
Search Strategies Guided by the Evidence for the Selection of Basis
Functions in Regression

Ignacio Barrio, Enrique Romero, and Lluı́s Belanche

Abstract— This work addresses the problem of selecting a
subset of basis functions for a model linear in the parameters
for regression tasks. Basis functions from a set of candidates are
explicitly selected with search methods coming from the feature
selection field. Following approximate Bayesian inference, the
search is guided by the evidence. The tradeoff between model
complexity and computational cost can be controlled by choos-
ing the search strategy. The experimental results show that,
under mild assumptions, compact and very competitive models
are usually found.

I. INTRODUCTION

In regression tasks we are given a data set of input vectors����������	��

and corresponding target values

���������	��

, where�������

. The objective is to infer a function ��� ��� that
underlies the training data and makes good predictions on
unseen input vectors. A very common choice is obtained by
a linear model with ����� fixed basis functions ��� :

��� �! #"$�&%(')
� �!
+* � � � �

���-,

where
".% � *
 , *�/ ,�0102, * '

�#3
are the model parameters. Since

the model is linear in the parameters, these are easy to
estimate and the main problem lies on the selection of the �
basis functions (� is unknown a priori) from a dictionary.
In machine learning, using a dictionary of basis functions
centered at the input data usually gives good results [1].

This problem has been mainly tackled in two different
ways, according to the implicit or explicit nature of the
selection process. In implicit selection methods, the model
with the whole set of basis functions is considered and then
the parameters are computed in such a way that many of them
become zero. This is the case of Support Vector Machines
(SVM) [2], Basis Pursuit (BP) [3], Least Absolute Shrinkage
and Selection Operator (LASSO) [4] and Relevance Vector
Machines (RVM) [5]. In explicit selection methods a search
is carried out guided by the minimization of some cost
function. This category includes Matching Pursuits (MP)
[6], Orthogonal Least Squares (OLS) [7], Kernel Matching
Pursuit (KMP) [8], or some Gaussian process approxima-
tions [9], [10], among others. All these methods use forward
selection as the search strategy.

Explicit selection methods use two criteria: an objective
(or cost) function that conducts the search (e.g., the training
set sum-of-squares error) and an evaluation function to check
model performance, eventually used to stop the process (e.g.,

The authors are with the Soft Computing Group, Universitat
Politècnica de Catalunya, Barcelona, Spain (email: 4 ibarrio; eromero;
belanche 5 @lsi.upc.edu).

the validation set sum-of-squares error). The evaluation is
commonly used to avoid overfitting. This duality hinders the
use of more powerful search strategies, that would minimize
much the first criterion but not necessarily the second one.
The choice of a proper objective function is then encouraged
if powerful search strategies are to be used.

In a Bayesian setting, under the use of certain priors,
there is no need to limit the size of the network to avoid
overfitting [11]. However, simpler models are more benefitial
for computational reasons. Gaussian processes have been
approximated with a subset of regressors [12] and the subset
has been selected with forward selection maximizing the
marginal likelihood [10], being both the objective and the
evaluation function. In the context of linear models, the use
of the evidence has been suggested to compare different
models given that it penalizes complex models and there is
(anti)correlation between model evidence and generalization
error [13], [14].

In this work we propose an explicit search guided by the
evidence for the model. The evidence is both the search
objective function and the evaluation function. Several algo-
rithms borrowed from the feature selection field are used as
search methods. A fast implementation of the whole process
is developed. An experimental study shows that these Search
Strategies Guided by the Evidence (SSGE) find compact
models very competitive with other state-of-the-art tech-
niques such as SVMs and RVMs. More powerful SSGE tend
to find more compact models than simpler ones with slightly
worse prediction accuracy. By choosing the search strategy
the resulting model complexity and the computational cost
can be controlled. This control is not possible for SVM and
RVM.

The rest of this work is organized as follows. Section II
reviews a Bayesian approach for regression with linear
models. Section III enumerates some common feature se-
lection search strategies. Section IV presents the SSGE. An
experimental study comparing different methods is carried
out in Section V and we discuss the results obtained in
Section VI. Finally we conclude the paper in Section VII.

