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Abstract

An algorithm for sequential approximation with optimal coefficients and interacting frequencies (SAOCIF) for feed-forward neural

networks is presented. SAOCIF combines two key ideas. The first one is the optimization of the coefficients (the linear part of the

approximation). The second one is the strategy to choose the frequencies (the non-linear weights), taking into account the interactions

with the previously selected ones. The resulting method combines the locality of sequential approximations, where only one frequency is

found at every step, with the globality of non-sequential methods, where every frequency interacts with the others. The idea behind

SAOCIF can be theoretically extended to general Hilbert spaces. Experimental results show a very satisfactory performance.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In terms of the bias/variance decomposition, as far as
the number of hidden units of a feed-forward neural
network (FNN) grows, bias decreases and variance
increases. This happens because the flexibility of the model
also grows with the number of hidden units [17,4].
Therefore, choosing an adequate architecture is a very
important issue in order to obtain good generalization
performance. We will focus on FNNs with one hidden
layer of units (two layers of weights), including both multi-
layer perceptrons (MLPs) and radial basis function net-
works (RBFNs).

Sequential approximation algorithms for FNNs (also
named incremental or constructive) allow to dynamically
construct the network without setting a priori the number
of hidden units. They can help to find a proper trade-off
between bias and variance by controlling, among other
things, the number of hidden units. These methods start
e front matter r 2005 Elsevier B.V. All rights reserved.
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with a small network (usually with no hidden units), and
sequentially add new terms (that is, hidden units, each
associated with a frequency) until a satisfactory solution is
found. We will refer to the weights in the first layer (the
non-linear weights) as frequencies and to the weights in the
second layer (the linear weights) as coefficients.
Most of the sequential models found in the literature

keep the previously selected frequencies fixed. Among these
sequential models, many of them choose the new term so
that it matches the previous residue as best as possible (see
Section 2). It is well known that, although this strategy
leads to approximations convergent towards the target
function, it may be far from being the best strategy. This
fact can be observed in the example in Fig. 1: when
approximating the vector f with v1 and v2 we obtain X 2;
clearly, this is not the best possible approximation, since v1
and v2 form a basis of R2. In this case, optimizing the
coefficients of the previously added terms would lead to a
much better approximation (exact, in fact) of the target
vector. But recalculating the coefficients is not enough, as
illustrated in the example in Fig. 2. Suppose that X 1 is a
partial approximation of f, and h is the vector which best
matches the residue r1. Since h does not lie on the plane
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Fig. 1. Sequence of the approximation of a vector f in R2 with v1 and v2 matching the previous residue without recalculating the coefficients. In the first

step (middle), X 1 is obtained. In the second step (right), r1 is approximated with v2. The resulting vector (X 2) is not the best approximation that can be

achieved with v1 and v2. In this case, optimizing the coefficients allows to obtain f.
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Fig. 2. Approximation of a vector f in R3 matching the previous residue

and recalculating the coefficients. Suppose that h is the vector that best

matches the residue r1. The vector g, which lies on the plane that contains f

and X 1, allows an exact approximation to f when combined with X 1. The

vector h (not on this plane) does not have this property. Optimizing the

coefficients is not enough if h is selected.
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that contains X 1 and f, it is not necessarily the vector that,
together with X 1, best approximates the target vector f.
Any vector lying on the plane that contains X 1 and f (g, for
example) allows an exact approximation of f. Regardless of
the coefficients optimization, matching the residue does not
take into account the interactions with the previously
selected terms. Any vector lying on the plane that contains
f and a vector of the subspace spanned by the previous
terms allows an exact approximation of the target vector.
The vector that best matches the residue does not
necessarily satisfy this property.

Important exceptions to the idea of matching the residue
are the orthogonal least squares learning (OLSL) algorithm
[11] and the kernel matching pursuit (KMP) with pre-fitting

algorithm [48], where an (implicit or explicit) orthogona-
lization procedure is performed. In these algorithms, every
point in the data set is considered as a candidate frequency.
After calculating the optimal coefficients for every possible
network, the best one (in terms of the minimum squared
error) is selected.

In this work, we present an algorithm for sequential

approximation with optimal coefficients and interacting

frequencies (SAOCIF) for FNNs, which combines two
key ideas. On the one hand, it optimizes the coefficients, so
that the best approximation with the selected vectors is
always achieved, as in Fig. 1. On the other, the frequencies
are selected at every step taking into account the
interactions with the previously selected terms in a flexible
manner. The interactions are discovered by means of their
optimal coefficients. In the example in Fig. 2, SAOCIF
would select g (instead of h), because it allows a better
approximation of f when combined (interacts) with X 1.
The contribution of the new frequency is measured in terms
of its capability of approximation to the target vector
together with the previously selected frequencies. There is
no explicit intention to match the residue. That is the idea
of interacting frequencies. Therefore, it may be able to
obtain, with the same number of hidden units, better
approximations than matching the residue as best as
possible. In terms of the bias/variance decomposition, it
will be possible to obtain simpler models with the same
bias, since the same level of approximation may be
achieved with less hidden units.
The proposed algorithm can be seen as an extension and

generalization of the OLSL and KMP with pre-fitting

algorithms in several ways. First, it is not restricted to
select the candidate frequencies from the points in the data
set. In this sense, a number of different heuristics can be
used to select the frequencies. Second, it allows to choose
the activation function for every hidden unit. Finally, it is
possible to further tune the selected frequencies with any
non-linear optimization technique.
The idea behind SAOCIF can be extended to approx-

imation in Hilbert spaces, maintaining orthogonal-like
properties. The theoretical results obtained prove that,
under reasonable conditions, the residue of the approxima-
tion is (in the limit) the best one that can be obtained with
any subset of the given set of vectors. The importance of
the interacting frequencies lies in the hypothesis that, as it
can be seen in Fig. 2, it seems more plausible to find better
partial approximations selecting the new frequency taking
into account the interactions with the previous frequencies
than just matching the residue as best as possible. There-
fore, the rate of convergence is expected to increase.
Several experiments were performed in order to test the

algorithm. Experimental results show a very satisfactory
performance when compared to other sequential ap-
proaches. In particular, SAOCIF works better than
methods that select the new frequencies based on the idea
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of matching the residue, confirming the suitability of the
interacting frequencies approach. When the number of
hidden units is fixed a priori, better performance is
obtained (with a moderate increase in the execution times).
When the desired approximation accuracy is fixed a priori,
SAOCIF allows to obtain models with less hidden units.
These results are in agreement with the bias/variance de-
composition.

The rest of the paper is organized as follows. An
overview of some sequential approximations can be found
in Section 2. The definition of SAOCIF and the algorithm
are presented in Section 3. The extension to general Hilbert
spaces is discussed in Section 4. The experimental results
are described in Section 5. Finally, Section 6 concludes and
outlines some directions for further research.

