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Abstract. We present an approximate Bayesian method for regression and clas-
sification with models linear in the parameters. Similar to the Relevance Vector
Machine (RVM), each parameter is associated with an expansion vector. Unlike
the RVM, the number of expansion vectors is specified beforehand. We assume
an overall Gaussian prior on the parameters and find, with a gradient based pro-
cess, the expansion vectors that (locally) maximize the evidence. This approach
has lower computational demands than the RVM, and has the advantage that the
vectors do not necessarily belong to the training set. Therefore, in principle, better
vectors can be found. Furthermore, other hyperparameters can be learned in the
same smooth joint optimization. Experimental results show that the freedom of
the expansion vectors to be located away from the training data causes overfitting
problems. These problems are alleviated by including a hyperprior that penalizes
expansion vectors located far away from the input data.

1 Introduction

In supervised learning, we are given a set of training data {xi, ti}N
i=1 where xi ∈ RD.

We will consider regression tasks, where ti ∈ R, and binary classification tasks where
ti ∈ {+1, −1}. The objective is to infer a function y(x) that underlies the training
data and makes good predictions on unseen input vectors. It is common to express this
function as an extended linear model with M fixed basis functions:

y(x; w) = wT φ(x), (1)

where φ(x) = (φ1(x), φ2(x), .., φM (x))T are the outputs of the basis functions and
w = (ω1, ω2, .., ωM )T are the model parameters. When each basis function is associ-
ated with a vector, we can write

φ(x) = (k(x, x̂1), k(x, x̂2), .., k(x, x̂M ))T , (2)

where x̂i are the expansion vectors.
Within Bayesian learning, the Relevance Vector Machine (RVM) [1] considers a

model where the expansion vectors correspond with all the training input vectors. An
individual Gaussian prior distribution is assumed on each parameter, so that following
approximate Bayesian inference leads to sparse solutions. The expansion vectors asso-
ciated to non-zero parameters (known as relevance vectors) belong to the training set,
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and are found by marginal likelihood maximization. The η-RVM is an extension of the
RVM that, besides selecting the relevance vectors, adapts the hyperparameters of the
basis functions— e.g. the widths of Radial Basis Functions (RBF)— by marginal like-
lihood maximization. As Tipping stated, there is an important limitation in the η-RVM,
since the learning stage requires an interleaved two-stage training procedure that leaves
open the question of how to combine the optimization.

We present a method that finds a model with the form (1, 2) where the expansion
vectors (the number of which is fixed beforehand) do not belong to the training set.
We place an overall Gaussian prior on the parameters, and find the expansion vectors
by marginal likelihood maximization with a gradient based process. We will refer to
this method as Linear Model with Adaptive expansion Vectors maximizing the Evidence
(LMAVE). One might argue that, since the expansion vectors are adaptive, the model is
no longer linear. However, we use the term linear model because the expansion vectors
are not parameters but hyperparameters. This work is inspired in previous works on
sparsification of Support Vector Machines [2] and Gaussian processes [3]. These works
do not require the expansion vectors to be part of the training data.

This manner of finding the expansion vectors has been suggested in [4,5], but it has
not been studied in depth. However, it should include a number of enhancements with
respect to the RVM, for example, the expansion vectors do not necessarily belong to
the training data, so better estimates can be found. Furthermore, the expansion vectors
and other hyperparameters are learned in one joint optimization. The computational
demands are lower than for the RVM, which makes this method suitable for large data
sets. However, experimental results show that, at least for RBFs, the freedom of the
expansion vectors to be away from the training data can cause overfitting problems.

We propose a hyperprior that penalizes expansion vectors located far away from the
input data and show that a substantial improvement is achieved. We refer to this method
as Linear Model with Adaptive expansion Vectors maximizing the Posterior (LMAVP).

2 Linear Models with Overall Gaussian Prior

This section introduces inference with extended linear models where an overall Gaus-
sian prior distribution is assumed on the parameters. For regression we follow previous
work on Bayesian interpolation [6]. For classification we use a generalization of the
linear model.

