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Comparing Support Vector Machines and Feedforward
Neural Networks With Similar Hidden-Layer Weights

Enrique Romero and Daniel Toppo

Abstract—Support vector machines (SVMs) usually need a large number
of support vectors to form their output. Recently, several models have been
proposed to build SVMs with a small number of basis functions, main-
taining the property that their hidden-layer weights are a subset of the data
(the support vectors). This property is also present in some algorithms for
feedforward neural networks (FNNs) that construct the network sequen-
tially, leading to sparse models where the number of hidden units can be
explicitly controlled. An experimental study on several benchmark data
sets, comparing SVMs and the aforementioned sequential FNNs, was car-
ried out. The experiments were performed in the same conditions for all
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the models, and they can be seen as a comparison of SVMs and FNNs when
both models are restricted to use similar hidden-layer weights. Accuracies
were found to be very similar. Regarding the number of support vectors,
sequential FNNs constructed models with less hidden units than standard
SVMs and in the same range as ““sparse” SVMs. Computational times were
lower for SVMs.

Index Terms—Feedforward neural networks (FNNs), sparse models, sup-
port vector machines (SVMs).

I. INTRODUCTION

Support vector machines (SVMs) and feedforward neural networks
(FNNs) are two alternative machine learning approaches for classifi-
cation and regression problems with different inductive bias and very
interesting properties (see, for example, [1] and [12]). Although both
models have been developed from different backgrounds, they share a
number of elements that allow to establish a direct correspondence be-
tween them. In fact, from a formal point of view, they are structurally
similar, since both SVMs and FNNs induce an output function which
is expressed as a linear combination of simple (basis) functions

N
fz) = b—|—z/\kh(wk,w). )
k=1

For SVMs, N is the number of support vectors, % is the kernel func-
tion, {wy }2_, are the support vectors, and { A }2_, are the coefficients
found by the constrained optimization problem posed. For FNNs (fully
connected with one hidden layer of units and linear output units), /N
is the number of units in the hidden layer, % is the activation function,
{wi}i_, are the hidden-layer weights, and {\z}i_, are the output-
layer weights. The bias term b is common for both SVMs and FNNs.

The differences between the solutions obtained by both models lie in
the way the elements of that linear combination (1) are found. This is a
consequence of their respective inductive bias. The first important dif-
ference is related to the number of elements in the combination (number
of support vectors for SVMs and number of hidden units for FNNs).
Whereas for SVMs the number of support vectors is usually a result of
the optimization problem posed, for FNNs the number of hidden units
is usually fixed a priori. A second difference lies in the hidden-layer
weights {wk}ﬁ: 1. For SVMs, they are always a subset of the data (the
support vectors), as a consequence of the optimization problem solved.
For FNNgs, in contrast, that property does not usually hold. Finally, the
values of the output-layer weights {\; }#—; may be very different for
the same training set, since different optimization problems are solved
(the maximization of the margin for SVMs and the minimization of the
sum-of-squares error for FNNs).

There exist, however, FNN models [4], [13], [9] that do not show all
of these differences with respect to SVMs. In these models, the network
is constructed sequentially, so that the number of hidden units is a result
of the learning process rather than fixed a priori (for areview of sequen-
tial FNNs see, for example, [6]). In addition, hidden-layer weights are
always a subset of the data, as usual for SVMs. These properties lead to
sparse solutions where the number of elements in (1) can be explicitly
controlled.

In practice, models with good performance and few basis functions
are desired. One of the problems affecting SVMs is that a large set of
support vectors is usually needed to form their output function, making
it complex and computationally expensive for real-time applications.
Recently, several alternative methods to build SVMs with a small
number of basis functions have been proposed. Among them, the
v-SVM [10] and the “sparse” SVMs described in [5] maintain the
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property that the hidden-layer weights {u;}i\: 1 are a subset of the
data.