2. Sequential approximations

In this section, several sequential approximations for
regression are described. Matching the residue is the
underlying idea for most of the proposed schemes.
Although some of them optimize the coefficients, the
frequencies are selected without taking into account the
interactions with the previously selected terms. Important
exceptions are the OLSL and the KMP with pre-fitting

algorithms, where an (implicit or explicit) orthogonaliza-
tion is performed. An extensive review on sequential
methods for regression can be found in [26].

2.1. Dynamic node creation

The dynamic node creation method [2] is a sequential
method where, during the training, a new hidden node is
added when the rate of decrease of the average squared
error is less than a certain value. After a new node is added,
the whole network is trained with standard back-propaga-
tion until the solution is satisfactory or another node is
needed. Several variants of the dynamic node creation
procedure can be found in the literature [7,5,50,43].

2.2. Resource-allocating network

The resource-allocating network is presented in [36].
When the network performs well on a presented pattern,
the whole network is trained. Otherwise, a new Gaussian
RBF hidden unit is added. Therefore, a memorization of
training patterns is performed in some sense. The training
of the whole network is performed with gradient descent.
Several variations of this model can be found in [23,52,42].
All of them are specific for RBFNs.

2.3. Projection pursuit

Projection pursuit is a family of optimization methods
which can be found in the statistics literature [18].
Projection pursuit regression (PPR) [16], as a particular
case of function approximation, estimates the conditional
expectation of a random variable Y 2 R given X 2 RI by
means of a sum of ridge functions

PN
j¼1gjðaj � xÞ as follows

(the aj’s act as the frequencies). Suppose that the first N � 1
terms of the approximation have been determined. That is,
the vectors aj and the functions gj (1pjpN � 1) have been
calculated. Let rN�1ðxÞ be the residue at step N � 1. Find
aN and gN such that krN�1ðxÞ � gN ðaN � xÞk is the
minimum. This process is repeated until the residue is
smaller than a user-defined threshold. This procedure may
be improved by back-fitting: omit some of the earlier
summands gj , determine better replacements, and then
iterate. In [21] it is proved that, under mild smoothness
conditions, a minimizing direction aN exists at every step
such that limN!1E½rN � ¼ 0. Later, it was proved that the
convergence may be accelerated approximating by an
optimal convex combination [22]. The upper bounds for
the rate of convergence of approximations with FNNs
derived in [3] are based on this result.

2.3.1. Projection pursuit in signal processing

Some methods with the same underlying ideas as
projection pursuit can be found in the signal processing
area. In [33], matching pursuit (MP) is described, an
algorithm that decomposes any signal into a linear
expansion of waveforms that are selected from a (possibly
redundant) dictionary of functions F, with kggk ¼ 1 for
every gg 2 F . Similar to PPR, the MP algorithm works
choosing at step N an element ggN

2 F which closely
matches the residue RNf , that is jhRNf ; ggN

ijX

a supgg2F jhR
Nf ; ggij, where 0oap1. The convergence

property of MP is proved in [33], based on the results in
[21]. After N steps, a recalculation of the coefficients can be
made, named back-projection, to approximate f at best with
the selected vectors. This idea was formalized in the
orthogonal MP algorithm [35]. Similar results are obtained
in [38] with a particular set of functions: the normalized
Gaussian functions with adjustable variance and time-
frequency center.

2.3.2. Projection pursuit with neural networks

The two layer architecture of a neural network is well
suited to construct an approximation with PPR. The
projection pursuit learning network (PPLN) [19] is
modeled as a one hidden layer MLP that learns unit by
unit, and layer by layer cyclically after all the training
patterns are presented. Weights are learned while the other
ones remain fixed, and no global optimization of the
coefficients is performed.
The incremental linear quasiparallel (ILQ) algorithm, a

sequential algorithm for neural networks based on the
ideas of PPR and MP, is presented in [25]. Every iteration
consists of two steps. In the first one, the frequency of the
new hidden unit is determined. In the second one, all
output weights are recalculated. Given a set of functions G,
the frequencies are determined trying to find gN 2 G so that
nearly maximizes jhf � f N�1; gij over g 2 G. Therefore, the
resulting method is similar to orthogonal MP, where there
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exists a back-projection procedure at every iteration. Based
on the results in [22], upper bounds for the rate of
convergence are derived in [25].

With similar ideas, a number of objective functions to
obtain the new frequency are explored in [27], all of them
with the aim of matching the residue.

2.4. Cascade-correlation

In the neural networks literature, the most used
constructive method is, probably, cascade-correlation
(CASCOR) [14]. CASCOR combines two key ideas. The
first one is the cascade architecture, in which the newly
added hidden unit receives inputs from the input layer as
well as from the previously added hidden neurons. The
second one is the learning algorithm. For each new hidden
unit, the algorithm tries to maximize the correlation (or,
more precisely, the covariance) between the output of the
new unit and the residual error signal of the network. In
order to maximize this function, a gradient ascent is
performed. The input weights of the hidden units are
frozen at the time the new unit is added to the network, and
only the output connections are trained. There exist
variations of CASCOR where the architecture is not
cascaded, and where the learning rule is changed to train
directly for minimization of the output errors (see [37] for
details). Anyway, the frequencies obtained by these
methods are the result of matching the residue at the
previous step with only one term. There exist many
variants of the original CASCOR algorithm in the
literature (see, for example, [20,28,30–32,46]). A compar-
ison of some of them can be found in [29].

2.5. Orthogonal sequential neural networks methods

The orthogonal least squares learning (OLSL) algorithm
is proposed in [11], a learning procedure for RBFNs based
on the orthogonal least squares method [9]. The procedure
starts with a single Gaussian RBF hidden unit and it
sequentially increases the number of hidden units, one at a
time, until the model error is satisfactory. The frequency of
the new hidden unit (the center) is selected among the
points in the data set. The classical Gram–Schmidt
orthogonalization method is used at each step to form a
set of orthogonal vectors for the space spanned by the
output vectors of the previously selected hidden units. For
every point in the data set, the orthogonal component of its
output vector to that space is obtained. The new
information introduced by this unit is caused by that part
of its output vector which is orthogonal to the space
spanned by the output vectors of previously selected
hidden units. In this context, an output vector is an
element of RT , where T is the number of patterns, obtained
by applying the Gaussian function to every point in the
data set. After computing its optimal coefficient (with the
squared-error function), the point in the data set maximiz-
ing the error reduction ratio is selected. The procedure is
terminated when a predetermined percentage of the total
error is reduced. Some extensions of the original procedure
can be found in [10,12].
Recently, the kernel matching pursuit (KMP) algorithm

was described [48], an extension of MP that can be used to
build kernel-based solutions to supervised machine learn-
ing problems. The emphasis of the KMP scheme is put on
the building of an alternative to support vector machines
(SVMs) [47] that controls the sparsity of the solution (that
is, the number of support vectors). Whereas good general-
ization abilities of SVMs are related to margin maximiza-
tion, KMP is designed to build sparse kernel-based
solutions minimizing the squared error function. As in
SVMs, the frequencies of the resulting network are a subset
of the points in the data set. Given a data set D, the
dictionary (needed in MP) is defined as the set of functions
F ¼ fKðx;xiÞ : xi 2 Dg, where K is a symmetric positive
definite kernel function. Three versions of KMP are defined
in [48]: basic KMP (similar to basic MP), KMP with back-

fitting at every step (similar to orthogonal MP) and KMP
with pre-fitting (similar to OLSL). The optimization
problems posed can be solved exactly because a finite
dictionary is used. Experimental comparisons between
KMP with pre-fitting and SVMs for several classification
problems show comparable results with typically much
sparser models for KMP with pre-fitting. A very similar
method, but particular for Gaussian processes, can be
found in [44]. The main difference lies in the loss function
to be optimized.