II. A BAYESIAN APPROACH FOR LINEAR MODELS

We briefly review the noisy interpolation problem and
the three levels of inference in a Bayesian framework [14].
The first one considers the posterior distribution over the
parameters, the second one adapts the hyperparameters that
control the parameters and the third one allows the compari-
son of different models. We assume the targets to be deviated
from the underlying function by independent additive noise

1-4244-1380-X/07/$25.00 ©2007 IEEE

Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August 12-17, 2007

� � % ��� � � #"$����� �
. In linear models the target values are� %�� "����

where
� % � �
 ,#� / , 020 � � � 3 and

� �	� ' is a design
matrix with entries � ��
 % �
 � � � � . If

�
is assumed to be zero-

mean Gaussian noise with variance � / , then the likelihood
of the parameters is � ��� " ,��!� %�� � � " ,����
 � ,
where

� %���� � / .
A. The first level of inference

Finding the parameters that maximize the likelihood may
lead to overfitting. In order to avoid it, the smoothness of
��� �! #"$� is controlled by defining some sort of prior distri-
bution. A common choice is a zero-mean overall Gaussian
prior over

"
, � "�� ��� %�� ��� ,����
 �-,

where
�

is the inverse variance that measures how smooth
��� �! #"$� is expected to be. Making use of Bayesian inference
to find the posterior parameter distribution, � "�� �-,�� ,��!�&% � ��� " ,��!� � "�� ��� � ��� � ,��!� 0

Since the likelihood and the prior are Gaussian in
"

, the
posterior is also Gaussian: � "�� �-,�� ,��!�&%�� � � ,"! �-,
where

! % � �#� 3$�%�&�#' � �

and � % �$!(�&3+�

. The
parameters

"
are set to their most probable value � .

B. The second level of inference

The marginal likelihood is the convolution of Gaussians, � ��� � ,��!� %%) � ��� " ,��!� � "�� ����* "
, which is also a Gaus-

sian: � ��� � ,��!� %�� ��� ,��+�
 ',�����
 �(� 3 � 0
(1)

In order to find the most suitable values for
�

and
�

,
again we can make use of Bayes formula:

 � � ,��-� �#�.%.$/1032 465 798:.�/;4<5 7=8.$/10:8 . Assuming we have no prior idea of suitable
values for

�
and

�
, we consider the prior

 � � ,��!� to be
uniform on a logarithmic scale >;?A@ �

and >;?A@ �
. Then the

most suitable values for
�

and
�

are those that maximize � ��� � ,��!� . Differentiating (1) and setting the result to zero
produces a pair of re-estimation formulae:� �ABDC % EF � F / and

� �ABDC % �HG EF � G � � F / , (2)

where E % �IG �
tr

!
is known as the number of well-

determined parameters. Equations (2) are dependent on the
current value of � , which is also dependent on

�
and

�
.

These quantities can be reestimated iteratively, starting from
an initial guess for

� ,��
until convergence. We refer to the

most probable estimates as J� and J� .

C. The third level of inference

Supposing we have a set of models K � , containing dif-
ferent subsets of basis functions

� ��� � , their posterior prob-
ability given the data set is

 �LK � � �#� % .$/1032 MON:8:.$/1MON:8.$/10:8 , where �:K � � is the prior probability of model K � . A full Bayesian
treatment would use a committee with all the models. A
practical approach is to use only the most probable model.
Assuming that there is no reason to assign different priors
to different models, then we can rank them by evaluating
the fully marginalised probability

 � ��� K � � , known as the
evidence for the model.

We can integrate out
�

and
�

from (1):
 � ��� K � � %) � ��� � ,�� , K � � � � ,��-� K � �3*=�P*9�

, where
 � ��� � ,�� , K � � is the

marginal likelihood (1) with the dependency on the model
made explicit. This integral has been approximated [14] with
a separable Gaussian around

 � ��� J� , J� , K � � : � ��� K � �+Q � ��� J� , J� , K � � �RJ�&, J�-� K � ��S�T+U � /V WYXZ4 � /V W�X<7 , (3)

where � /V W�X<7 %%S9� � �[G E � is the variance of the Gaussian
approximation for >\?9@ �

and � /V WYXZ4 %]S9� E is the variance for>;?A@ �
, and they are both found by differentiating (1) twice.

