
Selection of Basis Functions Guided by the L2 Soft
Margin

Ignacio Barrio, Enrique Romero, and Lluı́s Belanche

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. Support Vector Machines (SVMs) for classification tasks produce
sparse models by maximizing the margin. Two limitations of this technique are
considered in this work: firstly, the number of support vectors can be large and,
secondly, the model requires the use of (Mercer) kernel functions. Recently, some
works have proposed to maximize the margin while controlling the sparsity.
These works also require the use of kernels. We propose a search process to select
a subset of basis functions that maximize the margin without the requirement of
being kernel functions. The sparsity of the model can be explicitly controlled. Ex-
perimental results show that accuracy close to SVMs can be achieved with much
higher sparsity. Further, given the same level of sparsity, more powerful search
strategies tend to obtain better generalization rates than simpler ones.

1 Introduction

Margin maximization has proven a good approach for classification tasks, and the Sup-
port Vector Machine (SVM) [1] is a state-of-the-art technique that shows very good per-
formance. Given a training set {xi, ti}N

i=1 where xi ∈ R
D and ti ∈ {+1, −1}, linear

SVMs find a hyperplane that maximizes the margin in the input space. Nonlinearities
can be added to these linear SVMs by mapping the input data with a set of basis func-
tions into a feature space, with as many dimensions as basis functions, where the plane
is found. The most usual way to add nonlinearities is by means of kernel functions.

An advantage of using (Mercer) kernels in SVMs is that an induced set of basis func-
tions can be used without the need to explicitly consider them. The kernel is usually
designed to serve as a good similarity function for a given problem [2]. This advantage
sometimes involves a drawback, since the most natural similarity function for a given
problem may not satisfy Mercer’s condition, therefore designing a specific kernel, be-
sides requiring some expertise, may reduce the quality of the function [3].

Another drawback of SVMs is that, although the solution is sparse in the number
of support vectors, this number tends to grow with the number of data [4]. This is
problematic for applications requiring high classification speed, since the cost of each
prediction is proportional to the number of support vectors.

A number of methods have been proposed to overcome these drawbacks while main-
taining identical functional form to SVMs [5,6,7]. Basically, these methods consider a
finite set of basis functions (features) and they select a subset of those basis functions so
that the solution is sparse in the feature space. These works have shown that very good

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 421–430, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

422 I. Barrio, E. Romero, and L. Belanche

performance can be achieved without the requirement of kernel functions. However
these methods do not maximize the Euclidean margin.

In order to maximize the margin and find a sparser representation than SVMs, a new
constraint can be added to the SVM training problem [8], so that the number of expan-
sion vectors1 is preset by the user. This approach is similar to finding a “constrained”
feature space where the margin of the training data is maximized. Another method [9]
has been proposed to select the expansion vectors with forward selection while maxi-
mizing the L2 soft margin (penalizing the square of slack variables). Both works require
the use of kernels.

The objective of this work is to find sparse models that maximize the margin without
the requirement of using kernels. To overcome the requirement of kernels, unlike clas-
sical SVMs, we will consider an explicit finite set of basis functions (features). Then
we could compute the parameters of a linear SVM where the inputs to the SVM are the
inputs of the problem non-linearly mapped into the feature space, but the solution of
this linear SVM would not be sparse.

In order to find sparse models, similar to [9], we propose the use of Search Strategies
Guided by the L2 soft margin (SSGL2) to select a subset from a set of candidate basis
functions without the requirement of using kernels. Although the optimization problem
posed is minimized when the whole set of basis functions is included, we seek a tradeoff
between margin maximization and subset size. The solution is sparse in the feature
space. In fact, we are trying to solve a feature selection problem where each feature is
the output of a basis function. The search strategies used require the addition or removal
of one basis function at a time. Based on an algorithm recently proposed to train linear
L2 soft margin SVMs [10], we can make use of the current solution to efficiently select
the next basis function to add or remove.

Experiments using kernel functions show that, with a much reduced subset of basis
functions, the model can be competitive and perform very similar to a linear SVM with
the whole set of basis functions as features and to classical nonlinear SVMs. This way,
the cost of predictions is much lower. Regarding the search strategies, more complex
ones require fewer basis functions to achieve good performance than simpler ones.