3. Definition of SAOCIF and algorithm

As previously mentioned, most of the sequential models
for FNNs found in the literature choose the new term so
that it matches the previous residue as best as possible. This
strategy can be far from being the best one, since it does
not take into account the interactions with the previously
selected terms. In this section SAOCIF is presented, a
sequential scheme for FNNs where the contribution of the
new frequency is measured in terms of its capability of
approximation to the target vector together with the
previously selected ones.

3.1. Definition
Definition. Let H be the Hilbert space RT , where T is the
number of patterns in a data set D ¼ fx1; . . . ; xT g, f ¼

ðf 1; . . . ; f T Þ 2 H the target vector and O a space of
frequencies. A SAOCIF for FNNs is a sequence of vectors
fX NgNX0 in H whose terms are defined as
(1)
 X 0 ¼ 0.P

(2)
 X N ¼

N�1
k¼1 l

N
k vok
þ lN

NvoN
, so that

(a) The coefficients lN
1 ; . . . ; l

N
N�1; l

N
N are optimal. That

is, the vector X N is the best approximation of f with
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vectors vo1
; . . . ; voN�1

; voN
2 H in terms of minimiz-

ing the squared error kf � X Nk
2 (that is, with the

metric induced by the usual inner product in RT ).
(b) The frequency oN 2 O is selected taking into

account the interactions of voN
with

vo1
; . . . ; voN�1

in order to minimize kf � X Nk
2.
Fig. 3. An algorithm to construct an FNN following the ideas of

SAOCIF.
Remarks.

(1) In FNNs terminology, every frequency ok 2 O is
associated with a hidden unit jkðok;xÞ, where jk is
the activation function. The ith component of vok

is the
value of the hidden unit jkðok; xÞ at the ith point in D.
That is, vok

¼ ðjkðok;x1Þ; . . . ;jkðok;xT ÞÞ. The output
function of the network with N hidden units is
X N ðxÞ ¼

PN
k¼1l

N
k jkðok;xÞ.

(2) At step N, a new frequency (oN) is considered, the
number of terms of the approximation is increased by one
(lN

NvoN
), and the coefficients lN

1 ; . . . ; l
N
N�1 are optimized in

order to obtain the best approximation of f with vectors
vo1
; . . . ; voN�1

; voN
. The frequencies o1; . . . ;oN�1 are kept

fixed. The vectors vo1
; . . . ; voN�1

; voN
are not necessarily

mutually orthogonal.
(3) As it is well known [1], since X N is the best

approximation of f with vo1
; . . . ; voN�1

; voN
, it holds that

8k : 1pkpN hf � X N ; vok
i ¼ 0, (1)

where h�; �i is the inner product in H. That is, f � X N is
orthogonal to the space spanned by vo1

; . . . ; voN�1
; voN

. By
definition of inner product, (1) is equivalent to the
following linear equations system:

AN ðl
N
1 ; . . . ; l

N
N�1; l

N
NÞ

t

¼ ðhf ; vo1
i; . . . ; hf ; voN�1

i; hf ; voN
iÞ
t, ð2Þ

where AN ½i; j� ¼ hvoi
; voj
i for 1pi; jpN. Thus, once the

frequencies o1; . . . ;oN�1;oN 2 O have been selected, the
optimal coefficients lN

1 ; . . . ; l
N
N�1; l

N
N can be computed by

solving (2).
(4) Using (1), it is immediate to verify that

kf � X Nk
2 ¼ f �

XN

k¼1;kaj

lN
k vok

�����
�����
2

� jlN
j j

2kvoj
k2, (3)

kf � X Nk
2 ¼ kf k2 � kX Nk

2, (4)

kX Nk
2 ¼

XN

k¼1

lN
k hf ; vok

i. (5)

As it can be observed, there is a great parallelism between
these properties and those satisfied by an approximation
with orthogonal vectors.

3.2. Algorithm

A sequential training algorithm for FNNs following the
ideas of SAOCIF definition is presented in Fig. 3. Hidden
units are added one at a time, choosing the frequencies in a
flexible manner, so as to adjust the network until a
satisfactory model is obtained. The algorithm works as
follows. Suppose that we are at step N and we have a
certain procedure to generate frequencies. For every
candidate frequency, the optimal coefficients of the net-
work are computed with that frequency installed in the new
hidden unit, in order to test the real contribution of the
frequency (together with the N � 1 previously selected
ones) to the approximation to the target vector. There is no
explicit intention to match the residue. That is the idea of
interacting frequencies. Note that, according to (4),
maximizing kX Nk

2 is equivalent to minimizing
kf � X Nk

2. When the frequency is satisfactory or there
are no more candidate frequencies (criterion 1, see below),
the selected frequency can be optionally tuned.
Concerning the architecture needed to construct the

approximation, it must have the following characteristics:
(1)
 It must be a feed-forward architecture with a hidden
layer of units (including both MLPs and RBFNs).
(2)
 There are no restrictions about the dimension of the
input and the output. There will be as many as the
target function have. If there are several outputs, the
total inner products must be calculated as the summa-
tion of the individual inner products for every output.
(3)
 There is no restriction about the biases in the hidden
units, since they can be treated as part of the frequencies.
(4)
 There is no restriction about the activation functions in
the hidden units. They can be, for example, sigmoidal,
Gaussian, sines, cosines, wavelets, etc. Recent works
have shown that the use of non-sigmoidal activation
functions for MLPs may lead to very promising results
[45]. Obviously, different units may have different
activation functions. The output units must have a
linear activation function.
As it can be seen, the only real restriction in the archi-
tecture is the linear activation function in the output units.
The resulting algorithm combines the locality of

sequential approximations, where only one frequency is
found at every step, with the globality of non-sequential
methods, such as back-propagation [41], where every
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frequency interacts with the others. The interactions are
discovered by means of the optimal coefficients. The
importance of the interacting frequencies lies in the
hypothesis that they allow to find better partial approx-
imations, with the same number of hidden units, than
frequencies selected just to match the residue as best as
possible. In terms of the bias/variance decomposition, it
will be possible to obtain simpler models with the same
bias, since the same level of approximation may be
achieved with less hidden units.