This Gaussian approximation holds good for E_^ �
and ��GE`^ �

[15]. Again
 � � ,��-� K � � is considered, as above, a flat

prior over >\?9@ �
and >;?A@ �

, so it cancels out when comparing
different models. Dropping constant terms, the evidence (or,
for convenience, its logarithm) can be approximated by

>\?9@ � ��� K � �+Q >;?A@ � ��� J� , J� , K � �P� �S >;?A@ SE � �S >;?A@ S
�aG E% G �Scb �d>;?A@ SRTe� >\?9@ � fe�g� � 3 f��
 � G

Gh>\?9@ SE Gh>\?9@ S
�&G EOi , (4)

with
f % J� �
 'j� J� �
 �(�&3

.

III. FEATURE SELECTION SEARCH STRATEGIES

The main objective of feature selection in inductive learn-
ing is selecting the most suitable subset from a set of features.
The search methods consist of a cost function to direct the
search, a policy to decide how to explore new states and an
initial state. Some popular methods are:k PTA(l, r): Plus l and Take Away m [16]. At every step, l

features are added and then m features are removed (one
at a time, always the one that maximizes the objective
function). When l�nom it is an increasing method,
and decreasing for l�pqm . Note forward selection is
PTA(1,0).k SFFS: Sequential Forward Floating Selection [17]. At
every step, a feature is added and then zero or more
features are removed one at a time while the value of
the objective function is better than the best value so
far with the same number of features. The size does not
grow constantly with respect to the number of steps, but
in a staggered way.k Oscillating(c): [18] In simplified form, let rcs %t�

. Addr features, then remove
S r features and add r features

(always one at a time). If the objective function has been
maximized, let r	s %t�

and repeat. If not, let r	s % r � �
and repeat. The algorithm is iterated until r % � . The
final solution has as many features as the initial one.

IV. SEARCH STRATEGIES GUIDED BY THE EVIDENCE

A Bayesian approach suggests the use of the evidence
to compare different models. Models with higher evidence
usually generalize better and have a sensible number of basis
functions. There is the question of which models to compare.
We propose to search for a good subset of basis functions
from a set of candidates. Unlike other approaches, the basis
functions are not restricted to be kernels and the search
strategy is not restricted to be forward selection.

Following is the abstract pseudocode for addition/removal
of basis functions (an efficient implementation of these
operations is presented in the appendix). A model is defined
by a set of basis functions

� � � � and the posterior distribution
over the parameters (� ,"!). We use � � to denote the candidate
basis functions and � � to denote the basis functions in the
current model.

AddBestBasisFunction (a model � , � , � , a set of
candidate basis functions ���
	��)

1. for each candidate basis function �
	 do
2. set �� the model obtained by adding � 	 to �

and computing the initial value for � and �
with equations (section II-A)

3. (� �� � �� � �� �) := Reestimate(� � � � �)
4. compute the evidence for � with equation (3)

using �� and ��
5. end for
6. set � the model obtained by adding to � the � 	

maximizing the evidence in the previous loop;
compute the initial value for � and � with
equations (section II-A)

7. (� � � � � � �) := Reestimate(� � � � �)
8. return (� � � � �)

end AddBestBasisFunction

RemoveWorstBasisFunction (a model � , � , �)
9. for each basis function ��	 in �

10. set � the model obtained by removing � 	 from
� and computing the initial value for � and �
with equations (section II-A)

11. (� �� � �� � �� �) := Reestimate(� � � � �)
12. compute the evidence for � with equation (3)

using � and �
13. end for
14. set � the model obtained by removing from � the

� 	 maximizing the evidence in the previous loop;
compute the initial value for � and � with
equations (section II-A)

15. (� � � � � � �) := Reestimate(� � � � ��)
16. return (� � � � �)
end RemoveWorstBasisFunction