This work is organized as follows. In section 2 we mention some alternatives to
SVMs that tackle the aforementioned drawbacks. In section 3, we briefly review a
method to solve linear L2 soft margin SVMs. In section 4 we enumerate two popular
search strategies. In section 5 we propose the SSGL2 for the selection of basis func-
tions. An experimental study is carried out in section 6, comparing the SSGL2 to other
methods. Finally, we draw some conclusions in section 7.

2 Related Methods

A number of methods have been proposed to select a subset of basis functions from a
set of candidates without the need of being kernels. These candidates are usually, but
not necessarily, centered at the input data. Some of these methods are the Relevance
Vector Machine (RVM) [5], 1-norm SVMs (1-NSVM) [7] or Kernel Matching Pursuits

1 Expansion vectors is the term used in [8] to refer to the vectors associated with each kernel
evaluation in the model.

Selection of Basis Functions Guided by the L2 Soft Margin 423

(KMP) [6]. On the one hand, RVM and 1-NSVM consider the whole set of basis func-
tions and minimize a cost function that makes most of the weights become zero. On
the other hand, KMP follows a search process to select a subset of basis functions that
minimize some cost function (usually the sum-of-squares error). None of these methods
maximizes the Euclidean margin.

Two methods have recently been proposed to maximize the margin using a reduced
number of expansion vectors. Both methods require the use of kernels. The first method
[8] adds a new constraint to the SVM problem so that the number of expansion vectors
is preset by the user. The new problem is non-convex and a local minimum is found
with a gradient based algorithm.

The second method [9] uses forward selection to select a subset of vectors that max-
imize the L2 soft margin or, equivalently, optimize

min
β

f(β) =
λ

2
βT Kβ +

1
2

∑

i∈I(β)

(yi(β) − ti)2, (1)

where K is the N × N kernel matrix and yi(β) =
∑N

j=1 βjK(xi, xj) and I(β) = {i :
tiyi(β) < 1} is the active set. The bias term is omitted for simplicity. The selection
technique is based on previous work on optimizing linear L2 soft margin SVMs [10].

3 Optimizing Linear L2 Soft Margin SVMs

Linear SVMs find a hyperplane that maximizes the margin in the input space R
D. The

objective is to find the parameters w = (ω1, ω2, .., ωD)T that solve the problem:2

min
w

1
2
‖w‖2 +

C

2

N∑

i=1

ξ2
i

subject to ti(wT xi) ≥ 1 − ξi ∀i ∈ {1, .., N}, (2)

where C is a regularization parameter and xi = (xi1, xi2, .., xiD)T are the input vec-
tors. The output function is y(x) = wT x.

This problem has an equivalent formulation as

min
w

f(w) =
λ

2
wT w +

1
2

∑

i∈I(w)

(wT xi − ti)2, (3)

where λ = 1/C and I(w) = {i : tiwT xi < 1}. The active set in the final solution,
I(w), corresponds to the support vectors. Note that f is a piecewise quadratic function
strictly convex, thus it has a unique minimizer. Furthermore, f is continuously differ-
entiable [10]. An iterative algorithm has been proposed [10] to optimize (3). Basically,
each iteration k consists of two steps. In the first one, the optimal parameters w for
the current active set I(wk) can be found as a regularized least squares solution. In the
second step a line search is done, following wk+1 = wk + δ∗(w − wk), to decrease the
“full” objective function f . The algorithm has been theoretically shown to converge to
the solution of (2) in a finite number of steps.

2 For the sake of simplicity we will treat the bias term as part of the parameters, w.

424 I. Barrio, E. Romero, and L. Belanche

4 Search Strategies

A search process has four main elements: an objective function which directs the search,
a search strategy that decides how to continue exploring new states, an initial state where
the search starts from and a stopping criterion. Two popular search strategies are:

– PTA(l, r): Plus l and Take Away r [11]. At every step, l elements are added one at
a time (always the one that maximizes the objective function) and then r elements
are removed one at a time (always the one that, after removing it, the objective
function is maximized). When l > r, it is an increasing method, and when l < r, it
is a decreasing one. Note that Forward Selection (FS) is PTA(1,0).

– SFFS: Sequential Forward Floating Selection [12] was originally designed for fea-
ture selection. At every step, an element is added and then zero or more elements
are removed one at a time while the value of the objective function is better than
the best value achieved until this moment with the same number of elements.