3.3. Implementation

The strategy to select the candidate frequency is
probably the most important part of the algorithm. In
our experiments (see Section 5) three strategies were
introduced in order to test the algorithm:
(1)
 Random strategy: The frequencies are randomly
selected within a certain range.
(2)
 Input strategy: The frequencies are selected from the
points in the data set (as is often the case in RBFNs) in
a deterministic manner: for every hidden unit to be
added, every point in the training set is tested as a
candidate frequency.
(3)
 Breeder genetic algorithm (BGA) strategy: The frequen-
cies are selected with a more sophisticated strategy
from the field of evolutionary algorithms, where a
population of frequencies evolves driven by BGA [34]
with the squared error as the fitness function.
The number of candidate frequencies of every strategy may
be very different. Whereas for the Input one it is fixed
(given the data set), the random and BGA strategies can be
parameterized so as to assign as many candidate frequen-
cies as desired. This is clearly related to the computational
cost, as explained below.

Regarding the criterion 1 in Fig. 3, every strategy has its
own one. For the random strategy, a fixed number of
frequencies is selected. For the input one, the number of
points in the data set determines the number of frequencies
to test. For the BGA strategy, a maximum number of
generations is determined. Regarding the criterion 2 in
Fig. 3, many stopping criteria can be used: percentage of
learned patterns, early stopping with a validation set, low
relative rate of decrease of the error, etc.

SAOCIF satisfies a number of interesting properties to
implement it in an efficient fashion, as explained next.

By (4) we have kf � X Nk
2 ¼ kf k2 � kX Nk

2, with kf k2

constant. Therefore, the frequency that minimizes the error
is such that maximizes kX Nk

2. By (5) we know that
kX Nk

2 ¼
PN

k¼1l
N
k hf ; vok

i. The values of fhf ; vok
ig1pkpN are

the independent vector of the linear equations system (2)
just solved to obtain flN

k g1pkpN , which can be kept stored
in memory. Therefore, once the coefficients have been
obtained, kX Nk

2 can be computed with cost OðNÞ,
avoiding one pass through the data set (the cost of directly
computing kX Nk
2 or kf � X Nk

2 is OðT �NÞ, where T is the
number of examples). In our implementation,oN was
selected so as to maximize kX Nk

2, computed with (5).
Since the frequencies o1; . . . ;oN�1 are kept fixed, the

proposed linear equations system at step N is equal to the
system solved at step N � 1 for the selected frequency, but
with a new row and a new column. Therefore, the system
(2) posed at step N can be efficiently solved with bordered
systems techniques [13] as follows. Note that (2) can be
stated as

ANðl
N
1 ; . . . ; l

N
NÞ

t
¼

t

x

Z

� �
¼

b

b

� �

¼ ðhf ; vo1
i; . . . ; hf ; voN

iÞ
t,

where x, a, b are vectors with N � 1 components, and Z, b,
g are scalars. It can be easily verified that

Z ¼
b� at � A�1N�1 � b

g� at � A�1N�1 � a
and

x ¼ A�1N�1ðb� Z � aÞ. ð6Þ

Since AN�1 and b are equal for every candidate frequency,
matrix AN�1 was inverted only once at every step, prior to
the selection of the first frequency, and kept stored in
memory. For every candidate frequency, its associated
linear equations system was solved using (6). Whereas the
inversion of a matrix has cost OðN3Þ, the computational
cost of multiplying it by a vector is OðN2Þ, where N is the
matrix dimension (in our case, the number of hidden units).
Regarding the computational cost, let NSAOCIF be the

number of hidden units of the resulting network, F the
number of candidate frequencies for every added hidden
unit (assuming that it is equal for every one), T the number
of patterns and I the input dimension. Using the
aforementioned implementation properties, and assuming
NSAOCIFpF and NSAOCIFpT , the computational cost of
the algorithm in Fig. 3 can be bounded by
C1 �N

2
SAOCIF � F � h1ðT � IÞ, where C1 is constant and

h1ðT � IÞ 2 OðT � IÞ. The conditions NSAOCIFpT and
NSAOCIFpF are not real restrictions, since it makes no
sense, for example, constructing a network with more
hidden units than examples in the data set. Similarly, the
number of candidate frequencies is usually larger than the
number of hidden units. In addition, these conditions make
that the quadratic factor N2

SAOCIF is not so relevant, in
practice, as one could think (see Section 5). The computa-
tional cost mainly comes from the construction of the
linear equations system for every candidate frequency
rather than from solving it.

3.4. Comparison with other sequential schemes

The algorithm in Fig. 3 can be seen as an extension and
generalization of the OLSL and KMP with pre-fitting

algorithms (see Section 2) in several ways. First, it is not
restricted to select the candidate frequencies from the
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points in the data set. In this sense, a number of different
heuristics can be used. Second, it allows to choose the
activation function for every hidden unit. Finally, it is
possible to further tune the selected frequency with any
non-linear optimization technique. Note that the OLSL
and KMP with pre-fitting algorithms can be simulated with
the proposed algorithm by selecting the frequency with the
input strategy without tuning.
4. Extension to Hilbert spaces

In this section, SAOCIF is extended to general Hilbert
spaces. Consider the following approximation problem:
‘‘Let H be a Hilbert space with inner product
h; i : H �H ! C, a space of parameters O, and f 2 H a
vector to approximate with vectors vo ¼ vðoÞ, v : O! H,
o 2 O, such that 8o 2 O kvoka0. Find o1;o2; . . . 2 O and
l1; l2; . . . 2 C such that limN!1kf �

PN
k¼1lkvok

k ¼ 0’’.
This definition is, in essence, the traditional one in
approximation of vectors in Hilbert spaces [1]. The
condition kvoka0 is equivalent, by the inner product
properties, to that of voa0. Observe that every vector vo 2

H depends on a parameter o 2 O.
In this setting, the same definition of SAOCIF stated in

Section 3.1 is also valid for a general Hilbert space H, with
the metric induced by its inner product. As previously, the
term frequency refers to every o1;o2; . . . 2 O, and coeffi-

cient to every l1; l2; . . . 2 C. The following results show
that SAOCIF converges towards the target vector in this
general setting under reasonable conditions.

Proposition 1. Let H be a Hilbert space, and f 2 H. Any

SAOCIF fX NgNX0 satisfies the following properties:
(Pa)
 8NX0 kf � X Nþ1k
2pkf � X Nk

2.

(Pb)
 If MXN, then hf � X M ; f � X Ni ¼ kf � X Mk

2.

(Pc)
 Suppose that lN

Na0. The vector voN
is orthogonal to the

space spanned by fvo1
; . . . ; voN�1

g if and only if the

coefficients do not change between steps N � 1 and N.

(Pd)
 fX NgNX0 is convergent in H. That is, 9g 2

H limN!1kg� X Nk ¼ 0:
The proof can be found in Appendix A.