The call Reestimate(
� ,�� , K��) iteratively estimates

�
and�

with equations (2) and then the posterior distribution
�:� , ! � with equations (section II-A), until convergence. Ini-
tial values of

�
and

�
need to be set beforehand. In our

experiments,
�

is set to � � 0\��� var � �#�� �
 and
�

is set to� � ���
, assuming a broad prior distribution that leaves the

weight values fairly unconstrained. We select the first basis
function with the largest normalised projection onto the target
vector

F � 3� ��F / �6F � � F / , following [19]. After that,
�

and
�

are reestimated, so their initial values are not directly used
for any selection of basis function. Moreover, when trying
the addition or removal of a candidate basis function, values
of

�
,

�
and � should first be reestimated (steps 3 and 11

in the pseudocode) and the evidence then calculated. In this
work, for computational reasons we assume that the previous
values of

�
and

�
(before addition or removal of a candidate

basis function) are rather similar to the posterior ones (after
addition or removal). The selection of the best candidate is
thus performed with the previous values of

�
and

�
, that is,

steps 3 and 11 are not implemented. Further, after adding or
removing a basis function,

�
and

�
should be reestimated

(steps 7 and 15). To check convergence, we use (2) for
computing trial values

� �ABDC
and

���AB3C
. Since the evidence

is approximated with a Gaussian using � /V WYX 4 and � /V WYX<7 (see
equation 3), if� >;?A@ � �ABDC Gh>;?A@ �-� p�� U � /V W�X67 and� >\?9@ � �ABDC G >;?A@ � � p�� U � /V WYX 4 (5)

then we consider convergence is achieved. If not,
� ,��

are set
to

���ABDC&,����ABDC
and the trial is performed again until condition

(5) is met. In the experiments we set � % � 0;� . A larger
value of � allows faster computations, while a smaller �
allows a better convergence of

� ,��
. Sometimes convergence

is achieved in the first iteration and the Reestimate function
does not modify

� ,��
. In this case, the selection of the next

basis function can be done more efficiently, as shown in the
appendix. The cost of a selection (for addition or removal)
is � � / � � when

�
and

�
have been modified and � � / �

when not.

V. EXPERIMENTAL STUDY

An experimental study comparing different methods is
presented. We are interested in assessing the final evidence
for the models, their generalization performance (sum-of-
squares error on test set), the model size (number of basis
functions) and the computational cost (number of basis
function additions/removals). In addition, we aim to contrast
the following conjecture list:

(1) The Bayesian framework deals directly with noise
and generates smooth models, therefore the models will
hopefully not overfit. We also expect methods like OLS to
be outperformed in situations where noise is high. (2) The
evidence has been empirically shown to correlate well with
generalization performance and with the simplicity of the
model [13]. Therefore we expect SSGE to obtain simple
models that generalize well. (3) More powerful search strate-
gies like SFFS should obtain higher evidence than simpler
ones like forward selection. Therefore, a better generalization
and simpler models should be expected for powerful search
strategies than for simple ones. (4) Under the use of certain
priors, large models usually generalize well [11]. It may be

well possible to obtain similar generalization with SSGE
using far fewer basis functions and (5) The SSGEs are
competitive with state-of-the-art techniques like SVM or
RVM.

The following SSGE methods were tested: PTA(1,0),
PTA(2,1), SFFS and Oscillating(5). We compared them to
ABF (All the candidate Basis Functions included, maxi-
mizing the evidence), OLS, the SVM and a fast greedy
implementation of the RVM [19].

DELVE [20] is a collection of data sets and an environment
to assess performance of supervised learning methods, allow-
ing for statistically-valid comparisons. We chose the 8-input
pumadyn-8 and kin-8 data sets. Four versions (prototasks) for
each data set are provided: one fairly linear with high noise
(fh), one fairly linear with moderate noise (fm), one non-
linear with high noise (nh) and one non-linear with moderate
noise (nm). Each prototask consists of five different tasks,
for training set sizes 64, 128, 256, 512 and 1024. Each task
has then several task instances, corresponding to particular
training and test sets.

We took � �� ��� %�������� G	��
� �!
 /��� ��� N �"8��� �� � where � %�
is the input dimension. The centers � � are the training

input vectors. The variables were scaled to fit in �\G � , �����
.