This work focuses on the comparison of SVMs and the aforemen-
tioned sequential FNNs. An experimental study on several benchmark
data sets for classification problems is presented. All the tested models
have in common the property that their hidden-layer weights are a
subset of the data. The goal is finding out whether FNN's are competi-
tive with SVMs when both models are restricted to use similar hidden-
layer weights. For SVMs, several approaches are tested, namely, the
standard one-norm soft margin SVM, the v-SVM [10], and the greedy
(forward) selection of support vectors presented in [5]. The experi-
ments were performed in the same conditions for all the models. To
this end, the same kernel/activation functions were tested with the same
training and test data sets, so that the set of simple functions { h(w, 2) }
available to construct the output was the same. The model selection
process was as similar as possible, taking into account that different
methods need different parameters.

The accuracies obtained in the experiments were very similar for the
different methods. Regarding the number of support vectors, sequential
FNNs constructed models with less hidden units than standard SVMs
(including v-SVMs), and in the same range as the method presented in
[5]. In addition, all the hidden-layer weights in the FNN models were
also considered as support vectors by standard SVMs. Computational
times were lower for SVMs.

II. BACKGROUND

To fix notation, consider the classification task given by a data set
X ={(x1,y1),..., (w5, yr)}, where each instance x; belongs to the
input space R, y; € {-1, —|—1}1v, and 7' is the number of classes. For
two-class problems, usually y; € {—1,+1}.

A. SVMs

SVMs for classification can be described as follows [12]: the input
vectors are mapped into a (usually high dimensional) inner product
space through some nonlinear mapping ¢, chosen a priori. In this space
(the feature space), an optimal separating hyperplane is constructed.
By using a (positive—definite) kernel function A (u, v) the mapping be-
comes implicit, since the inner product defining the hyperplane can be
evaluated as (¢ (u), ¢(v)) = K (u,v) for every two vectors u, v € R .
In the SVM framework, an optimal hyperplane means a hyperplane
with maximal normalized margin for the examples of every class. The
normalized margin is the minimum distance to the hyperplane.

When the data set is not separable by a hyperplane (neither in the
input space nor in the feature space), some tolerance to noise is intro-
duced in the model. Using Lagrangian and Kuhn-Tucker theory, the
maximal margin hyperplane for a binary classification problem given
by a data set X is a linear combination of simple functions depending
on the data

L
fsvm(z) =b+ Z yioi K (24, 2) 2)

=1
where the vector (« L')iLzl is the (one-norm soft margin) solution of the

following constrained optimization problem in the dual space:

L L
. 1 -
Maximize, E o — 3 E yioiy o K (2, 25)

=1 7,7=1

L
subject to Z yia; =0 (bias constraint)

i=1

0<a; <C, i=1...L 3)

for a certain constant C'. The points x; with a; > 0 (active constraints)
are named support vectors. An example is well classified if and only if
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its functional margin y; fsvm (z; ) with respect to fsv is positive. The
cost function in (3) is (plus a constant) the squared norm of fsyyr () —
y(x) in the reproducing kernel Hilbert space defined by K (u,v).

The parameter C' allows to control the tradeoff between the margin
and the errors in the data set. By setting C' = oo, the hard margin hyper-
plane is obtained. The most usual kernel functions K (u, v) are polyno-
mial, Gaussian-like, or sigmoidal functions. It is worth noting that the
kernel function depends on a certain parameter + (that is, X' (u,v) :=
K, (u,v)). In many implementations, b is treated separately (fixed a
priori, for example) in order to avoid the bias constraint.

One of the problems affecting SVMs is that a large set of support
vectors is usually needed to form their output, making it complex and
computationally expensive for real-time applications. To overcome
this problem, several models have been proposed in the literature.
The v-SVM, for instance, replaces the parameter C' by a parameter
v € [0,1], which is an upper bound on the fraction of margin er-
rors and a lower bound on the fraction of support vectors (that are
asymptotically equal) [10]. The method described in [5] performs a
greedy (forward) selection of the support vectors, together with an
efficient computation of the vector («v;) for the two-norm soft margin
SVM. We will refer to this method as SVMs with reduced complexity
(SVMRC). As a result of the forward selection process, the sparsity of
the model is explicitly controlled.