Observe that by (Pc), the only directions that guarantee
that, without recalculating the coefficients, the approxima-
tion is optimal are the orthogonal directions. Therefore, if
vectors are not mutually orthogonal, coefficients must be
recalculated.

Theorem 1. Let H be a Hilbert space, f 2 H and a SAOCIF
fX NgNX0. Let g be such that limN!1kg� X Nk ¼ 0 (Pd),
and suppose that for every m 2 C and every o0 2 O we have

kf � X Nþ1k
2pkf � ðX N þ mvo0

Þk2 þ aN (7)

for every NX0. That is, the approximation of f with X Nþ1

is better (up to aN ) than the best approximation of the
residue f � X N that one could achieve with only one vector

vo0
2 vðOÞ. If lim supN!1aNp0, then:
(Ta)
 The vector g satisfies:
(Ta1) 8o0 2 O limN!1hg� X N ; vo0

i ¼ 0:
(Ta2) 8o0 2 O hf ; vo0

i ¼ hg; vo0
i.

(Ta3) hf � g; gi ¼ 0.
(Ta4) There is no subset of vectors in vðOÞ that

approximate f more than g. That is,

kf � gk ¼ inf
mk2C; ck2O

f �
X

k

mkvck

�����
�����.
(Tb)
 If there exists A � O such that the set of vectors fvc :
c 2 Ag spans H, then fX NgNX0 converges towards f.
The proof can be found in Appendix B.

Observe that these results are not very restrictive, since
the universal approximation capability is a necessary
condition for the convergence property. Hence, SAOCIF
allows (by selecting O and vðOÞ) to choose any (or some) of
the multiple vector families satisfying this property. In the
particular case of L2, it can be used with approximations
by algebraic polynomials, Fourier series, wavelets and
FNNs (including both MLPs and RBFNs), among others.
The hypothesis about the tolerance aN is, in essence, the

same as in [22,3,25,24]. Imposing conditions on aN , as in
[3,25], the rate of convergence can be proved to be
Oð1=

ffiffiffiffiffi
N
p
Þ, which has the same order as the optimal ones

that can be found in the literature. However, the actual rate
of convergence is expected to increase, since it seems more
plausible to find better approximations (or equivalently,
smaller aN ) selecting the new frequency taking into account
the interactions with the previously selected ones than, for
example, matching the residue as best as possible.

5. Experiments

We now comment some generalities about the experi-
ments performed in order to illustrate and test the
algorithm for SAOCIF presented in Section 3.
In the tables of results, MPR means ‘‘matching the

previous residue’’, and it is a sequential scheme where the
new frequency is selected so as to match the previous
residue as best as possible and the previous coefficients are
not recalculated. MPR can be implemented with a
slight change in the algorithm in Fig. 3: the selected
frequency maximizes hf � X N�1; voi

2=kvok
2 and the

coefficient of the new hidden unit is computed as
lN ¼ hf � X N�1; voi=kvok

2. The idea behind MPR is
exactly the same as in PPR, PPLN or MP without back-

projection (see Section 2). As previously stated (see
Section 3.3), let F be the number of candidate frequencies
for every hidden unit, T the number of patterns and I the
input dimension. In this setting, the computational cost of
MPR can be bounded by C2 �NMPR � F � h2ðT � IÞ, where
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Table 1

NMSE in the training and test sets after the addition of 30 hidden units for the MPR, OCMPR and SAOCIF schemes

Data set Training Test

MPR OCMPR SAOCIF MPR OCMPR SAOCIF

HEA1 0.001937 0.000017 0.000000 0.002219 0.000073 0.000000

HEA2 0.002146 0.000175 0.000028 0.005095 0.000710 0.000133

HEA3 0.015259 0.006857 0.003222 0.059817 0.019668 0.011035

HEA4 0.002875 0.002993 0.000406 0.009441 0.008655 0.000994

HEA5 0.002725 0.001107 0.000506 0.007358 0.003459 0.001706

For every model, the frequencies were selected with the BGA strategy without tuning.
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C2 is constant, NMPR is the number of hidden units of the
network obtained with MPR and h2ðT � IÞ 2 OðT � IÞ.
When back-projection is present (that is, the coefficients
are optimized after the selection of the frequency), we will
refer to this method as ‘‘optimal coefficients after matching
the previous residue’’ (OCMPR), equivalent to Orthogonal
MP or ILQ. In this case, and assuming that NOCMPRpF ,
the computational cost of OCMPR can be bounded by
C3 �NOCMPR � F � h3ðT � IÞ þ C4 �N

4
OCMPR, where C3 and

C4 are constant, NOCMPR is the number of hidden units of
the resulting network and h3ðT � IÞ 2 OðT � IÞ. As it can be
seen, the respective computational costs of SAOCIF (see
Section 3.3), MPR and OCMPR strongly depend on the
number of hidden units of the final models (NSAOCIF, NMPR

and NOCMPR). This is a very important issue in order to
assess the execution times found for each method.

Several activation functions (‘‘AF’’ in the tables) have
been tested, such as linear (lin), logistic (lgt), cosine (cos) in
the MLP model and Gaussian (gau) in the RBFN model.
Output units did not have biases, and in the hidden units
they were only present for the logistic activation function.
Regarding the strategies to select the frequencies, the
column ‘‘WR’’ indicates the range of weights to look for
candidate frequencies. When the value ‘‘input’’ is present, it
means that the candidate frequencies are selected from the
points in the training set, as explained in Section 3.
Standard parameters were used for the BGA (see [6], for
example). The average number of hidden units in the
resulting networks is shown in column ‘‘NH’’. An ‘‘NP’’
value means ‘‘not possible’’, indicating that the learning of
the training set was unsatisfactory.

5.1. HEA data sets

The data sets described in [19] were used to compare the
approximation capabilities of MPR, OCMPR and SAO-
CIF. These data sets were constructed from five non-linear
two-dimensional functions with different levels of complex-
ity. Every training set contains 225 points generated from
the uniform distribution U ½0; 1�2 with their corresponding
function value. The test set comprises 10; 000 points of a
regularly spaced grid on ½0; 1�2. No noise was added. We
will refer to those data sets as HEAn, where n varies from 1
to 5. These data sets have been widely used in the literature
(see, for example, [27,32,46]). Different from [19], 10
independent training sets were constructed and trained
for every function. In some preliminary experiments, we
observed that overfitting was not present with these data
sets. Results are shown in Table 1 as the average, over 10
runs with the respective training sets for every function, of
the normalized mean squared error