The RBF widths m � were restricted to be the same for all
the methods. In order to set the widths, a model with all
the candidate basis functions was considered and conjugate
gradients was applied to maximize the marginal likelihood.
The RBF widths were jointly optimized with

�
and

�
. The

model obtained from this first stage is then labelled ABF,
and the RBF widths obtained were used for the rest of the
methods. The RBF widths were fixed during SSGE learning,
so there was no need to integrate them out (like

�
,

�
in

Section II-C) to compute the evidence for the model.
A stopping criterion is advisable since the highest evidence

is usually achieved with a rather small subset of basis
functions and much computational cost can be avoided.
Assume the current model has � basis functions and the
model with the highest evidence up to now has ��� basis
functions; if ��� ��� p � the process is stopped and the
model with ��� basis functions is the solution. A too small�

can make the training stop too early, while a
�

too high
will lead to wasteful computation. In this work we set

�
dynamically to �! � � ��" , � 0 # � � � � , rounded to the closest
integer.

The results on DELVE problems are summarized in Ta-
ble I, which shows the number of tasks where a method
performed better than another. We calculated a t-test on
the test sets averages. Then we considered that a method
performed better than another if the p-value was lower than
0.05. Each cell shows the number of tasks where the row
method performed worse than the column method. Table II
shows the mean number of basis functions of the models
found with the different algorithms on the tasks with 1024
training data. Table III shows the number of added plus
removed basis functions of the different SSGE for the tasks
with 1024 training data.

TABLE II

MEAN NUMBER OF BASIS FUNCTIONS OF THE RESULTING MODELS FOR

THE TASKS WITH 1024 TRAINING DATA.

Method pumadyn-8 kin-8
fh fm nh nm fh fm nh nm

PTA(1,0) 39 80 59 68 48 71 120 264
PTA(2,1) 11 59 24 34 39 46 103 203

SFFS 2.5 4.5 8.5 13 10 22 76 159
Oscillating(5) 39 80 59 68 48 71 120 264

RVM 3.5 6.5 9.0 13 9.2 24 90 185
SVM 593 726 668 608 708 667 682 836
OLS 11 14 15 26 18 35 49 169

TABLE III

MEAN NUMBER OF ADDED+REMOVED BASIS FUNCTIONS IN THE

TRAINING SETS FOR TASKS WITH 1024 TRAINING DATA.

Method pumadyn-8 kin-8
fh fm nh nm fh fm nh nm

PTA(1,0) 56 107 79 88 65 92 155 343
PTA(2,1) 78 238 118 148 162 183 403 791

SFFS 132 344 190 361 330 381 2051 5892
Oscillating(5) 205 308 256 250 224 311 433 738

VI. DISCUSSION

Among the SSGE, SFFS found the solution with the lowest
number of basis functions (Table II) and the highest evidence
at the expense of the highest cost (Table III). Oscillating(5)
had in some cases slightly superior generalization (Table I)
than the other SSGE. SFFS had slightly inferior accuracy.
The SSGE and the RVM obtained very similar performance
than SVM and slightly worse than ABF with a much lower
number of basis functions (Table II). The SSGE and the RVM
had similar generalization performance with a comparable
number of basis functions. ABF, SSGE, RVM and SVM
explicitly consider the noise and smoothness in the com-
putation of the parameters, whereas OLS can only control
the number of basis functions. We can see that ABF, SSGE,
RVM and SVM obtained in many cases better generalization
than OLS (Table I). The cost of the RVM and SFFS is
very dependent on the task (Table III). In our experiments,
PTA(1,0), PTA(2,1) and Oscillating(5) usually required less
training time than the RVM, while SFFS required more time.

