
4–6, several experimental findings can be summarized as follows:
1.
 Overall, all classifiers report stable test results, mostly in the
region of 78–86% accuracy, which are consistent and slightly
superior to others reported in the literature [32]. Naı̈ve Bayes,
LDC and SVM-L are, overall, the bests classifiers for these data,
reaching up to 86% average accuracy (in the case of LDC) with
only eight variables. The computational cost of SVM-L is
higher, though, mainly due to the necessary model selection
step performed for the latter. This gives an extra edge to simple
models such as Naı̈ve Bayes and LDC. It also suggests that
linear models work better for these data.
2.
 The results justify the use of feature selection. All classifiers
yield better results for at least some, if not all, the selection
procedures than for the complete set of 195 frequencies (the
NR procedure). All but one of these differences have been
found to be statistically significant. Moreover, the selected
features increase considerably the interpretability of the
results. In the simplest scenario, Logistic Regression and
SVM-L achieve 84% mean accuracy with only 4 frequencies
that can be described in terms of the presence of metabolites in
the tumour. The use of a selection procedure such as Peaks,
partially guided by a human expert, finds justification in the
maximum accuracy results it yields (86% for kNN, LDC and LR).
This is specially important for the clinical implementation of
these methods, in which the inclusion of expert prior knowl-
edge is an almost compulsory requirement.

4.3. Assessing the effect of outliers on feature selection

and classification

As stated in the Introduction, we hypothesize that the
existence of outliers, and specially of class outliers, in the dataset
will negatively affect the classification process, by forcing the
classifiers to fit data which are atypical and, therefore, unrepre-
sentative of either the overall population of brain tumours or the
class they belong to.

In order to test this hypothesis, we repeat the experiments
reported in the previous section for a subset of the complete
dataset: one in which the 15 outliers (a 7.69% of cases: note that
many distinct and artefact-related outliers are also class outliers)
listed in Tables 2 and 3 are removed.

Again, for every feature selection experiment, the size of the
corresponding BSSs, their test set performances, basic sample
statistics and bootstrap confidence intervals are reported. The
new spectral frequencies for the reduced dataset, corresponding
to the features in the final BSSs derived from the R1, 20% cum., 20%
fea., and Peaks strategies are reported in Table 7. Their relative
frequency of selection is displayed in Fig. 8. They are also depicted
in Fig. 9.

The same regions (with minor changes) of specially relevant
spectral frequencies are obtained. Interestingly, the only region
previously identified as relevant that loses relevance once the
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Fig. 9. Position of the final best spectral subsets per strategy in 1H-MRS long echo

time dataset without outliers in the whole spectrum.

Table 7
Final Best Spectral Subsets per strategy in 1H-MRS long echo time dataset without outliers.

Reduction jBSSj ppm

R ¼ 1 23 3.79, 3.76, 3.74, 3.05, 3.03, 2.94, 2.39, 2.35, 2.33, 2.31, 2.29, 2.20

2.16, 2.14, 1.57, 1.55, 1.53, 1.51, 1.32, 1.27, 1.23, 1.21, 1.19

20% cum. 5 3.76, 3.03, 2.14, 1.17, 1.23

20% var. 39 3.79, 3.77, 3.76, 3.74, 3.72, 3.05, 3.03, 2.94, 2.90, 2.52, 2.50, 2.48, 2.46, 2.39, 2.35, 2.33, 2.31, 2.29, 2.20, 2.16, 2.14, 1.57, 1.55, 1.53, 1.51, 1.49, 1.46, 1.44, 1.34,