NMSE ¼

PT
i¼1ðHEAnðxiÞ � X N ðxiÞÞ

2PT
i¼1ðHEAnðxiÞ �HEAnÞ2

after the addition of 30 hidden units. For every model
(MPR, OCMPR and SAOCIF), the frequencies were
selected with the BGA strategy (100 generations of an
initial random population of 100 individuals) without
tuning. The activation function was also selected for every
unit, in addition to the frequency as follows: for a
predefined set of activation functions, the process of
selecting the frequency is repeated for every activation
function in the set. Different units may have different
activation functions. The set of activation functions
contained the hyperbolic tangent, Gaussian function, sine,
cosine or the polynomial kernel kðxÞ ¼ ðxþ 1Þ2, with MLP
units.
As it can be observed in Table 1, the approximation

capability of SAOCIF is superior to that of OCMPR,
which in turn compares favorably with MPR. General-
ization results are also better for SAOCIF than OCMPR
and MPR. Since overfitting was not observed during the
learning process with these data sets, the best results are
obtained by those models that are able to fit more
accurately the data. Therefore, the suitability of the idea
of interacting frequencies is confirmed. Taking the mean
execution time for MPR as 1, the relative execution times
for OCMPR and SAOCIF in these experiments were 1:01
and 1:25, respectively (the execution time for MPR was
202900 on a Pentium IV processor at 2:7 GHz). Note that the
relative improvement of SAOCIF with respect to MPR and
OCMPR (measured as the ratio between the respective
NMSE in the test set) is always greater than 1:78.
Therefore, a better performance is obtained with a
moderate increase in the execution time.
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Table 2

Results for the two spirals problem with the random strategy (MPR, OCMPR, SAOCIF) and CASCOR

Method AF WR NH Training (%) Test (%)

MPR lgt ½�16;þ16� 500 98.97 99.48

MPR lgt ½�8;þ8� NP – –

OCMPR lgt ½�8;þ8� 105.2 100 100

SAOCIF lgt ½�8;þ8� 91.7 100 100

CASCOR lgt ½�1;þ1� 13.3 100 99.48

Columns ‘‘AF’’, ‘‘WR’’ and ‘‘NH’’ indicate the activation function used, the range of weights to look for candidate frequencies and the average number of

hidden units in the resulting networks, respectively. The reduced number of hidden units in CASCOR is due to its cascade architecture, but its average

number of frequencies was 101:75.

Fig. 4. Generalization obtained by CASCOR (left) and SAOCIF (right),

respectively with logistic functions for the two spirals problem.
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5.2. The two spirals data set

The well-known two spirals problem consists in identify-
ing the points of two interlocking spirals. Both training and
test set comprise 194 points with balanced classes. This
problem was tested with MPR, OCMPR and SAOCIF for
the logistic activation function. The frequencies were
selected randomly (200 attempts) within a certain range
of weights. There was no further training to tune the
frequency after a new hidden unit was added. The
maximum number of hidden units added was 500, and
no more hidden units were added when the whole training
set was learned.

Results are shown in Table 2 as the average of 10 runs.
The CASCOR algorithm (see Section 2) was also tested.
Column ‘‘Train’’ indicates the percentage of the training
set which has been learned. Column ‘‘Test’’ indicates the
generalization performance obtained by an average-output
committee of the resulting networks. As already known,
this is a very hard problem for the logistic function because
of its intrinsic high non-linearity and radial symmetry, but
it could be learned with SAOCIF and an adequate (and
very large) range of weights. MPR could not solve the
problem with the same ranges, at least with 500 hidden
units. Generalization in the obtained solutions was very
good. Fig. 4 compares the generalization obtained by the
CASCOR and SAOCIF algorithms.

In these experiments, OCMPR took less execution time
than SAOCIF, which in turn was faster than MPR. The
execution time for MPR was very high because of the large
number of needed hidden units. Taking the mean execution
time for OCMPR as 1, the relative execution times for
SAOCIF and MPR in these experiments were 1:52 and
10:98, respectively (the execution time for OCMPR was 5700

on a Pentium IV processor at 2.7GHz). However, as
expected from its better approximation capability, the
number of hidden units in the obtained solutions is smaller
for SAOCIF than for OCMPR and MPR.
5.3. The Pima Indians Diabetes data set

Another comparison was performed with a widely used
medical diagnosis data set, namely the ‘‘Pima Indians
Diabetes’’ database produced in the Applied Physics
Laboratory, Johns Hopkins University, 1988. The same
data set as in [37] was used, with input values in ½0; 1�.
This data set was tested with MPR, OCMPR and

SAOCIF for different activation functions. The input and
the BGA strategies were tested to select the candidate
frequencies. The BGA constructed, for every frequency, 20
generations of an initial random population of 100
individuals. Every selected frequency was further tuned
with back-propagation. After every epoch, the coefficients
were computed as in the selection step. Learnings rates of
the frequencies were automatically set following the bold

driver technique proposed in [49], and the momentum was
set to 0. The tuning was stopped when the relative rate of
decrease of the error was less than 0:0005. In some of the
experiments, linear activation functions were combined
with non-linear activation functions in the hidden layer
(‘‘lin-fun’’ in the tables). When linear activation functions
were present, their optimal frequencies can be calculated
analytically, solving a linear equations system similar to (2)
and setting the coefficients to 1. For the SAOCIF scheme,
the coefficients of the linear hidden units are kept fixed
when new non-linear units are added, in order to
approximate only the non-linear component of the func-
tion. Different from the two spirals data set, previous
experience with this data set suggested that it would be
necessary to control the complexity of the model in order
to obtain a good performance. A double 5–4-fold cross-
validation (CV) was performed as follows [40]. First, a 5-
fold CV (the outer CV) was performed to obtain 5 folds (4
folds to ‘‘learn’’ and 1 fold to test). Then, the 4 folds of the
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Table 3

Results for the Diabetes data set with the input (left) and BGA (right) strategy for the MPR, OCMPR and SAOCIF schemes

Method AF Input BGA

WR NH Test% WR NH Test%

MPR lgt Input 5.65 76.60 ½�0:5; 0:5� 3.29 76.24

MPR lin-lgt Input 14.25 77.12 ½�0:5; 0:5� 11.16 77.12

MPR cos Input 3.80 76.47 ½�1:5; 1:5� 1.90 76.99

MPR lin-cos Input 3.65 76.47 ½�1:5; 1:5� 3.27 77.23

MPR gau Input 9.10 76.73 [0,1] 7.66 76.78

MPR lin-gau Input 11.90 76.99 [0,1] 6.65 76.97

OCMPR lgt Input 5.10 76.47 ½�0:5; 0:5� 3.13 76.18

OCMPR lin-lgt Input 3.90 76.47 ½�0:5; 0:5� 4.13 76.63

OCMPR cos Input 2.85 76.99 ½�1:5; 1:5� 1.97 77.02

OCMPR lin-cos Input 4.90 76.73 ½�1:5; 1:5� 3.93 76.86

OCMPR gau Input 6.95 76.73 [0,1] 4.52 76.05

OCMPR lin-gau Input 7.75 76.60 [0,1] 5.43 76.44

SAOCIF lgt Input 3.00 76.47 ½�0:5; 0:5� 2.30 76.05

SAOCIF lin-lgt Input 4.30 77.25 ½�0:5; 0:5� 4.90 77.07

SAOCIF cos Input 2.40 76.34 ½�1:5; 1:5� 2.47 77.18

SAOCIF lin-cos Input 4.20 77.39 ½�1:5; 1:5� 3.12 77.39

SAOCIF gau Input 4.80 78.04 [0,1] 5.42 77.41

SAOCIF lin-gau Input 4.90 77.12 [0,1] 4.70 77.36

Columns ‘‘AF’’, ‘‘WR’’ and ‘‘NH’’ indicate the activation function used, the range of weights to look for candidate frequencies and the average number of