B. Sequential FNNs Where the Hidden-Layer Weights Are a Subset
of the Data

Unlike SVMs, the most usual cost function for fully connected FNNs
with one hidden layer of N units and output linear units is the sum-of-
squares error

Z%(fk‘NN('f/i) - i)’ “

=1

where

N
fenn(x) = bo + Z Akp(wi, ). 5)
k=1

As usual, {wz}i_, are the hidden-layer weights and {\;}i
are the output-layer weights. The most common activation functions
(b, w, ) for the hidden units are sigmoidal for multilayer perceptrons
(MLPs) and radially symmetric for radial basis function networks
(RBFNSs), although many other functions may be used [7], [8]. Biases
can be seen as part of the hidden-layer weights. Similar to kernel func-
tions, the activation functions ¢ usually depend on a certain parameter
~, named “gain factor” for sigmoidal functions or “width” for radial
basis functions. The architecture of the network (i.e., connections,
number of hidden units, and activation functions) is usually fixed in
advance, whereas the weights are learned during the training process.

There exist, however, FNN models that construct the network se-
quentially, so that the number of hidden units is a result of the learning
process rather than being fixed a priori. For a review of constructive
FNNs see, for example, [6]. Among them, some models select the
hidden-layer weights to be always a subset of the data, such as the or-
thogonal least squares learning algorithm [4], kernel matching pursuit
with prefitting [13], and the sequential approximation with optimal co-
efficients and interacting frequencies algorithm [9]. In these models,
an (implicit or explicit) orthogonalization of the output vectors of the
hidden units is performed. The hidden-layer weights of the new hidden
unit are selected taking into account the interactions of that hidden
unit with the previously selected ones. These interactions are discov-
ered by means of the optimal (in a least squares sense) output-layer
weights, which can be analytically computed by solving a linear equa-
tions system (the normal equations). More precisely, in order to select
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Algorithm
repeat
Increase by 1 the number of hidden units N
for every example w in the training set
Assign w to the weights of the Nth hidden unit
Compute the optimal output-layer weights
Set wy :=w if the output-layer weights are
valid (their norm is bounded by a constant C')
and the training error is minimized
end for
Assign wy to the weights of the Nth hidden unit
until the maximum number of hidden units is added
Compute the optimal output-layer weights
end Algorithm

Fig. 1. Pseudocode for the SVSFNNS tested in this letter.

the hidden-layer weights of the new hidden unit, every input example
in the data set is considered at every step as a hidden-layer candidate
weights vector. It is then temporarily installed in the network and the
optimal output-layer weights of the whole network are computed. The
input example that allows a greater reduction of the whole error is se-
lected. This selection procedure is identical to that of SVMRC. We will
refer to these models as support vector sequential FNNs (SVSFNNG).
Fig. 1 shows the pseudocode for the SVSFNNs used in this letter. It is
equivalent to [4], [13], and [9] except for the constant C' (see Section
[I-D).

III. COMPARING SVMSs AND SVSENNSs

This section compares SVMs and SVSFNNs and explains the
methodology followed in the experiments.

A. Motivation

Beyond the structural similarity of their respective output functions
(2) and (5), several parallelisms between SVMs and SVSFNNs can
be established. On the one hand, the number of terms of the approx-
imation (support vectors or hidden units, respectively) is a result of
the learning process itself (for SVSFNNS, it can be explicitly con-
trolled). On the other hand, they share the property that the hidden-layer
weights are always a subset of the data, leading to sparse solutions.
Only those input examples that, according to their respective induc-
tive bias, have some influence on their respective approximations are
present in the obtained solutions. Therefore, the main difference be-
tween SVMs and SVSFNN:S lies in the output-layer weights, which are
found by solving different optimization problems (the maximization of
the margin for SVMs and the minimization of the sum-of-squares error
for SVSFNNs). Among all SVM models, SVMRC is the most similar
to SVSFNN:Ss, since their selection processes are identical.

The aim of this letter is to compare SVMs and SVSFNNS, investi-
gating whether FNNss are competitive with SVMs when both models
are restricted to use similar hidden-layer weights.