5 Search Strategies Guided by the L2 Soft Margin

If we transform the input data into a new feature space φ(x)=(φ1(x), φ2(x), ..φm(x))T ,
the hyperplane that maximizes the margin in this new space can be found by extend-
ing (3):

min
w

f(w)=
λ

2
wT w +

1
2

∑

i∈I(w)

(yi(w) − ti)2, (4)

where w = (ω1, ω2, .., ωm)T , yi(w) = wT φ(xi) and I(w) = {i : tiyi(w) < 1} is the
active set. Given a set of M candidate basis functions, we could tackle the classification
problem by including in the model all of them (i.e. m = M) and solving (4). Since
the model with the whole set of candidate basis functions has more flexibility than all
the other subsets, the loss function (4) is minimized further. Although that solution
can obtain good generalization rates, the cost of the predictions is very high when M
is large. In order to reduce the cost, we could select a random subset of m < M basis
functions, obtanining a Reduced SVM [13,14], but that subset could be very suboptimal.

In order to obtain good generalization at a low prediction cost, we intend to fulfill
a tradeoff between the maximization of the L2 soft margin and the number of basis
functions. As a practical approach to achieve this goal we propose to use a search pro-
cess, following some search strategy (section 4) guided by the maximization of the L2
soft margin or, equivalently, the minimization of (4). We will refer to these methods
as Search Strategies Guided by the L2 soft margin (SSGL2). More powerful search
strategies like SFFS should reduce (4) more than simpler ones like FS. Therefore, a
better generalization is expected. However, they will also require more additions and
removals, so the learning stage will be slower.

The L1 soft margin is more commonly used with SVMs than the L2 soft margin.
One of the reasons for the common use of the L1 soft margin is that it produces sparser
solutions in the number of support vectors. This reason does not affect this work, be-
cause we are working in the feature space and the sparsity in the number of features

Selection of Basis Functions Guided by the L2 Soft Margin 425

is explicitly controlled during the search process. We propose to maximize the L2 soft
margin for computational convenience.

Note that the SSGL2 are guided by (4), and not by (1) as proposed in [9]. The main
difference is that the regularization term is simpler in (4) and only depends on the values
of the coefficients. This allows the use of non-kernel basis functions.

5.1 Implementation

The search strategies described in section 4 only require the addition and removal of
elements (the “best” element at every step). Following is the pseudocode for addition
and removal of basis functions with SSGL2 based on the algorithm proposed in [10]
and described in section 3.

AddBestBasisFunction (a subset of m basis functions φ, the parameters w,
a set of candidate basis functions {ϕi})
1. for each candidate basis function ϕi not in φ do
2. set φ+ the subset obtained by adding ϕi to φ and compute the parameters w

for the current active set I(w) as a regularized least squares solution
3. w+ := LineSearch(φ+, w, w)
4. compute (4) for φ+, w+

5. end for
6. set φ, w the subset and parameters obtained by adding to φ the ϕi that

minimizes (4) in the previous loop
7. w:=TrainSVMKeerthiDeCoste(φ, w)
8. return (φ, w)

end AddBestBasisFunction

RemoveWorstBasisFunction (a subset of m basis functions φ, the parameters w)
9. for each basis function φi in φ

10. set φ− the subset obtained by removing φi from φ and compute the parameters w
that minimize (4) for the current I(w) as a regularized least squares solution

11. set w′ the parameters obtained by removing ωi from w
12. w− := LineSearch(φ−, w′, w)
13. compute (4) for φ−, w−
14. end for
15. set φ, w the subset and parameters obtained by removing from φ the φi

that minimizes (4) in the previous loop
16. w:=TrainSVMKeerthiDeCoste(φ, w)
17. return (φ, w)
end RemoveWorstBasisFunction

TrainSVMKeerthiDeCoste (a subset of basis functions φ,
the parameters w)

18. while not convergence do
19. compute the parameters w that minimize (4) for the current I(w)
20. w:=LineSearch(φ, w, w)
21. end while
22. return(w)
end TrainSVMKeerthiDeCoste

426 I. Barrio, E. Romero, and L. Belanche

For each candidate basis function, for efficiency reasons, the optimal parameters are
approximated (steps 2-3 or 10-12 in the pseudocode) by performing only one iteration
of the algorithm in section 3: the regularized least squares stage is computed incremen-
tally (steps 2 or 10) and the cost of the line search (steps 3 or 12) is O(N log N) [10].
After a basis function has been included, the whole algorithm in section 3 is run until
convergence (steps 7 or 16).