Conjecture check list

(1) We have seen how the SSGE usually perform better
than OLS (see Table I). There will be cases, however, where
the assumptions taken by the Bayesian approaches will not
hold for the problem at hand and OLS will be superior.
(2) The SSGE obtain simple models that generalize well
(see Tables I and II). (3) More powerful search strategies
like SFFS usually obtain higher evidence and more compact
models than simpler ones like forward selection (Table II).
We expected more powerful search strategies to generalize
better, but that was not true (Table I) because the evidence
satisfies a tradeoff between accuracy and simplicity. (4) The
SSGE performed slightly worse than a model with all the

TABLE I

SUMMARY OF THE RESULTS. EACH CELL SHOWS THE NUMBER OF TASKS WHERE THE ROW METHOD PERFORMED WORSE THAN THE COLUMN

METHOD (p-VALUE LOWER THAN 0.05). THE FIRST FOUR ROWS CORRESPOND TO THE SSGE.

PTA(1,0) PTA(2,1) SFFS Oscillating(5) ABF RVM SVM OLS
PTA(1,0) - 0 0 6 6 3 4 0
PTA(2,1) 3 - 0 3 9 1 4 0

SFFS 9 5 - 11 13 3 6 0
Oscillating(5) 4 0 0 - 7 0 1 0

ABF 1 1 0 2 - 2 2 0
RVM 8 3 1 6 12 - 3 0
SVM 5 2 0 6 5 2 - 0
OLS 21 17 8 19 19 13 11 -

candidate basis functions (ABF) using Bayesian inference
(Table I) and (5) The SSGE were competitive (Table I) and
produced simpler models than the SVM and comparable to
the RVM (Table II). The computational cost of the SVM,
however, is lower.

Which SSGE is preferable?

Attaining to our assumptions, since SFFS achieved the
highest evidence, it should be the preferred method. How-
ever, in practical applications, other aspects become more
important than the evidence. Sometimes time is critical; or
memory or model size; in other situations, only generaliza-
tion is important. Using SSGE, these issues can be controlled
by selecting the search strategy. Table IV presents the SSGE
ordered from top to bottom for the three preferences indi-
vidually.

TABLE IV

THE SSGE ORDERED FOR EACH PREFERENCE.

Training Time Model Size Prediction error
PTA(1,0) SFFS Oscillating(5)
PTA(2,1) PTA(2,1) PTA(1,0)

Oscillating(5) PTA(1,0) / Oscil(5) PTA(2,1)
SFFS PTA(1,0) / Oscil(5) SFFS

VII. CONCLUSIONS

Following approximate Bayesian inference, we have tack-
led the regression problem by means of a search guided by
the evidence for the model. We have used different search
strategies coming from the feature selection field. In the
experiments, the Search Strategies Guided by the Evidence
(SSGE) produced compact models competitive with state-
of-the-art techniques such as the SVM and the RVM. More
powerful search strategies found more compact models than
simpler ones while maintaining good performance. Unlike
SVMs and RVMs, by choosing the search strategy, one can
control the model complexity and the computational cost.

Since the model with the highest evidence (found by
SFFS) did not obtain the best generalization rate, one could
argue that the evidence is not a good measure to optimize.
The evidence shows a preference for simpler models, which

is why the models with the highest evidence, as found by
SFFS, did not have the best performance but were instead
much simpler. Nevertheless, this is an appealing property for
many practical applications.

APPENDIX: FAST IMPLEMENTATION

Addition of the candidate basis function � � makes thef
matrix become

f�� � % � �
 ' � � �
 �(�&3���� �
 � ��� 3� %f � � �
 � � � 3� , where
f � � is

f
, after the inclusion of basis

function
�
. The determinant and inverse can then be written

as � f�� � � % � fe�\�1�-� �+�
 � 3� f��
 � � � ,f �
� � %]f �
 G f �
 ����� 3� f �
�_� � 3� f �
 � � 0 (6)

Applying them to the marginal likelihood (1), we get�����
	����� � � � � ��� 	���� ������	����� � � � � ����� ���� ����� ���
� ��� �!� �"� �$#	&%('�) ��	*�+� � � #	 % '�) �-,

�.� � #	 % '�) ��	0/� ��� �1	����� � � � � ����� ��32 ����� �4� �����!� �"�65 	 �7� 8 ,	
�"�65�	�9 �

(7)

with K � � the model K with � � included and we define : ��;
� 3� f �
 � � and < � ; � 3� f �
 �

. Using the Woodbury identity
lowers the cost of the computation:: ' %�� � 3' � ' G � / � 3' �(!(� 3 � ' ,< ' %�� � 3' � G � / � 3' �(!(� 3 �-0
The log-evidence (4) can then be written in an incremental
way as��� �
	����� ����	��=� �����1	���>� ����� ��?� ��� �A@�B� ��� �!�C@�.�65 	*�+�

� 8 ,	@�A�D5 	 � ����� �E � 	 � ����� �F � E � 	 � ����� �E � ����� �F � E / �
(8)

where E � � is the number of well determined parameters
after adding � � . To calculate E � � , the trace of

!�� � should
be computed (see section (II-B)), which is the inverse of a
partitioned matrix:

�G� 	$�IH �J���&, � 	 	��GK # ��	�� #	 K � � �
� 	 	��GK # ��	� ��� 	 	 � �GK # ��	L� # � 	 	 M � (9)

where
! �2� % � �t� :�� � �
 . We can write the trace as

tr
!�� � % ! �2� � � / ! �2���$� � tr

!
, where we have defined � � ;

� 3� �(!(!(�&3 ��� . Note that the trace of a product of a column
vector by a row vector equals the product of the row vector
by the column vector. To add/remove basis functions, it is
convenient to maintain and update the values : ' , < ' and
� ' , for each candidate basis function � ' . When selecting
the basis function to add, we need to select the one that
most increments the log-evidence (8). This increment can be
computed as:� � ������	����� ��� 	L�$� � � �1	���>� ���-�=� �����!��@�=�$� � � �!�C@�.�65 	*�+�� 8 ,	

�A�35�	 � ����� EE ��	 � � � � F � EF � E ��	 �
where E � � % � � � G �

tr
! � � . If after adding the basis

function
�
,

�
and

�
are not modified, then, making use of

(9) we can recompute all the : ' , < ' and � ' incrementally
as 5���� N � 5�� ��� 	 	 � �
�$#���
	 � , �8 ��� N � 8 � ��� 	 � ��� #� � 	 � �
 ��� N � � � � #	�� , � � 	 	 �
� #��� 	 � , � � � #���) � , � � ��� #��� , � , �

where * � %I! �1� < � is the value of the
�
th parameter after

including the basis function, and we define ��� ; � � G�#�(!(�&3 � � , �
 ; �#! �2� �(!(�&3 � � � �$�(!(!(�&3 � � G ! �2� � � and
� / ; �(!(!(�&3 � � 0

For the removal of basis function ��� we can rewrite (7):�����
	���>� � � � � ����� ������	����� � � � � � ' 	��+� �� � ����� �B�
� �����7� �A� � #	 % ')' 	 � 	 ��� � � #	 % ')' 	 �-,�"� � #	 % '�)' 	 � 	 /� �����1	���>� � � � � � ' 	 �+� ��62 ����� �4� �����!� �A��� 	 �+� � ,	

�A��� 	>9 �
(10)

where K � � is the model K with basis function ��� removed
and we have defined r � ; � 3� f �
� � � � and � � ; � 3� f �
� � � .
Applying (6) we can write r � % 4�� N4 � ��N , � � % 4��PN4 � ��N . After
removing ��� , !

becomes
! � � %]! G

� N1N ! � ! 3� where we have
abused notation, since

! � � should have one dimension less
than

!
(the resulting zeroed

�
th row and column should be

removed). The trace is tr
! � � % tr

! G

� N\N !&3� ! � . Substitutingr�� and � � in (10) and extending to the evidence for the model:� � ��� �1	����� � ' 	L�$� � � �1	���>� ���-�=� 8 ,	5 	 � � � ����� H � � 5 	

� M �
� ����� EE ' 	 � ����� F � EF � E ' 	 �

where E � � % � G � G �
tr

! � � . Again, if
�

and
�

are not
reestimated after removing ��� , we can write5���� N � 5��6� �

� 	 	
� ���1#	 K1#
����� , �

8 � � N � 8 �6� � 	
� 	 	

� ���1#	 K1#
����� �
 ��� N � � � �

� 	 	 ����K � � 	��1#	 K �����
� � #	 � 	

� 	 	 �$#� K � 	��1#	 K1#���� �
where * � is the value of the

�
th parameter before removing

��� . There is no need to explicitly compute the posterior

distribution (� ,"! in steps 2 and 10 of the pseudocode) in
order to compute the evidence.