B. Compared Methods

‘We focused on classification tasks. For SVMs, we tested the stan-
dard one-norm soft margin SVM, the »-SVM [10], and the SVMRC
[5] (with & = 59 and the rest of parameters to their default value). For
SVSFNNS, the model described in Fig. 1 was tested.

C. Software

For the standard one-norm soft margin SVM and the v-SVM,
we used the LIBSVM software [3]. For SVMRC, we resorted to a
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MATLAB implementation.! For SVSFNNs, we developed our own
implementation.

D. Methodology

* Preprocessing. Categorical attributes were converted to dummy
variables. The rest of the attributes were scaled to mean zero and
variance one (linear scaling in [0, 1] gave similar results).

* Kernel and activation function. SVM models were obtained
using the Gaussian e =71~ 7II” and the 2° polynomial (~va@'#41)?
kernels. For SVSFNNSs, equivalent activation functions (Gaussian
RBF and polynomial MLP) were used to obtain the networks.

* Parameters and model selection. In order to perform the exper-
iments in the same conditions for both SVMs and SVSFNN:S, the
following correspondence between the parameters of the respec-
tive models can be made.

1) The ~ parameter of the kernel can be considered equivalent to
the MLP-gain factor or RBF-width of the activation function
(see Section II).

2) Similar to the restriction related to the C' parameter for SVMs
[see (3)], a hidden-layer candidate weights vector was not con-
sidered valid for SVSFNNSs if the one-norm of the solution
(the output-layer weights) of its associated linear equations
system was greater than a certain value C (see Fig. 1). This
can be seen as a form of regularization. For the v-SVM, the
parameter C' is replaced by v.

In order to get adequate v and C'/v parameters, a grid search was
performed (with ~ ranging from 27'° to 2°, C' ranging from 27"
to 2'° and » ranging from 0.05 to 0.95). The parameters corre-
sponding to the best tenfold cross-validation (CV) accuracy were
kept to build the model. The same grid search was performed for
all the models, and repeated for every kernel function.

In order to select the number of support vectors/hidden units of the
final models for SVMRC and SVSFNNs, we followed [5]. First,
the maximum number of support vectors/hidden units Nmax is
chosen. Then, Nmax models are constructed until Nyax support
vectors/hidden units are added. The number of support vectors/
hidden units corresponding to the best CV accuracy defines the
final size of the model.

¢ Model training and testing. The methods were trained and tested
over 30 training-test different random partitions (90%—10% of the
data) of the whole data set, except for the United States Postal
Service (USPS) data set, where a fixed subset was used to test the
models trained with the rest of the data (this test set was not used in
the model selection process). In all cases, the training and test data
sets were exactly the same for all the methods. The one-versus-one
approach was used for multiclass problems.

E. Data Sets

Several benchmark data sets from the University of California at
Irvine (UCI) repository [2] were used for the comparison, namely
Abalone, Australian Credit, Pima Indians Diabetes, German Credit,
Hepatitis, lonosphere, and Sonar. The USPS data set was also tested.

For the USPS data set, 7291 and 2007 examples were used for
training and testing, respectively, without scaling the data.

F. Experimental Results

Fig. 2 shows the results obtained using the methodology previously
described for the UCI data sets. For the USPS data set, no overfitting
was observed for sequential methods (SVMRC and SVSFNN), at least
for the addition of the first 1000 support vectors/hidden units. There-
fore, the results are qualitatively different from those of the rest of

! Available at http://www kyb.tuebingen.mpg.de/bs/people/chapelle/primal.
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Fig. 2. SVM and SVSFENN results with the Gaussian and polynomial kernel/activation function for the UCI data sets tested: Abalone (aba), Australian credit
(aus), Diabetes (dia), German credit (ger), Hepatitis (hep), Ionosphere (ion), and Sonar (son). Error bars (top) show the mean accuracies and the standard errors.
Bars (bottom) show the average ratio of support vectors and hidden units (with respect to the number of training examples) for SVMs and SVSFNNS, respectively.
For every data set, methods are ordered from left to right: SVM, v-SVM, SVMRC, and SVSFNN.

the data sets. Test accuracies for standard SVMs and v-SVMs with
the Gaussian kernel were 95.57% and 95.37%, with 1777 and 1935
support vectors, respectively. To achieve similar accuracy, SVMRC
and SVSFNN needed 77 and 236 support vectors/hidden units, respec-
tively (with 1000 basis functions, accuracy was around 97.0% for both
models). Fig. 3 shows the accuracies for SVMRC and SVSFNNs with
respect to the first 512 basis functions.