hidden units in the resulting networks, respectively.
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‘‘learning set’’ of the outer CV were used as follows: 3 folds
to train and 1 fold to validate, as in a 4-fold CV (the inner
CV). Therefore, the number of trained models in a double
5–4-fold CV is 20. For the BGA strategy, this procedure
was repeated 5 times, in order to alleviate the effect of
random initial populations. Previous to every CV, the
examples in the data set were randomly shuffled. For every
training, no more hidden units were added when the error
on the validation set did not improve for 5 consecutive
hidden units.

The results are shown in Table 3, as the average in the
network with minimum validation set error. The column
‘‘Test’’ indicates the mean generalization performance
obtained by the average-output committees of the result-
ing networks in the inner CV. Although these results seem
very similar for the different parameter configurations,
there are some regularities which can be observed for this
problem:
(1)
 Non-linear activation functions different from the
classical sigmoidal and Gaussian (such as cosines)
may be satisfactorily used. Linear hidden units have
mostly a positive influence on the results, and selecting
the frequencies from the points in the data set seems
well suited not only for RBFNs, as commonly used, but
also for MLPs.
(2)
 Interestingly, the performance of the input strategy was
quite similar to that of the BGA strategy, with a much
smaller computational cost. Although more experi-
ments are needed, it may be an interesting idea to
obtain good and cheap models for data sets of
moderate size.
(3)
 The number of hidden units of the solutions obtained
with SAOCIF is usually less than the number of hidden
units of the solutions obtained with OCMPR and
MPR. The mean number of hidden units for SAOCIF,
OCMPR and MPR in Table 3 were 3:88, 4:55 and 6:86,
respectively.
(4)
 For every non-linear activation function tested, the best
results are obtained with the SAOCIF scheme, when
compared to OCMPR and MPR. This fact is related to
the number of hidden units of the obtained solutions,
since SAOCIF obtains simpler models (in terms of
number of hidden units) with the same level of
approximation.
(5)
 In this case, the execution times were very similar for
SAOCIF, OCMPR and MPR. The larger computa-
tional cost of every step for SAOCIF was compensated
with the lower number of steps (number of hidden
units) in the obtained solutions.
It is not easy to make a direct comparison of these results
with previous studies on this benchmark. Since the results
are very sensitive to the partitions made on the data set, a
realistic comparison can only be made when similar
experimental techniques are used. In Table 4 our results
are compared to several methods found in the literature
that have been applied to this data set with similar
resampling techniques. In the same aforementioned condi-
tions, the CASCOR algorithm was tested for more than 70
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Table 4

Comparison of results for the Diabetes data set

Source Method Test%

[15] Boosting 75.60

[51] Heterogeneous RBFNs 76.30

[39] RBFNs 75.90

[39] AdaBoost 76.10

[39] Support Vector Machines 76.50

[48] Kernel Matching Pursuit 76.10

This work Cascade-Correlation 76.76

This work MPR (BGA/lin-cos) 77.23

This work OCMPR (BGA/cos) 77.02

This work SAOCIF (Input/gau) 78.04
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different sets of parameters. Results are also shown in
Table 4.

6. Conclusions and future work

An algorithm for SAOCIF for FNNs has been
presented. Coefficients are optimized for every candidate
frequency, so that the approximations maintain orthogo-
nal-like properties. The new frequency is not chosen in
order to match the previous residue as best as possible. It is
selected with global approximation of the target vector
criteria (interacting frequencies). The algorithm can be seen
as an extension and generalization of the OLSL [11] and
KMP with pre-fitting [48] algorithms in several ways. The
idea behind SAOCIF can be extended to general Hilbert
spaces. Theoretical results prove that, under reasonable
conditions, the residue of the obtained approximation is (in
the limit) the best one that can be obtained with any subset
of the given set of vectors.

Experimental results show a very satisfactory perfor-
mance for SAOCIF and several suggesting ideas for future
experiments, such as the selection of the frequencies from
the data set, as in OLSL and KMP, or the combination of
linear and non-linear activation functions in the hidden
units. The candidate frequencies can be selected with
heuristics different from current strategies. In principle, a
more intelligent selection could lead to better approxima-
tions. Likewise, the selection of the activation function for
the new hidden unit admits any number of heuristics.

The theoretical results (see the proofs for details) are a
consequence of the optimality of the coefficients in
SAOCIF. The importance of the interacting frequencies
lies in the hypothesis that it seems more plausible to find
better partial approximations selecting the new frequency
taking into account the interactions with the previous
frequencies than, for example, matching the residue as best
as possible. Therefore, the actual rate of convergence is
expected to increase with this strategy. Experimental results
confirmed this hypothesis. In order to theoretically prove
this claim it would be necessary to formalize the concept of
‘‘interacting frequencies’’, a non-trivial task in our opinion,
since it is not an existential property but a procedural one.
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Appendix A
(Pa)
 Evident, since the coefficients of X Nþ1 are optimal.

(Pb)
 Expressing f � X N as f � X M þ X M � X N we have

hf � X M ; f � X Ni

¼ kf � X Mk
2 þ hf � X M ;X M � X Ni.

By (1), hf � X M ;X M � X Ni ¼ 0 holds.

(Pc)
 The necessity is clear by (1). To prove the sufficiency,

suppose that X N ¼ X N�1 þ lN
NvoN

. By (1), for every
1pjpN � 1 we have hf � X N ; voj

i ¼ 0 and
hf � X N�1; voj

i ¼ 0. Therefore, for every 1pjpN �

1 we have

0 ¼ hf � X N ; voj
i ¼ hf � X N�1 � lN

NvoN
; voj
i

¼ h�lN
NvoN

; voj
i,

which finishes the proof, since lN
Na0.
(Pd)
 Since H is complete, it suffices to prove that
limN ;M!1kX M � X Nk

2 ¼ 0. Suppose that M4N.
Expressing X M � X N as ðX M � f Þ þ ðf � X N Þ, and
using (Pb) we easily obtain

kX M � X Nk
2 ¼ kf � X Nk

2 � kf � X Mk
2.

Since the sequence fkf � X Nk
2gNX0 is decreasing and

positive (Pa), it is convergent. Hence,

lim
N ;M!1

ðkf � X Nk
2 � kf � X Mk

2Þ ¼ 0.
Appendix B
(Ta1)
 From Schwartz inequality, for every o0 2 O we have

jhg� X N ; vo0
ijpkg� X Nkkvo0

k.

