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Abstract. The exploration of brain tumours usually requires non-
invasive techniques such as Magnetic Resonance Imaging (MRI) or Mag-
netic Resonance Spectroscopy (MRS). While radiologists are used to inter-
preting MRI, many of them are not used to the biochemical information
provided by MRS. In this situation, radiologists may benefit from the use
of computer-based support for their decisions. As part of the development
of a medical Decision Support System (DSS), MRS data corresponding to
various tumour pathologies are used to assist expert diagnosis. The high
dimensionality of the data might obscure peculiarities and anomalies that
would jeopardize automated DSS diagnostic assistance. We illustrate how
visualization, combined with expert opinion, can be used to explore data
in a process that should improve computer-based tumour classification.

1 Introduction

Diagnostic decision making in oncology is always a sensitive matter, and even
more so in the specific area of brain tumour oncology, for which the direct and
indirect costs - both human and financial - of misdiagnosis are very high. Medical
experts often take decisions on the basis of prior knowledge gleaned from their
experience but, in this context, in which most diagnostic techniques must be non-
invasive, clinicians should benefit from the use of an at least partially automated
computer-based DSS.

AIDTumour (Artificial Intelligence Decision Tools for Tumour diagnosis) is
a research project for the design and implementation of a medical DSS to assist
experts in the diagnosis of human brain tumours on the basis of data obtained
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by MRS. This is a technique that can shed light on cases that remain ambiguous
after clinical investigation. The MRS data used in AIDTumour and analyzed in
this brief paper belong to a complex multi-centre set containing cases of several
brain tumour pathologies diagnosed by biopsy and characterised according to
the World Health Organization (WHO) classification system. These data have
undergone a rigorous pre-processing quality control [1] that fully validates them
from the point of view of the radiologists. Nevertheless, and from the viewpoint
of their use in an automated computer-based DSS, the various origins of these
spectra and the complexity of their pre-processing make further data exploration
advisable. It might be problematic to include some data cases straightforwardly
in an automated DSS for three different reasons: Firstly, some may contain
measurement or acquisition artefacts that, even if not completely precluding
diagnosis by visual inspection, might induce errors in computer-based diagnosis.
Secondly, atypical cases, even if not containing artefacts: would be classed as
outliers [2]. Thirdly, some cases with a clear biopsy-based diagnosis may have
spectra that are quantitatively similar to those of other tumour types. An expert
radiologist would still classify them correctly by visual inspection, but they may
mislead a computer-based automated classification system.

The aforementioned cases are bound to be problematic for they are likely to
unduly bias the automated classification process in the DSS, even if for different
reasons. The MRS dataset used in AIDTumour has already been classified in
the past using simple linear techniques such as Linear Discriminant Analysis [3]
or more sophisticated machine learning non-linear techniques such as Support
Vector Machines [4]. Nevertheless, and to the best of the authors’ knowledge, the
potential problems outlined above have never been taken into consideration prior
to classification. In this paper, we show the effectiveness of a method to identify
and characterize potentially conflicting MRS data that combines techniques of
dimensionality reduction and exploratory visualization with expert knowledge.
This method is conceived as a preliminary step to data classification. Dimen-
sionality reduction is not trivial in this setting, as the available MRS data are
scarce and high dimensional. Sammon’s mapping is used to this end.

2 MRS Brain tumour dataset

The data analysed in AIDTumour correspond to 304 single voxel short echo time
1H MR spectra acquired in vivo from brain tumour patients, out of which 217
are used in this study, including: meningiomas (58 cases), glioblastomas (86),
metastases (38), astrocytomas Grade II (22), oligoastrocytomas Grade II (6),
and oligodendrogliomas Grade II (7). For details on data acquisition and pro-
cessing, see [1]. Class labelling was performed according to the World Health
Organization (WHO) system for diagnosing brain tumours by histopathological
analysis of a biopsy sample. For the reported analysis, spectra were grouped
into three superclasses: high grade malignant tumours (metastases and glioblas-
tomas), low grade gliomas (astrocytomas, oligodendrogliomas and oligoastrocy-
tomas) and meningiomas. The clinically-relevant regions of the spectra were



sampled to obtain 195 frequency intensity values (data attributes), from 4.25
parts per million (ppm) down to 0.56 ppm.

3 Methods

As mentioned in the introduction and in section 2, the available MRS data have
high dimensionality. This makes dimensionality reduction for visual exploration
a non-trivial undertaking. In order to allow the visualization of the data, the
spectra are mapped onto a 3-D space through Sammon’s mapping [5] expressed
as an implicit function f : ℜ195 → ℜ3, where 195 is the number of frequency
intensity variables. The non-linear mapping is constructed as to minimize the
interpoint distortions it introduces, which is quantified by Sammon’s error mea-
sure:

Sammon’s Error =
1

∑
i<j δij

(
∑

i<j δij − ξij)
2

δij

where δij is a dissimilarity measure (the Euclidean distance in our study) between
any spectra i and j in the original data space and ξij is the Euclidean distance
between the images of spectra i and j under function f in the 3-D space. In this
study, the minimization of the Sammon’s error was performed by the Newton
method for optimization. A collection of models was obtained by varying the
initial points (100 different random values) and the step size (9 different val-
ues), for a total of 900 runs. The model with lowest Sammon’s error (0.018) was
selected for further analysis. An NMR expert is then confronted with the visual-
ization of Sammon’s mapping of the spectra, created in this study with the free
software package KING (kinemage.biochem.duke.edu/software/king.php). The
expert singles out those spectra she/he considers to be potentially conflictive -
according to the modalities outlined in the introduction - and compares them
to the characteristic spectra that correspond to their tumour type. If artefacts
are found, the spectrum is tagged with information about their causes and rec-
ommendations on the suitability of its use for classification are made. If the
spectrum is found to be an outlier, it is tagged as such. If it is a potentially
conflicting case for an automated classifier, a warning is included in the tag.

4 Experimental results and discussion

A 3-D snapshot of the data mapping obtained using Sammon’s method is visu-
alized in Figure 1. High grade malignant tumours are displayed in black, low
grade gliomas in white, and meningiomas in gray. Overall, these three groups
look well-defined and show a reasonable degree of separation, but it also clear
that some cases do not conform to this behaviour and that some of the issues
outlined in the introduction should be considered.

Some cases appear to be atypical. It is impossible to discern a priori if this is
due to measurement or processing artefacts or if, alternatively, these are correct
but unusual cases, or outliers. The NMR expert, though, can carry out such
disambiguation. Quite a few cases were identified as artefacts by the expert.
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Fig. 1: A 3-D view of the projected MRS data obtained by Sammon’s mapping
(left: High grade malignant tumours are displayed in black, low grade gliomas
in white, and meningiomas in gray) and the original and projected interpoint
distances (right).

For illustration, two of them are listed in Table 1 (top), which also includes
the type of informative tag that would be appended to them in a practical
implementation of the DSS. Figure 2 (top row) displays a different 3-D view
of the data with these two cases highlighted and linked to their spectra, neatly
different to the average of their tumour type group.

Some other cases were identified by the expert as atypical, even though not
including artefacts. Two of them are listed in Table 1 (middle), which also in-
cludes the type of informative tag that would be appended to them in a practical
implementation of the DSS. They are visualized in Figure 2 (middle row)

Finally, some cases, although not data outliers, are potentially problematic
for inclusion in a computer-based automated classification process. Three of
those identified by the expert are listed in Table 1 (bottom), together with their
corresponding informative tag. They are visualized in Figure 2 (bottom row)

Many other cases conforming to these three categories were found, but their
description, as well as its visual representation are skipped because of space limi-
tations. The interactive visualization of the data mapping and the expert textual
comments and recommendations are meant to be integrated in the AIDTumour
DSS. Future research will address the automatic quantification of the number
and extent of data outliers and the expert tagging of potentially ambiguous cases
that reside on the borders between tumour classes.



Fig. 2: 3-D views of several cases of interest (left column) and their corresponding
individual spectra (solid line) and mean spectra of the superclasses they belong
to (dotted line). The abscissa axis displays frequency in ppm.



CASE TAG RECOMM.
I1283 This spectrum of a meningioma shows an artefact

produced by a phenomenon called eddy currents
upon acquisition of the data. An expert spectro-
scopist would still be able to classify it.

Remove it from
the dataset in
classification
tasks.

I0354 This glioblastoma shows a possible “polispicu-
lated artefact”, which does not preclude its in-
terpretation, as most of the important metabo-
lites are not affected by it. It also shows a lack of
necrotic lipids, infrequent for this pathology.

Remove it from
the dataset in
classification
tasks.

CASE TAG RECOMM.
I1115
and
I0135

These two cases (I1115, a metastasis and I0135, a
glioblastoma) show an extreme necrotic lipid pat-
tern (high peak at around 1.3 ppm). The signal
amplitude ratio 1.3ppm/0.9ppm is much higher
(approx. 7 to 1) than that for the average metas-
tasis or glioblastoma (approx. 3 to 1).

This outlier
might skew
overall class
definition, as
well as bias
cluster analysis.

CASE TAG RECOMM.
I0179
and
I0450

Low-grade glial tumours located in the high-grade
malignant region. They display an unusual pat-
tern of mobile lipids, with peaks at 0.8 and
1.3ppm as in high-grade malignant tumors, but
in contrast to them, the 0.8 ppm peak is of the
same magnitude as the 1.3 ppm peak.

Beware a pos-
sible misclassifi-
cation by the
DSS automated
algorithm.

I0063 This spectrum of a glioblastoma has an MRS pat-
tern that is undistinguishable from that of a typ-
ical low-grade glial tumour. The spectral pattern
is an infrequent one for a glioblastoma, although
not completely unknown.

Beware a pos-
sible misclassifi-
cation by the
DSS automated
algorithm.

Table 1: Spectra that are either affected by artefacts (top table), might be consid-
ered outliers (middle), or potentially conflictive for DSS classification (bottom).
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