Next we explain how to perform steps 2 and 3 incrementally. Suppose the current
model has m basis functions and the active set I(w) has NSV elements and denote
d : {1, .., NSV } → {1, .., N} the function that given an index k in the active set returns
the corresponding index in the training set. Denote Φ the NSV × m design matrix
with elements Φkj = φj(xd(k)) and denote φ∗ the column vector corresponding to
a new basis function with elements φ∗k = φm+1(xd(k)). Let Σ = (λI + ΦT Φ)−1.
Under a fixed active set, Σ−1 is a partitioned matrix. In that case, we can compute
the parameters after adding φ∗ (step 2) as w = ((w − ω∗ΣΦT φ∗)T , ω∗)T where ω∗ =
(λ+φT

∗ φ∗−φT
∗ ΦΣΦT φ∗)−1. Similarly, we can compute the parameters decrementally

after removing φi (step 10) as w = w − ωiΣ
−1
ii Σi. The parameter ωi, which is now

zero, should be removed.
The cost of an addition is O(NSV × m × M + N × log N × M), where M is the

number of candidate basis functions. The cost of a removal is O(NSV × m2 + N ×
log N × m) —note that we have to compute (4) for each candidate removal (step 13 in
the pseudocode).

5.2 Stopping Criteria

The addition of more basis functions, when using the appropiate regularization param-
eter, is usually beneficial for the accuracy of the model, but some heuristic stopping
criterion should be used to decide when to stop the search.

A first stopping criterion comes when the requirements of memory are strict and
precise: the size of the subset is fixed beforehand, and when the model first reaches that
number of basis functions, the process is stopped.

However, in many cases, the user will prefer the method to automatically select the
number of basis functions. For those cases, we propose this second stopping criterion:
let Fn be the error (4) of the best model found with n basis function; given some k, ε,
if the current model has m + k basis functions and Fm − Fm+k < εN the process is
stopped. By modifying k and ε one can roughly control the size of the subset.

6 Experimental Study

The goal of the following experiments is threefold: to observe the size of the subsets
required to achieve good results, to confirm that more powerful SSGL2 produce better
solutions than simpler ones and to compare the performance of SSGL2 to other related
methods.

Although the use of kernels is not necessary in the proposed model, in order to com-
pare the SSGL2 to the SVM, M = N candidate Radial Basis Functions (RBF) centered
at the training set input vectors were considered. We used ϕi(x) = exp(−γ‖x− xi‖2).
Furthermore, a bias candidate, ϕ0(x) = 1, was used.

Selection of Basis Functions Guided by the L2 Soft Margin 427

A) SSGL2 (FS 6 BF) C) SSGL2 (FS 11 BF) E) SVM

B) SSGL2 (SFFS 6 BF) D) SSGL2 (SFFS 11 BF) F) 1-NSVM

Fig. 1. Basis functions selected by different methods on the toy problem

6.1 Toy Example

In a first experiment, we created a toy data set with two input dimensions and some
nonlinearities. C was set to a high value: 10000.

Figure 1 shows the centers of the basis functions selected in the solutions of different
methods. The decision boundary generated is also shown. Figures 1A to 1D correspond
to SSGL2, concretely FS and SFFS. FS required 11 basis functions to classify all the
data correctly, while SFFS required only 6 (both solutions are shown in the figure).
For illustrative purposes, Figure 1E shows the solution of a L1 soft margin SVM using
Gaussian kernels (the selected basis functions are the support vectors), and Figure 1F
shows the solution of a 1-NSVM. The classical SVM selects points that are close to the
decission surface, but that is not the case for the SSGL2 and 1-NSVM.

6.2 Benchmark Comparisons

We used 12 classification benchmark problems, provided by G. Rätsch and available at
http://ida.first.fraunhofer.de/projects/bench. These data sets are split in 100 training/test
partitions. The results reported in this work show averages over the first 10 partitions.

Settings. The input vectors were linearly scaled to [−1, +1]. The RBF width was the
same for all the methods: we set γ = (0.3D)−1, following [15], where D is the dimen-
sion of the input vectors.

We used the second stopping criterion described in section 5.2. We set k = 10 and
ε = 0.005. These values were chosen after some preliminary experiments. Furthermore,
if the model reached 100 basis functions, the process was also stopped.

In order to choose the regularizer parameter, C, a 5-fold cross-validation process was
performed on each training set partition. Values for C were tried ranging from 2−4 to
214 multiplying by 22 (that is, {2−4, 2−2, 20, .., 212, 214}).