1.32, 1.30, 1.29, 1.27, 1.25, 1.23, 1.21, 1.19, 1.17, 1.15

Peaks 6 3.76, 3.03, 2.33, 2.14, 1.51, 1.23

A. Vellido et al. / Neurocomputing 72 (2009) 3085–30973094
outliers are removed is the one around 3.36 ppm, a frequency with
unknown metabolical interpretation. This might indicate that the
original relevance was unduly caused by the presence of outliers.
In any case, these results refute one of the hypothesis stated in the
introduction, according to which we expected the feature
selection results to vary substantially in the absence of the
identified outliers. The feature selection histogram in Fig. 8 is once
again very smooth and makes the implementation of the Peaks

procedure easy.
The classification results in Tables 8 and 9 are most interesting,

as they reveal that the removal of the outlier cases improves the
results for all classifiers overall and for most of the selection
procedures. In summary:
1.
 Overall, all classifiers report very stable test results, mostly
with over 80% accuracy. Again, Naı̈ve Bayes and SVM-L yield,
overall, some of the best results, this time accompanied by
kNN (with LDC not far behind), reaching almost 88% average
accuracy (in the case of LR and SVM-L) with only five variables
and over 88% with six variables (with SVM-L). The accuracies
improve in most of the settings on those obtained with the
complete dataset, reported in Table 5, at least partially
confirming the corresponding hypothesis formulated in the
introduction section. This is reinforced by a statistical
significance analysis (Wilcoxon signed rank test at the 95%
level) that was carried out to qualify the differences of
performance with and without outliers, for the four reduction
methods plus the no reduction method. All differences were
found to be significant, with the single exception of the SVM2

classifier using the 20% fea. method. Such results at least
partially justify the strategy of keeping the outliers out of the
model.
2.
 The new results also confirm the usefulness of feature
selection. All classifiers yield better results for at least some,
if not all, the selection procedures. LR and SVM-L, as previously
mentioned, achieve around 88% average accuracy with only
five or six metabolically interpretable frequencies. A statistical
significance analysis was again carried out to contrast the
results obtained using the four reduction methods against the
NR (no reduction) method. All differences were found to be
significant, with the two exceptions of the SVM-L classifier
using the Peaks method and the SVM2 classifier using the R ¼ 1
method.
3.
 The improvement in accuracy is somehow less noticeable for
the most radical feature selection processes (20% cum. and
Peaks). The possible reason for this is that by removing
most of the features (leaving only 5 in 20% cum. and 6 in
Peaks), we are likely to be removing most of the causes of
outlierness for many spectra. Therefore, for extreme dimen-
sionality reduction via feature selection, the strategy of
keeping the outliers out of the model for classification
becomes slightly less relevant.
Figs. 10 and 11 provide an illustrative general comparison of
1
the classification results for the complete H-MRS dataset and the

subset without outliers using Naı̈ve Bayes and SVM-L, two of the
classifiers achieving best overall results. In this comparison,



ARTICLE IN PRESS

Table 8
Bootstrap mean classification performance on the 1H-MRS long echo time test sets without outliers.

Reduction jBSSj NB kNN LDC QDC LR SVM2 SVM-L

NR 195 85:7� 0:1 81:6� 0:1 � � 74:6� 0:2 80:2� 0:1 88:2� 0:1

R ¼ 1 23 88:2� 0:1 88:8� 0:1 86:6� 0:1 � 79:2� 0:2 80:1� 0:1 87:8� 0:1

20% cum. 5 84:8� 0:1 85:0� 0:1 85:4� 0:1 84:0� 0:1 87:6� 0:1 82:8� 0:1 87:8� 0:1

20% var. 39 88:3� 0:1 87:7� 0:1 84:9� 0:1 � 79:7� 0:1 79:6� 0:1 88:9� 0:1

Peaks 6 84:9� 0:1 86:5� 0:1 87:2� 0:1 85:8� 0:1 87:3� 0:1 82:6� 0:2 88:1� 0:1

NR stands for ‘‘no reduction’’.

Table 9
Confidence intervals by percentile method of bootstrap mean classification performance on the 1H-MRS long echo time test sets without outliers.

