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Abstract. The diagnosis of brain tumours is an extremely sensitive and complex 
clinical task that must rely upon information gathered through non-invasive 
techniques. One such technique is magnetic resonance, in the modalities of 
imaging or spectroscopy. The latter provides plenty of metabolic information 
about the tumour tissue, but its high dimensionality makes resorting to pattern 
recognition techniques advisable. In this brief paper, an international database of 
brain tumours is analyzed resorting to an ad hoc spectral frequency selection 
procedure combined with nonlinear classification. 
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Introduction 

Decision making in oncology is a sensitive undertaking, and even more so in the 
specific area of brain tumour oncology diagnosis, for which the costs of misdiagnosis 
are very high. In this area, in which data acquisition techniques are preferably indirect 
and non-invasive, clinicians should benefit from the use of at least partially automated 
decision support. 

This study addresses the problem of human brain tumour diagnosis on the basis of 
biological signal data obtained by Magnetic Resonance Spectroscopy (MRS). MRS is a 
technique that can shed light on cases that remain ambiguous after clinical 
investigation. This technique has evolved rapidly over the past 15 years and has shown 
very encouraging correlations between brain tumour types and spectral patterns. In vivo 
MRS enables the quantification of metabolite concentrations non-invasively, thereby 
avoiding serious risks of brain damage. However, the introduction of MRS in clinical 
practice has been hampered by different problems: The first is associated with the 
acquisition of in vivo MRS signals from living tissues at magnetic fields low enough 
not to pose a threat to patients. Furthermore, clinicians often lack the training required 
to make sense of the MR spectral signal, limitation compounded by the fact that this 
task requires considerable experience from a radiologist. Additionally, the natural high 
dimensionality of the spectra, the presence of noise and artifacts, and the low amount 
of data available for specific pathologies (that is, for specific brain tumour types) 
complicates their diagnostic-oriented classification. Machine Learning (ML) and 
related data analysis methods can play a useful role in this setting. 



We aim to investigate whether the contribution of adjacent variables/frequencies 
improves the class discrimination yielded by the use of individual, non-adjacent 
variables. To that end, we explore a new methodology that involves the combination of 
different techniques, namely the Moving Window and the between/within group 
variance analysis, for the reduction of the spectral dimensionality by selection of 
bandwidths based on the energy criteria. Nonlinear Artificial Neural Networks (ANN) 
will be used for classification in order to gauge the properties of the developed 
techniques. 

 
 Number of cases 

Tumour class SET  LET  

a2: Astrocytomas, grade II 22 20 

a3: Astrocytomas, grade  III. 7 6 

ab: Brain abscesses 8 8 

gl: Glioblastomas, giants cells  86 78 

hb: Haemangioblastomas 5 3 

ly:  Lymphomas 10 9 

me: Metastases 38 31 

mm: Meningiomas grade I 58 55 

no: Normal cerebral tissue, white matter 22 15 

oa: Oligoastrocytomas grade II 6 6 

od: Oligodendrogliomas grade II 7 5 

pi: Pilocytic astrocytomas grade I. 3 3 

pn: Primitive neuroectodermal tumours and 
medulloblastomas 9 7 

ra: "Rare tumours"  19 18 

sc: Schwannomas 4 2 

 Table 1: Contents of the INTERPRET database. The table includes a list of the tumour types and the number 
of cases for each of them for both acquisition time echos. 

1. Brain Tumours 

The tumours of the central nervous system (CNS) represent around the 2% of the total 
of cancers diagnosed around the world. Annually, about 175,000 people are diagnosed 
with tumours that affect the CNS [1], out of which 29.000 in Europe [2]. The incidence 
ratio of this pathology is of 7 persons per 100,000. Different studies have shown that 
the distribution of the tumours by age is bimodal, with a peak in infants and another in 
adults between 40 and 70 [3]. A completely unambiguous diagnosis of a brain tumour, 
in terms of type and degree, can only be obtained by histopathological analysis of a 
brain biopsy. 



1.1. The Problem of Brain Tumour Classification Using MRS 

The current gold standard for classification of brain tumours is class labelling 
according to the World Health Organization (WHO) biopsy-based system. Biopsies 
require an invasive procedure with a risk of mortality of 0.2-0.8% and an estimate of 
morbidity in the range 2.4-3.5% [4, 5]. Additionally, only about a 91% of cases are 
truly identifiable through this test, which means that up to 9% of patients remain 
undiagnosed [6]. For these reasons, among others, it is essential to improve the 
classification of different types of brain tumours using non-invasive methods. Amongst 
these, we have MR Imaging (MRI), which provides accurate spatial resolution but little 
metabolic information, and Spectroscopy (MRS), which sacrifices spatial resolution to 
obtain a detailed metabolic fingerprint of the tumour tissue. 

1.2. INTERPRET: An International MRS Database of Human Brain Tumours  

This study relies on a database created under the framework of the European project 
INTERPRET, an international collaboration of centers from 4 different countries. The 
database includes single-voxel proton MRS (SV 1H-MRS), measured at long echo time 
(LET: 266 patients) and short echo time (SET: 304 patients). The total number of 
samples (spectral frequencies) was set to 512. For further details on data acquisition 
and processing, and on database characteristics, see, for instance, [7] and [8]. The 
database consists of the types of tumours listed in Table 1. 