2.1 Regression

Consider the targets to be deviated from the real underlying function by i.i.d. additive
zero-mean Gaussian noise with variance σ2

ν . The likelihood of the parameters follows
a Gaussian distribution: (to save notation, we omit the conditioning on the input vec-
tors, x)

p(t|w, σ2
ν) ∼ N (Φw, σ2

ν ), (3)

where Φ is the N × M design matrix with elements Φij = k(xi, x̂j).
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In order to control the smoothness of y(x; w), we assume a zero-mean overall
Gaussian prior distribution over w with variance σ2

w:

p(w|σ2
w) ∼ N (0, σ2

w), (4)

Following Bayes’ rule, the posteriorparameterdistribution is writtenp(w|t, σ2
ν, σ

2
w) =

p(t|w, σ2
ν)p(w|σ2

w)/p(t|σ2
w, σ2

ν). This is a product of two Gaussians (the likelihood and
the prior) divided by a normalizing constant (the marginal likelihood) and it can be
rewritten as

p(w|t, σ2
ν , σ2

w) ∼ N (μ, Σ), (5)

where
Σ = (σ−2

ν ΦT Φ + σ−2
w I)−1 and μ = σ−2

ν ΣΦT t. (6)

The marginal likelihood (also known as the evidence) is given by p(t|σ2
w, σ2

ν) =∫
p(t|w, σ2

ν)p(w|σ2
w)dw. This is a convolution of Gaussians, which is also a Gaussian:

p(t|σ2
w , σ2

ν) = N (0, C) = (2π)−N/2|C|−1/2 exp
(

− 1
2
tT C−1t

)
, (7)

where C = σ2
νI + σ2

wΦΦT . Since matrix C is sized N × N , it is convenient to use
established matrix identities and rewrite the logarithm of the marginal likelihood as

log p(t|σ2
w , σ2

ν) = − 1
2
[
N log 2π − log |Σ| + N log σ2

ν+

+ M log σ2
w + σ−2

ν ‖t − Φμ‖2 + σ−2
w ‖μ‖2].

It is common to include extra hyperparameters controlling some aspect of the basis
functions (e.g. RBF widths). We will refer to all the hyperparameters (including also
σ2

w and σ2
ν ) as Θ.

In order to estimate the most probable hyperparameters, ΘMP , we can use Bayes’
rule: p(Θ|t) ∝ p(t|Θ)p(Θ). If a flat (improper) hyperprior p(Θ) is assumed for all the
hyperparameters, then the marginal likelihood p(t|Θ) (7) should be maximized.

2.2 Binary Classification

In binary classification we model the probability of success p(ti = +1|w). We map
y(x; w) to the unit interval by applying the cumulative distribution function for a Gaus-
sian (probit), Ψ(z) =

∫ z

−∞ N (x|0, 1)dx. The likelihood is

p(t|w) =
N∏

i=1

p(ti|wT φ(xi)) =
N∏

i=1

Ψ(tiwT φ(xi)). (8)

We use an overall Gaussian prior for the parameters (4). Since the likelihood is not
Gaussian, unlike the regression case, we cannot arrive at analytical solutions for the
posterior. Instead, we approximate the posterior distribution as1

p(w|t, σ2
w) ∝ p(w|σ2

w)
∏

i

p(ti|w) ≈ p(w|σ2
w)

∏

i

q(ti|w). (9)

1 We use p to denote exact quantities and q to denote approximations.
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We follow Expectation Propagation (EP) [7] and choose the approximation terms to be
Gaussian, parameterized by (mi, vi, si): q(ti|w) = si exp(− 1

2vi
(tiwT φ(xi) − mi)2).

Then the approximate posterior is also Gaussian: q(w|t, σ2
w) = N (mw, Vw).

EP chooses the approximation terms such that the posterior using the exact terms and
the posterior using the approximation terms are close in Kullback-Leibler (KL) diver-
gence. Qi et al. [8] presented an iterative algorithm to choose the approximation terms
following EP in O(INM2) complexity (I is the number of iterations). The algorithm
was designed for the RVM, but it is also applicable to linear models with an overall
Gaussian prior. It is omitted here for brevity.