428 I. Barrio, E. Romero, and L. Belanche

Table 1. For each data set: average accuracy obtained in the test sets (upper row) and number of
basis functions of the model (lower row)

Data set N D FS PTA(2,1) SFFS ABF SVM 1-NSVM SpSVM-2

Banana 400 2 89.0 89.0 89.0 89.1 89.0 88.7 88.9
29.3 27.2 22.0 400 99.3 18.8 19.8

Breast Cancer 200 9 72.9 72.5 72.4 71.8 70.7 69.7 71.9
43.6 44.3 42.6 200 130 43.6 7.6

Diabetis 468 8 76.7 76.9 76.8 76.5 75.2 75.8 75.8
32.3 28.5 25.0 468 267 31.7 18.3

Flare-Solar 666 9 66.5 66.3 66.2 65.4 66.5 66.3 66.6
24.6 24.2 21.6 666 494 13.9 11.6

German 700 20 76.3 76.8 76.7 76.8 76.3 76.5 76.2
52.2 46.8 44.1 700 459 108 43.6

Heart 170 13 79.1 79.6 79.0 79.0 79.8 78.7 80.0
64.4 62.8 56.6 170 116 39.9 22.6

Image 1300 18 96.5 96.6 96.3 96.7 97.2 96.6 96.6
65.9 55.9 35.6 1300 147 71.7 96

Ringnorm 400 20 97.8 97.7 97.6 98.0 97.5 97.8 97.7
16.2 15.9 15.1 400 86.7 18.7 15.1

Titanic 150 3 77.8 77.8 77.8 77.8 77.8 77.9 77.3
23.4 22.7 21.4 150 74.6 8.8 5.3

Waveform 400 21 89.8 89.6 89.5 89.6 89.6 89.1 89.4
38.6 41.3 37.3 400 134 39.1 15.1

Splice 1000 60 86.8 86.6 86.4 88.6 88.9 85.1 85.1
99.6 95.8 90.6 1000 841 540 86.1

Twonorm 400 20 97.2 97.1 97.1 97.2 97.3 97.0 96.9
40.8 43.9 38.9 400 155 15.9 11.6

Models. We run three SSGL2 (FS, PTA(2,1) and SFFS) and compared them to a linear
(in the explicit feature space) L2 soft margin SVM, where the features φi are all the
candidate basis functions (ABF). In other words, ABF is a model minimizing (4) with
m = N (plus the bias term). We also compared them to classical L1 soft margin SVM
with Gaussian kernels (labelled SVM) and to 1-NSVM.

Finally, we compared them to SVMs with reduced complexity [9] (labelled SpSVM-
2). We used the code provided at http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/primal/
by O. Chapelle. The whole set of candidates was considered for addition at each iteration.
The number of basis functions (up to 100) for this method was selected with 5-fold cross-
validation.

Results. For each task, the upper row in Table 1 shows the percentages of correctly
classified test data (the average over the 10 partitions) and the lower row shows the
number of basis functions used by each method. The number of training data N and
the number of input variables D for each task are also shown. The SSGL2 obtained, in
most cases, very similar accuracy than ABF while using only a subset of basis func-
tions. Their performance was also very similar to SVM, 1-NSVM and SpSVM-2. The
SSGL2 found more compact models than SVM and similar to 1-NSVM and SpSVM-2.

Selection of Basis Functions Guided by the L2 Soft Margin 429

10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

Num. Basis Functions

Lo
ss

 (
2)

FS
PTA(2,1)
SFFS

10 20 30 40 50 60 70 80
50

60

70

80

90

100

Num. Basis Functions

T
es

t a
cc

ur
ac

y

FS
PTA(2,1)
SFFS

Fig. 2. The vertical axes show L2 soft margin loss (4) (left) and test accuracy (right) on a partition
of the Image data set. The horizontal axes show the number of basis functions of the model.

Table 2. Average number of additions plus removals required by the SSGL2

Ban. Bre. Dia. Fla. Ger. Hea. Ima. Rin. Tit. Wav. Spl. Two.
FS 29 44 32 25 52 64 66 16 23 39 100 41

PTA(2,1) 82 133 86 73 140 188 168 48 68 124 287 132
SFFS 269 272 180 118 412 456 540 83 115 264 1066 168

Comparing the search strategies of SSGL2, SFFS usually required a lower number of
basis functions to obtain similar accuracy than FS and PTA(2,1).