Accuracies obtained were very similar for all the models (specially
for the Gaussian kernel, which yielded the best results). Regarding the
support vectors (hidden units), it is noteworthy that SVSFNNs obtained
models with less hidden units than the number of support vectors found
by standard and v-SVMs, and similar to SVMRC. This number of sup-
port vectors are in the same range for every data set, regardless of the
kernel/activation function used. In general, the average ratios of hidden
units with respect to the number of training examples are quite low.

We observed that, for every data set and kernel/activation function,
all the hidden-layer weights selected by an SVSFNN were also found
among the support vectors of the corresponding standard SVM. This
can be intuitively explained if we note that both the SVSFNN and
SVM solutions are expressed as a sum of hyperplanes, each one de-
fined by the inner product with an input example in the data set (the
support vectors in the SVM model). Support vectors are near the deci-
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Fig. 3. Accuracies (in logarithmic scale) for SVMRC and SVSFNNs with re-
spect to the first 512 Gaussian basis functions for the USPS data set.

sion boundary. Therefore, these examples are also likely to be selected
as the most discriminating ones by SVSFNNs (recall that only the input



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

examples in the data set are considered as the hidden-layer candidate
weights vectors at every step).

For SVSFNNSs, numerical problems were encountered in some cases
(during the model selection step), motivated by the bad conditioning of
the matrix of the associated linear equations systems. However, these
numerical problems were always observed for parameter values far
from the optimal ones. The same was observed for SVMRC.

In general, the computational times were lower for SVMs than for
SVSFNNs. We cannot directly compare the execution times, because
different methods were implemented with different programming
languages and implementation optimizations. The publicly available
LIBSVM software was implemented in C++ (although mainly in
C). We used C to implement SVSFNNs. As previously mentioned,
SVMRC was implemented in MATLAB. With these implementations,
standard SVMs were the fastest method (up to ten times faster),
followed by SVMRC. These figures change when the accuracy is
compared in terms of the computational time (see [5]). SVMRC was
approximately two times faster than SVSFNNs. As an example, the
execution times of the Australian data set on a Pentium 4 CPU at
1.8 GHz were 13 s for LIBSVM, 97 s for SVMRC, and 140 s for
SVSENN.

IV. CONCLUSIONS AND FUTURE WORK

The experiments in this letter can be seen as a comparison of the in-
ductive bias of SVMs and FNNs when both models are restricted to use
similar hidden-layer weights. In our experiments, FNNs obtained sim-
ilar accuracies to SVMs, constructing models with less hidden units
than standard SVMs, and in the same range as “sparse” SVMs. The
hidden-layer weights associated to the hidden units in FNNs were al-
ways considered as support vectors by standard SVMs. Although com-
putational times were lower for SVMs, they may be dependent on the
particular implementation or code optimizations. Therefore, we con-
clude that FNNs are competitive with SVMs when both models are
restricted to use similar hidden-layer weights.

Looking at the results, one might wonder if SVMs could be more
influenced by the fact that hidden-layer weights are a subset of the data
than by their inductive bias. To shed light on this issue, testing other
models that also select their hidden-layer weights within the data, such
as the relevance vector machine [11], would be worthwhile.
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Note that the sequential FNNs tested in this letter can be directly
extended in several ways that SVMs cannot (or at least not so easily).
First, any activation function can be used, without the restriction of
being a kernel function. In particular, any similarity measure could be
used. Moreover, different units may have different activation functions,
since the search process to obtain the parameters of the new hidden
units is deterministic and independent on the others.
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