Once the approximation terms are found, the marginal likelihood can be approxi-
mated by:

p(t|Θ) ≈ q(t|Θ) =
∫ ∏

i

p(w|σ2
w)q(ti|w)dw = |Vw|1/2σ−M

w exp(B/2)
∏

i

si (10)

where B = (mw)T V −1
w mw −

∑
i(m

2
i /vi).

3 Linear Models with Adaptive Expansion Vectors

The Linear Model with Adaptive expansion Vectors (LMAV) can be seen as a linear
model with an overall Gaussian prior (section 2) where the expansion vectors are con-
sidered as hyperparameters. The number of expansion vectors is fixed beforehand. In
order to optimize the expansion vectors and the rest of hyperparameters, the LMAV
maximizing the evidence (LMAVE) uses a gradient based algorithm that maximizes the
evidence (7, 10).

3.1 Derivatives with Respect to the Expansion Vectors

Regression Tasks. For regression tasks, we can decompose the computation of the
derivatives of the marginal likelihood (7) with respect to the expansion vectors into two
steps [1]. For convenience we compute the derivative of the logarithm L = log p(t|Θ):

∂L
∂x̂ij

=
N∑

n=1

M∑

m=1

∂L
∂φnm

∂φnm

∂x̂ij
=

N∑

n=1

M∑

m=1

Anm
∂φnm

∂x̂ij
,

where x̂i = (x̂i1, x̂i2, .., x̂iD), A = σ−2
ν [(t − Φμ)μT − ΦΣ] and φnm = k(xn, x̂m).

Classification Tasks. For classification tasks, the approximation terms q(ti|w) have
the same form as a likelihood term in a regression problem (3), that is, we convert the
classification problem into a regression problem with targets mi and input dependent
(heteroscedastic) noise with variances vi. Following this interpretation, the covariance
matrix and the mean for the posterior q(w|t, σw) can be rewritten as

Vw = (σ−2
w I + HT Λ−1H)−1 and mw = VwHT Λ−1mo, (11)
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where mo = (m1, .., mN )T , Λ = diag(v1, .., vN )T and H is an N × M matrix with
elements Hij = tik(xi, x̂j).

We can use (11) to compute the derivatives of the marginal likelihood (10) with
respect to the hyperparameters. For the gradient computation, the parameters mi, vi, si

can be considered fixed [9] and we can write: (notice L = log q(t|Θ))

∂L
∂x̂ij

= − 1
2
tr(VwE

∂H

∂x̂ij
) +

1
2
mT

wE
∂H

∂x̂ij
mw−

− 1
2
mT

wE
∂H

∂x̂ij
VwEmo + mT

w

∂HT

∂x̂ij
Λ−1mo, (12)

where E = 2HT Λ−1.

3.2 Computational Cost

In regression tasks, computing the gradient requires the matrix multiplication ΦΣ in the
calculation of matrix A, which has complexity O(M2 × N). In addition, the optimiza-
tion of M expansion vectors has M × D dimensions. However, the matrix ∂Φ/∂x̂ij

only has one non-zero column, which lowers the cost of some computations. The cost
of LMAVE for regression is O(n × (N × M × D + M2 × N)), where n is the number
of epochs of the gradient based algorithm.

In classification tasks, each epoch requires the EP approximation and the computa-
tion of the gradient. Computing the gradient requires the matrix multiplication VwE in
(12), which has complexity O(M2 ×N). This complexity is lower than the EP approxi-
mation O(I×M2×N), where I is the number of iterations of the EP algorithm (usually
less than 10, so it can be considered as a constant). The optimization of M expansion
vectors has M × D dimensions, but again the matrix ∂H/∂x̂ij only has one non-zero
column. The cost of LMAVE for binary classification is O(n × (N × M × D + I ×
M2 × N)). We have not included the cost of optimizing additional hyperparameters.

3.3 Introducing a Non-flat Hyperprior

The plot on the left in Figure 1 shows an illustrative example of LMAVE with ten
expansion vectors. The data are shown with dots. The initial and the final locations of
the expansion vectors are marked with crosses (lower and upper row respectively). The
function produced by the LMAVE is also shown. We trained the LMAVE with RBFs
k(x, x̂i) = exp(−γ

∑D
j=1(xj − x̂ij)2) with adaptive inverse squared width, γ. There is

an input range where no data are provided. We find that an expansion vector is located
precisely in that range and the function values become large near that expansion vector.
A similar effect happens with the expansion vector located on the right of the data.