2. Methods and Experiments 

2.1. The Moving Window Technique 

The Moving Window (MW), is a technique in which a signal X is multiplied by a 
window of magnitude 1 and constant width (w); a mathematical function or analytical 
processing is applied to this subset of samples, obtaining a result. Next, the window is 
displaced by one position, performing again the previous operation. The mathematical 
function can be used to find optimal sub-regions within informative frequency 
intervals, and also to perform extraction and/or selection of features. Figure 1 illustrates 
this idea. When w = 1, the MW moves along the signal, travelling from the first sample 
to the last, creating m-w+1 outlets (m = number of samples). The width of window can 
vary from 1 to m, accounting for all possible adjacent sub-regions. 
 

 
Figure 1: Schematic illustration of the Moving Window technique. 



 

2.2. MW and Between-Groups Variance Analysis    

We have developed a methodology based on the technique of MW and the analysis of 
between/within group variance, as a procedure for identifying those spectral 
frequencies (or intervals of continuous frequencies), with greater ability to discriminate 
between types of tumours. This is considered as a preliminary exploratory step towards 
a well-structured classification of tumour pathologies. 

The technique of MW has been implemented in conjunction with the calculation of 
a standard ratio (λ) of between/within-group variance (in turn, BGV and WGV). The 
Euclidean metric was used for calculating the variances. The ratio is defined as: 
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xi,Q and yj,Q are numerical vectors corresponding to patterns of w-dimensional 
characteristic, representing a number of variables and objects that conform the matrices 
X and Y, where X,Y ∈ Rw, and w is the width of the window. Also, μx =  X  and μy = 
Y , where μx and μy ∈ Rw.  

In each sequence of the MW, the λ is computed and the corresponding values 
stored in a matrix called Dissimilarity Index Matrix (DIM). DIM(k,l) is a triangular 
matrix containing the values of λ, with zeros on its upper diagonal. Each value of λ is 
labeled with the coordinates k and l, where k indicates the position of the spectrum 
where the window starts and l indicates the w used. To investigate the proposed 
method, we carried out a series of experiments concerning tumour types that, in some 
cases, had been investigated by other authors and in others, to the best of our 
knowledge, had not been previously investigated from this point of view.  

A visualization of the DIM was obtained for every experiment involving two types 
of tumours. Figure 2 is an illustrative example, and shows the DIM for G21 vs Mm and 
gl vs me. This figure shows three distinct zones: Zone 1 (Z1), which corresponds to 
artifacts associated with the beginnings of both the spectrum and the resonance 
frequency of water. Zone 2 (Z2) is the spectral band where most metabolic information 
resides and, therefore, should contribute the most to the discrimination between types 
of tumours. Zone 3 (Z3), finally, mostly contains noisy, irrelevant information. An 
analysis of λ values and a graphical representation of DIM provide us with interesting 
insights on the discrimination of tumour types. In brief: 

                                                           
1 G2: high-grade malignant tumours: gl + me. 



 
• The highest values of the DIM in small bandwidths (identified as gray belts in 

figure 2a) correspond to areas of the spectrum that, in previous studies, have 
been identified as most informative for the differentiation of the corresponding 
types of tumours. This reinforces the reliability of the proposed method.  

 
• In contrast, in experiments aimed to discriminate between two classes where 

the percentage of correct classification was reported to stay between 60% and 
70% (gl vs me and a2 vs a3), the values of λ in Z2 fall to levels very close to 
those obtained for Z1 and Z3 (see Figure 2b), which are known to be 
completely uninformative (being Z2 the informative area). This shows the 
potential of the parameter λ as an indicator of the separation between types of 
tumour, compared with the experiments with high accuracy (e.g., G2 vs mm). 

 

2.3. Detailed Study of DIM and Energy Computation for Feature Selection  

In all experiments, the largest values for λ were found for w = 1. Thus, for 
subsequent experiments, it was decided to use window widths equal to 1. The standard 
energies (E1, E2 and E3) were calculated for areas Z1, Z2 and Z3, in each experiment. 
The calculation of energy standardized by areas is given by: 
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Ei corresponds to the calculation of the standard energy in zone i. xi [n] corresponds to 
the signal composed of discrete λ values with w = 1, of the zone i,  and p is the size of  
xi[n]. Given that Z3 does not provide relevant information for classification, due to its 
direct correspondence with spectral zones modeled as random noise, it was decided to 
use the energy of this area to rescale the energy of zones Z1 and Z2 by E3. 

2.4. Feature Selection Based on Energy Criteria  

As a preliminary step before the presentation of the patterns to a classifier, an initial 
feature selection was carried out, obtaining a ranking (in descending order) of the λs of 
the starting window corresponding to zones Z1 and Z2. The variables were divided in 
groups corresponding to the set of variables whose energy is gradually providing 1% of 
the total energy of the two zones E´i /E3, i={1,…} (i.e., E´3 corresponds to a 3% 
accumulated energy). When the energy of each group is gradually increased, the 
number of variables also increases, because the number of variables depends strongly 
of the energy level that everyone provides. 