Figure 2 shows the performance of the models found by the SSGL2 on the first
partition of the Image data set. The plot on the left shows the L2 soft margin loss (4) in
the training set, while the plot on the right shows the accuracy of the models on the test
set. Similar results were obtained for the rest of the data sets. Given the same number
of basis functions, the models found by SFFS performed better than those found by FS.
Again, we can see that the number of basis functions of the final solution is lower for
SFFS than for FS. In contrast, the number of additions and removals required by SFFS
was much higher than by FS (see Table 2). PTA(2,1) was in an intermediate position.

7 Conclusions and Future Work

A method has been described to select a subset of basis functions from a set of can-
didates by means of a search process guided by the L2 soft margin. Being an explicit
search, we can explicitly control the sparsity of the solution.

In the experiments, the SSGL2 found compact and competitive models. SFFS found
very good subsets but it required a high number of operations. PTA(2,1) and FS required
much less operations but their subsets were not so good. Choosing the search strategy
implies a tradeoff between accuracy and computational cost. In orther to satisfy this
tradeoff, other search strategies may be considered.

The SSGL2 can be extended in two ways that kernel methods cannot (or at least not
so easily). First, any similarity function can be used without the restriction to be a kernel
function. Second, a set of candidate basis functions (and a model) can contain different
sorts of basis functions.

430 I. Barrio, E. Romero, and L. Belanche

Acknowledgments

This work was supported by the Consejo Interministerial de Ciencia y Tecnologı́a (CI-
CYT), under projects CGL2004-04702-C02-02 and TIN2006-08114.

References

1. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)
2. Schölkopf, B., Tsuda, J.P.V.K.: Kernel methods in computational biology. MIT Press, Cam-

bridge (2004)
3. Balcan, M.F., Blum, A.: On a theory of learning with similarity functions. In: Proceedings of

the 23rd International Conference on Machine Learning, pp. 73–80. ACM Press, New York
(2006)

4. Steinwart, I.: Sparseness of support vector machines. Journal of Machine Learning Re-
search 4, 1071–1105 (2003)

5. Tipping, M.: Sparse Bayesian learning and the relevance vector machine. Journal of Machine
Learning Research 1, 211–244 (2001)

6. Vincent, P., Bengio, Y.: Kernel matching pursuit. Machine Learning 48(1-3), 165–187 (2002)
7. Bradley, P.S., Mangasarian, O.L.: Feature selection via concave minimization and support

vector machines. In: 15th International Conf. on Machine Learning, pp. 82–90. Morgan
Kaufmann, San Francisco (1998)

8. Wu, M., Schölkopf, B., Bakir, G.: Building sparse large margin classifiers. In: 22nd Interna-
tional Conf. on Machine learning, pp. 996–1003. ACM Press, New York (2005)

9. Keerthi, S., Chapelle, O., DeCoste, D.: Building Support Vector Machines with Reduced
Classifier Complexity. Journal of Machine Learning Research 8, 1–22 (2006)

10. Keerthi, S., DeCoste, D.: A modified finite Newton method for fast solution of large scale
linear SVMs. Journal of Machine Learning Research 6, 341–361 (2005)

11. Kittler, J.: Feature selection and extraction. In: Young, F. (ed.) Handbook of Pattern Recog-
nition and Image Processing, Academic Press, London (1986)

12. Pudil, P., Novovičová, J., Kittler, J.: Floating Search Methods in Feature Selection. Pattern
Recognition Letters 15(11), 1119–1125 (1994)

13. Lee, Y.J., Mangasarian, O.L.: Rsvm: Reduced support vector machines. In: SIAM Interna-
tional Conference on Data Mining (2001)

14. Lin, K.M., Lin, C.J.: A study on reduced support vector machines. IEEE Transactions on
Neural Networks 14(6), 1449–1559 (2003)

15. Schölkopf, B., Sung, K., Burges, C., Girosi, F., Niyogi, P., Poggio, T., Vapnik, V.: Compar-
ing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE
Transactions on Signal Processing 45(11), 2758–2765 (1997)

	Selection of Basis Functions Guided by the L2 Soft Margin
	Introduction
	Related Methods
	Optimizing Linear L_2 Soft Margin SVMs
	Search Strategies
	Search Strategies Guided by the L_2 Soft Margin
	Implementation
	Stopping Criteria

	Experimental Study
	Toy Example
	Benchmark Comparisons

	Conclusions and Future Work