Where the data are scarce, the prior assumptions should take high importance. The
Gaussian prior assumption on the parameters favours small function values, but the
freedom of the expansion vectors to be located anywhere can produce large function
values. That is, the prior assumption on the parameters is not enough to control the
smoothness.
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Fig. 1. Comparison between LMAVE (left) and LMAVP (right). See text.

The LMAVE assumes a flat hyperprior on the expansion vectors. To tackle situations
like the one in Figure 1 we can include a hyperprior that penalizes expansion vectors lo-
cated far away from the input data. Taking advantage of k(x, x̂i) ∈ [0, 1] being bounded
and localized at the expansion vectors, we propose the following hyperprior (note that
k(x, x̂i) depends on γ):

p(x̂i, γ) ∝ exp
(

− 1
2

(1 − maxN
j=1(k(xj , x̂i)))2

s2

)
. (13)

It is exclusively designed for the RBFs described above. Note that we have saved no-
tation and this hyperprior should be written p(x̂i, γ|{xj}N

j=1, k(·, ·)). This hyperprior
satisfies a tradeoff2 between flexibility on the expansion vectors to model the data and
constraint to be located near the input data (the concept ’near’ depends on the RBF
width). Throughout this work we set s = 0.1. This value was chosen after some pre-
liminary experiments.

In order to find maximum a posteriori estimates of the hyperparameters we maximize
log p(t|Θ)+

∑M
i=1 log p(x̂i, γ). The complexity of computing the gradient of the hyper-

priors is negligible when compared to the gradient of the evidence, therefore the cost is
the same as LMAVE. We call this method LMAV maximizing the posterior (LMAVP).
The plot on the right in Figure 1 shows the performance of LMAVP on the same data
set. The expansion vectors are located near the training data and large function values
are avoided.

4 Comparison with Related Methods

4.1 Relevance Vector Machines

The RVM [1] considers a linear model with one expansion vector coincident with each
input vector. Unlike the LMAV, an individual Gaussian prior is assumed for each pa-
rameter, and following approximate Bayesian inference, most of the parameters tend
to zero, so in practice the model can be expressed as an expansion of a subset of input
vectors. Unlike the LMAV, the size of the model adapts to the problem at hand. This
can be an advantage, but it can become a drawback for applications very restrictive in
prediction time and memory, where the level of sparsity may be not enough.

2 The term s2 in the denominator controls this tradeoff.
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Unlike the RVM, the expansion vectors in LMAV do not necessarily belong to the
training data, so better estimates can be found —but if they are located far away, prob-
lems can appear (see Figure 1). Furthermore, the optimization of expansion vectors and
other hyperparameters can be performed in a smooth joint optimization.

RVM implementations [10,11,12] either store the entire N × N design matrix or re-
compute all its columns at each iteration, while the LMAV recomputes an N×M design
matrix at each iteration. Furthermore, the cost of an iteration of LMAV depends only
linearly on the number of training data (it depends on other variables, see section 3.2),
while this dependence is at least quadratic in RVM implementations. This makes the
LMAV especially interesting for large data sets (and low number of expansion vectors).

Unlike the RVM, the LMAV requires the basis functions to be differentiable with
respect to the expansion vectors. Furthermore, a bad initialization of the expansion vec-
tors may lead to a bad local maximum.

4.2 Other Related Methods

Sparse large margin classifiers (SLMC) [2] are a sparse alternative to Support Vector
Machines (SVMs) [13] for classification. A gradient based algorithm learns the loca-
tions of the expansion vectors (the number of which is set beforehand) so that the mar-
gin in some feature space is maximized. SLMC makes use of kernels, which allows to
work in infinite feature spaces. Unlike SLMC, the LMAV does not use kernels, and it is
limited to finite feature spaces. This limitation sometimes turns into an advantage, since
the LMAV can use basis functions that do not satisfy Mercer’s condition (required to
be kernel). Furthermore, the Bayesian framework allows to tune other hyperparameters,
such as RBF widths, that are not easily tuned for SLMC.