Reduction NB kNN LDC QDC LR SVM2 SVM-L

NR (78.7,93.4) (73.1,89.8) � � (64.2,83.9) (71.4,88.9) (81.0,99.3)

R ¼ 1 (80.6,95.3) (81.7,95.4) (79.5,92.9) � (62.5,89.1) (70.8,88.7) (79.1,95.2)

20% cum. (77.9,92.4) (77.6,91.9) (78.1,92.4) (75.7,91.8) (79.7,94.3) (72.3,91.0) (80.0,94.9)

20% fea. (80.9,95.3) (80.6,93.9) (76.1,92.5) � (70.3,88.2) (70.0,87.9) (81.3,95.5)

Peaks (74.4,92.4) (80.3,93.0) (80.0,93.8) (77.6,93.1) (79.1,94.2) (72.4,91.9) (80.6,94.2)
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Fig. 10. Comparison of the bootstrap mean test classification performance for the
1H-MRS long echo time test datasets using Naı̈ve Bayes with and without outliers,

using incremental subsets by adding one spectral point at a time, in order of

relevance, and starting from the two most frequently selected by EFA. X-axis

indicates the current size of the subset evaluated. An accuracy of almost 88% can

be achieved with 15 frequencies.

(6,84.8)

(7,89.7)

0.65
0.68
0.70
0.73
0.75
0.78
0.80
0.83
0.85
0.88
0.90

2 9 16 23 30 37 44 51 58 65 72 79 86 93 10
0

10
7

11
4

12
1

12
8

13
5

14
2

14
9

15
6

16
3

17
0

17
7

18
4

19
1

No. of spectral points

lSVM-All cases

lSVM-No outliers

Fig. 11. Comparison of the bootstrap mean test classification performance for the
1H-MRS long echo time test datasets using SVM-L with and without outliers, using

incremental subsets by adding one spectral point at a time, in order of relevance,

and starting from the two most frequently selected by EFA. X-axis indicates the

current size of the subset evaluated. An accuracy of almost 90% can be achieved

with as little as seven frequencies.
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incremental frequency subsets are evaluated by adding one
spectral point at a time (and it can, therefore, be considered as a
generalization of the 20% fea. procedure). The subset without
outliers outperforms the complete dataset throughout the whole
range of subset sizes.
5. Conclusion

The diagnosis of brain tumours is a challenging medical area,
where non-invasive techniques, such as those based on MR, play
an important role. MR comes in two main flavors: imaging and
spectroscopy. Most specialized doctors are accustomed to the
imaging mode, but few are familiar with the nuances of spectro-
scopy, a technique that reveals the metabolic fingerprint of
tumours. In this situation, many experts should benefit from the
use of at least partially automated computer-based decision
support.

In this study, we have defined a fairly general method
for the semi-automated identification and characteri-
zation of atypical and potentially conflicting MR spectra
corresponding to an international, multi-centre database
of brain tumour pathologies. Atypical spectra can exist regardless
of careful database quality control. This method combines
nonlinear dimensionality reduction, exploratory visualiza-
tion and automatic outlier detection techniques with expert
knowledge.

A thorough feature selection process, based on an
entropic filtering algorithm, followed by classification using a
wide array of linear and nonlinear models, has revealed that a
parsimonious and easily interpretable subset of spectral
frequencies can provide significantly better accuracy than the
complete high-dimensional spectrum. It has also been shown that
the removal of the detected outliers from the analysed datasets
can significantly improve classification, although this strategy
becomes less relevant for the most extreme feature selection
procedures. It is also interesting that, refuting our initial
hypothesis, the removal of outliers from the dataset does
not substantially modify the feature selection results. In conclu-
sion, the reported results partially support the usefulness of the
outlier identification and characterization procedure, as it is
shown to yield models with similar or better generalization
capabilities.

Future research should extent these experiments to short echo
time 1H-MRS data. These data provide more detailed metabolic
information (due to a lesser attenuation of the signal) but at the
expense of poorer peak resolution (i.e. more peak overlapping).
Comparisons between the different echo times should be carried
out. Ways of combining the information of both echo times should
also be explored.
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Catalunya (UPC). In 1996, he joined the Department of
Llenguatges i Sistemes Informátics at UPC, as an assistant
professor. In 2004, he received the Ph.D. degree in
Computer Science from the UPC. His research interests
include Pattern Recognition, Neural Networks, Support
Vector Machines and Feature Selection.
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