The proof finishes using that limN!1kg� X Nk ¼ 0.

(Ta2)
 Let o0 2 O. By hypothesis, for every NX0 and every

m 2 C

kf � X Nþ1k
2pkf � ðX N þ mvo0

Þk2 þ aN

¼ kf � X Nk
2 � 2Reðhf � X N ; mvo0iÞ

þ jmj2kvo0
k2 þ aN .

Expressing f � X N as f � gþ g� X N we have

kf � X Nþ1k
2 � kf � X Nk

2

pjmj2kvo0
k2 � 2Reðhf � g;mvo0

iÞ

� 2Reðhg� X N ; mvo0
iÞ þ aN .
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Hence, renaming DN ¼ kf � X Nk
2 � kf � X Nþ1k

2,

2Reðhf � g; mvo0
iÞ � jmj2kvo0

k2

pDN � 2Reðhg� X N ;mvo0
iÞ þ aN

pDN þ 2jhg� X N ;mvo0
ij þ aN

¼ DN þ 2jmjjhg� X N ; vo0
ij þ aN .

for every m 2 C. Let m0 ¼ hf � g; vo0
i=kvo0

k2, and
e40.
Using (Pa), (Ta1), and the hypothesis, there exists N0

such that for every NXN0,

kf � X Nk
2 � kf � X Nþ1k

2pe=3,

2jm0jjhg� X N ; vo0
ijpe=3,

aNpe=3.

Thus, we have 2Reðhf � g; m0vo0
iÞ � jm0j

2kvo0
k2pe:

Since

hf � g;m0vo0
i ¼ m0hf � g; vo0

i ¼ jm0j
2kvo0
k2,

2Reðhf � g;m0vo0
iÞ ¼ 2jm0j

2kvo0
k2 holds. Therefore,

for every eX0

jm0j
2kvo0
k2 ¼ 2Reðhf � g;m0vo0

iÞ � jm0j
2kvo0
k2pe.

Hence, jm0j
2kvo0
k2 ¼ 0. Since kvo0

k2a0, we derive
m0 ¼ 0. Therefore, hf � g; vo0

i ¼ 0 for every o0 2 O.

(Ta3)
 Using (Ta2) and Schwartz inequality we have

jhf � g; gij ¼ jhf � g; g� X Nij

pkf � gkkg� X Nk.

The proof finishes using that limN!1kg� X Nk ¼ 0.

(Ta4)
 According to (Ta2), any vector combinationP

kmkvck
in vðOÞ satisfies hf � g;

P
kmkvck

i ¼ 0.
Hence we have

kf � gk2 ¼ f � g; f �
X

k

mkvck

* +
� hf � g; gi.

Using (Ta3) and Schwartz inequality we have

kf � gk2pkf � gk f �
X

k

mkvck

�����
�����.

Therefore, kf � gkpkf �
P

kmkvck
k for any vector

combination. The other inequality is clear, since for
every NX0

inf
mk2C; ck2O

f �
X

k

mkvck

�����
�����pkf � X Nk

pkf � gk þ kg� X Nk.

The proof finishes using that limN!1kg� X Nk ¼ 0.

(Tb)
 It is immediately derived from (Ta4).
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E. Romero, R. Alquézar / Neurocomputing 69 (2006) 1540–15521552
[28] J.J.T. Lahnajärvi, M.I. Lehtokangas, J.P.P. Saarinen, Fixed cascade

error—a novel constructive neural network for structure learning, in:

International Conference on Artificial Neural Networks in Engineer-

ing, 1999, pp. 25–30.

[29] J.J.T. Lahnajärvi, M.I. Lehtokangas, J.P.P. Saarinen, Evaluation of

constructive neural networks with cascaded architectures, Neuro-

computing 48 (1–4) (2002) 573–607.

[30] M.I. Lehtokangas, Modelling with constructive backpropagation,

Neural Networks 12 (4–5) (1999) 707–716.

[31] E. Littmann, H. Ritter, Cascade LLM networks, in: International

Conference on Artificial Neural Networks, vol. 1, 1992, pp. 253–257.

[32] L. Ma, K. Khorasani, New training strategies for constructive neural

networks with application to regression problems, Neural Networks

17 (4) (2004) 589–609.

[33] S.G. Mallat, Z. Zhang, Matching pursuits with time-frequency

dictionaries, IEEE Trans. Signal Process. 41 (12) (1993) 3397–3415.

[34] H. Mühlenbein, D. Schlierkamp-Voosen, Predictive models for the

breeder genetic algorithm I. Continuous parameter optimization,

Evol. Comput. 1 (1) (1993) 25–49.

[35] Y.C. Pati, R. Rezaiifar, P.S. Krishnaprasad, Orthogonal matching

pursuit: recursive function approximation with application to wavelet

decomposition, in: 27th Asilomar Conference on Signals, Systems

and Computers, vol. 1, 1993, pp. 40–44.

[36] J. Platt, A resource-allocating network for function interpolation,

Neural Comput. 3 (2) (1991) 213–225.

[37] L. Prechelt, Investigation of the CasCor family of learning

algorithms, Neural Networks 10 (5) (1997) 885–896.

[38] S. Qian, D. Chen, Signal representation using adaptive normalized

Gaussian functions, Signal Process. 36 (1) (1994) 1–11.
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periodic and monotonic activation functions: a comparative

study in classification problems, in: Proceedings of the Ninth

International Conference on Artificial Neural Networks, vol. 1,

1999, pp. 323–328.
[46] N.K. Treadgold, T.D. Gedeon, Exploring constructive cascade

networks, IEEE Trans. Neural Networks 10 (6) (1999) 1335–1350.

[47] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer,

New York, 1995.

[48] P. Vincent, Y. Bengio, Kernel matching pursuit, Machine Learn. 48

(1–3) (2002) 165–187 (Special issue on new methods for model

combination and model selection).

[49] T.P. Vogl, J.K. Mangis, A.K. Rigler, W.T. Zink, D.L. Alkon,

Accelerating the convergence of the back-propagation method, Biol.

Cybernet. 59 (1988) 257–263.

[50] Z. Wang, C. Di Massimo, M.T. Tham, J. Morris, A procedure for

determining the topology of multilayer feedforward neural networks,

Neural Networks 7 (2) (1994) 291–300.

[51] D.R. Wilson, T.R. Martinez, Heterogeneous radial basis function

networks, in: International Conference on Neural Networks, vol. 2,

1996, pp. 1263–1267.

[52] L. Yingwei, N. Sundararajan, P. Saratchandran, A sequential

learning scheme for function approximation using minimal radial

basis function neural networks, Neural Comput. 9 (2) (1997) 461–478.
Enrique Romero was born in Barcelona,

Spain, in 1966. He received the licenciate

degree in Mathematics in 1989 from the
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