A Sparse Pseudo-input Gaussian process (SPGP) [3] is a Gaussian process (GP) with
a particular covariance function parameterized by the pseudo-inputs (the counterpart to
the expansion vectors). This covariance defines a prior over functions. Following ap-
proximate Bayesian inference, the pseudo-inputs are optimized by marginal likelihood
maximization. The pseudo-inputs and the hyperparameters are found in a gradient based
smooth joint optimization. The LMAV is closely related to SPGP, but it is based on a
different prior over functions (a different covariance matrix C in (7)), with the advan-
tage that the basis functions k(x, x̂i) do not need to be covariance functions.

Much work in the literature has been devoted to the location of RBF centers. Gen-
eralized radial basis functions (GRBF) [14] find the centers with a gradient based al-
gorithm minimizing some cost function based on regularization techniques. In [15] not
only the centers are found with this method but also the RBF widths. The authors report
overfitting problems. Similarly, the hidden parameters in a feed-forward neural network
are commonly trained with gradient based algorithms [16]. LMAV can be considered as
a sort of neural network. However, the main difference between both methods is that in
neural networks all the parameters (output and hidden ones) are usually trained to min-
imize the same cost function, whereas in LMAV the expansion vectors (the counterpart
to hidden layer parameters) are found by integrating out the (output) parameters. This
should bring an improvement over maximum likelihood approaches.
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Table 1. Results on regression benchmarks. The test MSE is shown for each method.

Data set CPU bank-32nh pumadyn-32nh kin-40k kin-40k
N 1024 1024 1024 2000 30000
D 21 32 32 8 8

η-RVM M/N (%) 1.8 40.7 2.5 12.6 -
Error (MSE) 0.090 1.707 0.602 0.0043 -

SPGP 0.080 1.262 0.586 0.0071 0.0061
M/N = 2% LMAVE 0.110 2.570 0.704 0.0054 M = 50 0.0043

LMAVP 0.093 1.458 0.627 0.0054 0.0045

SPGP 0.083 1.259 0.597 0.0054 0.0039
M/N = 5% LMAVE 0.086 3.944 0.846 0.0043 M = 100 0.0030

LMAVP 0.077 1.861 0.642 0.0041 0.0029

SPGP 0.079 1.264 0.616 0.0045 0.0033
M/N = 10% LMAVE 0.088 3.032 0.987 0.0040 M = 200 0.0015

LMAVP 0.072 2.058 0.636 0.0031 0.0016

5 Experimental Study

In this section we compared the LMAVE and LMAVP to some related methods. Conju-
gate gradients was used to optimize all the hyperparameters. We used n = 200 epochs.

5.1 Regression Benchmarks

We used four benchmark data sets.3 To check performance, for the kin-40k task we used
20 disjoint sets with 2000 cases each. Ten sets were used for training and ten for test.
For each of the other tasks we used eight disjoint sets with 1024 cases each (four sets
for training and four for test). To show the utility of LMAV on large data sets, we also
split the kin-40k data set into 30000 training cases and 10000 test cases.

We used RBFs with multiple adaptive widths k(x, x̂i) = exp(−
∑D

j=1 γj(xj −
x̂ij)2). We compared the LMAVE and LMAVP to SPGP with covariance function
K(x1, x2) = θ0k(x1, x2) and to η-RVM (RVM with adaptive RBF widths). The num-
ber of expansion vectors for LMAV and SPGP was 2%, 5% and 10% of the number of
training data (except for the large data set). For SPGP we used the code provided by
E. Snelson at www.gatsby.ucl.ac.uk/∼snelson. For the η-RVM we followed the imple-
mentation proposed by Tipping [1].

Table 1 shows the results. For each task, the number of training data, N , and the
input dimension, D, are shown. The mean squared error (MSE) is reported for each
method. LMAVP was competitive with SPGP and the RVM, and it outperformed the
LMAVE. The hyperprior alleviated overfitting problems in most cases but it was not
strong enough for the bank-32nh problem. In the large data set, the RVM is hopeless,
since it requires too much storage and computation, while the LMAV required from 16
minutes (with M = 50) to 110 minutes (with M = 200) on a Pentium IV 3.0 GHz.