2.5. Data Classification 

Feed-forward ANN with a 2-layer architecture (i.e. one hidden layer of neurons 
and one output layer) were used in these experiments for data classification. The input 
layer of every network was adjusted to the dimension of each set of variable group. 
Each network had 20 units in the hidden layer and one unit in the output layer. The 
activation functions logsig and tansig were used in the hidden layer and the output 



layer, respectively. The networks were trained with Bayesian regularization back-
propagation, which updates the weights and bias according to the algorithm 
optimization Levenberg-Marquardt [9, 10]. One run of a 5-fold cross-validation was 
performed for each network, with a maximum of 150 epochs. 

As a reference, Table 2 reports the classification results in ascending order ranking 
of the ratio E’10 / E3 with its corresponding classification percentage, and the best 
classification results reached by others percentage of energy that in most of cases are 
different of the ratio E’10 / E3. Figure 3 shows the logarithmic adjustment of the λ 
values of E’10/E3 versus the mean classification percentage. This figure shows the 
tendency of the increment of the percentage classification with the increment of λ. 

 
 

(a)(a)  

(b)(b)  
 

Figure 2: Figure 2a (top) is the graphic illustration of DIM zones Z1, Z2 and Z3 for G2 vs mm. The gray 
stripes indicate the areas that generate the biggest differences between G2 and mm, and are shown to 
correspond to the highest values in the DIM. Figure 2b (bottom) represents the Graphic illustration of DIM 
for Gl vs me, with the representation of the mean (± standard deviation) of the spectra corresponding to each 
type of tumour. These two types of tumours are particularly difficult to separate, which is reflected in the 
little difference between the values of the DIM for Z1, Z2 and of Z3. 

 
 



Experiments E’10/E3 Classification percentage 

   Mean± st. dev.  
of E’10/E3

Mean ± st. dev.  
of maximum 
values 

Energy 
percentages 
of maximum 
values 

a2 a3 2.48 68.67± 18.5 82.00 ± 20.5 E’6/E3

gl me 3.36 68.38 ± 9.0 75.69 ± 9.8 E’8/E3

od a2 3.65 68.00 ± 11.0 84.00 ± 16.7 E’6/E3

a2 oa 3.77 76.67 ± 9.4 84.67 ± 16.6 E’9/E3

gl ly 3.93 82.04 ± 12.4 88.61 ± 5.5 E’8/E3

gl ab 3.97 94.18 ± 5.9 95.29 ± 6.4 E’9/E3

me ly 5.14 82.50 ± 16.8 82.50 ± 6.8 E’2/E3

gl a3 5.68 90.00 ± 8.4 94.00 ± 4.5 E’7/E3

a2 ly 5.87 81.78 ± 20.4 89.78 ± 10.0 E’4/E3

gl pn 7.85 91.76 ± 8.9 97.65 ± 3.2 E’5/E3

me pn 9.53 92.00 ± 8.2 93.14 ± 9.6 E’8/E3

mm ab 10.25 91.00 ± 12.3 93.33 ± 8.6 E’6/E3

G1* mm 11.42 97.67 ± 3.2 100 ± 0.0 E’9/E3

a2 G2 15.27 93.10 ± 3.7 94.51 ± 4.6 E’3/E3

G1* G2 16.35 92.10 ± 3.0 94.29 ± 5.4 E’7/E3

me mm 17.68 88.43 ± 9.2 98.00 ± 4.5 E’3/E3

G2 mm 18.75 88.33 ± 2.9 89.51 ± 4.9 E’9/E3

G1* no 23.88 98.89 ± 2.5 100 ± 0.0 E’3/E3

me 

vs. 

no 26.96 97.78 ± 5.0 98.00 ± 4.5 E’7/E3

 
Table 2: Ranking (in ascending order) of the ratio E’10 / E3 with its corresponding classification percentage. 
*G1 are low grade gliomas (a2+oa+od). 
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Figure 3: Logarithmic adjustment (4th order) of λ values E’10/E3 vs mean classification percentage of E’10/E3.   

 

Conclusions 

The experimental results reported in this study reinforce the validity of the defined 
parameter λ as an indicator of the potential of separation between types of tumour. The 
λ values confirms the lack of informative content of the spectral regions Z1 and Z3, and 
agrees with the absence in them of any metabolic resonances of interest for the 
classification of brain tumours, as reported in the literature of the field. 

A relationship between the increase in λ value and the percentage of correct 
classification reached in different experiments has also been found. Thus, the 



calculation of these ratios can be used as an indicator to find which frequencies or 
ranges of frequencies have the greatest ability to discriminate between types of tumor, 
as well as to investigate the degree of overlapping between types of tumour as a 
preliminary step before the presentation of the patterns to a classifier. 

In most cases, the percentage of classification exceeded the values reached by 
other studies [11-13] using different techniques, being of special relevance the 
experiments gl vs me and a2 vs a3, which according to existing literature, are specially 
difficult classification problems. 
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