ACKNOWLEDGMENT

This work has been supported by the Spanish Ministerio de
Educación y Ciencia, under projects CGL2004-04702-C02-
02 and TIN2006-08114.

REFERENCES

[1] A. J. Smola and B. Schölkopf. On a kernel-based method for
pattern recognition, regression, approximation, and operator inversion.
Algorithmica, 22(1/2):211–231, 1998.

[2] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
1995.

[3] S. S. Chen, S. L. Donoho, and M. A. Saunders. Atomic Decomposition
by Basis Pursuit. SIAM Journal on Scientific Computing, 20(1):33–61,
1999.

[4] R. J. Tibshirani. Regression shrinkage and selection via the lasso. J.
Roy. Stat. Soc. B, 58(1):267–288, 1996.

[5] M. Tipping. Sparse Bayesian learning and the relevance vector
machine. Journal of Machine Learning Research, 1:211–244, 2001.

[6] S. G. Mallat and Z. Zhang. Matching Pursuits with Time-Frequency
Dictionaries. IEEE Transactions on Signal Processing, 41(12):3397–
3415, 1993.

[7] S. Chen, C. F. N. Cowan, and P. M. Grant. Orthogonal Least
Squares Learning Algorithm for Radial Basis Function Networks.
IEEE Transactions on Neural Networks, 2(2):302–309, 1991.

[8] P. Vincent and Y. Bengio. Kernel matching pursuit. Machine Learning,
48(1-3):165–187, 2002.

[9] A. J. Smola and P. L. Bartlett. Sparse greedy Gaussian process
regression. In Advances in Neural Information Processing Systems,
volume 13, pages 619–625, 2001.

[10] J. Quiñonero Candela. Learning with Uncertainty - Gaussian Pro-
cesses and Relevance Vector Machines. PhD thesis, Informatics and
Mathematical Modelling, Technical University of Denmark, DTU,
2004.

[11] R. M. Neal. Bayesian Learning for Neural Networks. Number 118 in
Lecture Notes in Statistics. Springer, New York, 1996.

[12] B. W. Silverman. Some aspects of the spline smoothing approach to
non-parametric regression curve fitting. J. Roy. Stat. Soc. B, 47(1):1–
52, 1985.

[13] D. J. C. MacKay. A Practical Bayesian Framework for Backpropaga-
tion Networks. Neural Computation, 4(3):448–472, 1992.

[14] D. J. C. MacKay. Bayesian Interpolation. Neural Computation,
4(3):415–447, 1992.

[15] D. J. C. MacKay. Comparison of approximate methods for handling
hyperparameters. Neural Computation, 11(5):1035–1068, 1999.

[16] J. Kittler. Feature selection and extraction. In Young and Fu, editors,
Handbook of Pattern Recognition and Image Processing. Academic
Press, 1986.

[17] P. Pudil, J. Novovičová, and J. Kittler. Floating Search Methods in
Feature Selection. Pattern Recognition Letters, 15(11):1119–1125,
1994.

[18] P. Somol and P. Pudil. Oscillating Search Algorithms For Feature
Selection. In Proc. 15th International Conference on Pattern Recog-
nition, pages 2406–2409, 2000.

[19] M. Tipping and A. Faul. Fast Marginal Likelihood Maximisation for
Sparse Bayesian Models. In Ninth International Workshop on Artificial
Intelligence and Statistics, 2003.

[20] C.E. Rasmussen, R.M. Neal, G.E. Hinton, D. van Camp, Z. Ghahra-
mani, M. Revow, Kustra R., and R. Tibshirani. The DELVE Manual,
1996. www.cs.toronto.edu/ ! delve/.

	Main Menu
	Table of Contents
	Conference Program
	Author Index
	Search This CD-ROM
	Print This Paper
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	IJCNN CD-ROM Help