3 The kin-40k data set is available at http://ida.first.fraunhofer.de/∼anton/data.html. The rest of
data sets are available at http://www.cs.toronto.edu/∼delve
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Table 2. Results on classification tasks. The test error rates are shown for each method.

Data set Banana Breast Titanic Waveform Image
N 400 200 150 400 1300
D 2 9 3 21 18

SVM NSV 86.7 112.8 70.6 158.9 172.1
Error(%) 11.8 28.6 22.1 9.9 2.8

SLMC 16.5 27.9 26.4 9.9 5.2
M/NSV = 5% LMAVE 26.3 30.8 22.6 12.8 2.9

LMAVP 26.1 29.9 22.7 12.5 3.5

SLMC 11.0 27.9 22.4 9.9 3.6
M/NSV = 10% LMAVE 11.5 29.5 22.7 12.5 2.6

LMAVP 11.0 28.7 22.8 12.1 3.0

RVM M/NSV (%) 13.2 5.6 92.5 9.2 20.1
Error(%) 10.8 29.9 23.0 10.9 3.9

5.2 Classification Benchmarks

Five classification tasks available at http://ida.first.fraunhofer.de/projects/bench were
used. These data sets were split in 100 training/test partitions. Similar to [1,2] the results
reported in this work show averages over the first 10 partitions of each data set.

In this experiment we used RBFs with a single width k(x, x̂i) = exp(−γ
∑D

j=1(xj−
x̂ij)2). We compared the LMAVE and LMAVP to the RVM, SLMC and SVM. The
number of expansion vectors for SLMC, LMAVE and LMAVP is 5% and 10% of the
number of support vectors found by the SVM.

Results are shown in Table 2. The results for RVM are taken from [1], where cross-
validation was used to find the RBF width. The results for SVM and SLMC are taken
from [2], where the regularization parameter and the RBF width were the ones provided
by G. Rätsch at the aforementioned website. For LMAVE and LMAVP, the RBF width
was jointly optimized with the expansion vectors (see section 3).

The LMAVE and LMAVP were competitive both with the RVM and SLMC. The
difference in accuracy between LMAVP and LMAVE was not as notable as in regression
tasks.

6 Conclusions

Experimental results show that the freedom of the expansion vectors to be located away
from the training data can cause overfitting problems to the LMAVE. Since the prior
on the parameters is not enough to tackle overfitting, we have included a particular
hyperprior (designed for radial basis functions) penalizing expansion vectors located far
away from the input data. This approach (LMAVP) results in a significant improvement
over the LMAVE, especially in regression tasks, and is competitive with the RVM. The
number of expansion vectors required to achieve good performance is usually very low.
This fact makes this method very interesting for large data sets, since the memory and
computational demands are lower than for the RVM. A study on different hyperpriors
may be potentially interesting (also for non-radial basis functions).
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In this work, the expansion vectors are initialized to random training input vectors,
but other scenarios are possible, for example we could use a clustering algorithm such
as K-means.

The (Gaussian) noise and (probit) ’slack’ assumptions taken can be rather stringent,
and the presence of outliers can decrease performance. Furthermore, the optimization
of hyperparameters based on the evidence (LMAVE) and on maximum a posteriori
estimates (LMAVP) are just approximations to full Bayesian inference, which consists
on integrating out all the hyperparameters. As such, they are not inmune to overfitting.
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5. Quiñonero Candela, J., Rasmussen, C.E.: A Unifying View of Sparse Approximate Gaussian
Process Regression. Journal of Machine Learning Research 6, 1935–1959 (2005)

6. MacKay, D.J.C.: Bayesian Interpolation. Neural Computation 4, 415–447 (1992)
7. Minka, T.P.: Expectation Propagation for approximate Bayesian inference. In: 17th Confer-

ence in Uncertainty in Artificial Intelligence, pp. 362–369 (2001)
8. Qi, Y.A., Minka, T.P., Picard, R.W., Ghahramani, Z.: Predictive automatic relevance determi-

nation by expectation propagation. In: 21st International Conference on Machine Learning
(2004)

9. Seeger, M.: Expectation propagation for exponential families (2005), note obtainable from
www.kyb.tuebingen.mpg.de/∼seeger/
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