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Abstract

An algorithm for sequential approximation with optimal coefficients and interacting frequencies (SAOCIF) for feed-forward neural
networks is presented. SAOCIF combines two key ideas. The first one is the optimization of the coefficients (the linear part of the
approximation). The second one is the strategy to choose the frequencies (the non-linear weights), taking into account the interactions
with the previously selected ones. The resulting method combines the locality of sequential approximations, where only one frequency is
found at every step, with the globality of non-sequential methods, where every frequency interacts with the others. The idea behind
SAOCIF can be theoretically extended to general Hilbert spaces. Experimental results show a very satisfactory performance.

© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In terms of the bias/variance decomposition, as far as
the number of hidden units of a feed-forward neural
network (FNN) grows, bias decreases and variance
increases. This happens because the flexibility of the model
also grows with the number of hidden units [17,4].
Therefore, choosing an adequate architecture is a very
important issue in order to obtain good generalization
performance. We will focus on FNNs with one hidden
layer of units (two layers of weights), including both multi-
layer perceptrons (MLPs) and radial basis function net-
works (RBFNs).

Sequential approximation algorithms for FNNs (also
named incremental or constructive) allow to dynamically
construct the network without setting a priori the number
of hidden units. They can help to find a proper trade-off
between bias and variance by controlling, among other
things, the number of hidden units. These methods start
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with a small network (usually with no hidden units), and
sequentially add new terms (that is, hidden units, each
associated with a frequency) until a satisfactory solution is
found. We will refer to the weights in the first layer (the
non-linear weights) as frequencies and to the weights in the
second layer (the linear weights) as coefficients.

Most of the sequential models found in the literature
keep the previously selected frequencies fixed. Among these
sequential models, many of them choose the new term so
that it matches the previous residue as best as possible (see
Section 2). It is well known that, although this strategy
leads to approximations convergent towards the target
function, it may be far from being the best strategy. This
fact can be observed in the example in Fig. 1: when
approximating the vector f with v; and v, we obtain X>;
clearly, this is not the best possible approximation, since v;
and v, form a basis of R?. In this case, optimizing the
coefficients of the previously added terms would lead to a
much better approximation (exact, in fact) of the target
vector. But recalculating the coefficients is not enough, as
illustrated in the example in Fig. 2. Suppose that X is a
partial approximation of f, and 4 is the vector which best
matches the residue r. Since & does not liec on the plane
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Fig. 1. Sequence of the approximation of a vector f'in R? with v; and v, matching the previous residue without recalculating the coefficients. In the first
step (middle), X is obtained. In the second step (right), r| is approximated with v;. The resulting vector (X?) is not the best approximation that can be
achieved with v; and v;. In this case, optimizing the coefficients allows to obtain f.
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Fig. 2. Approximation of a vector fin R® matching the previous residue
and recalculating the coefficients. Suppose that / is the vector that best
matches the residue r;. The vector g, which lies on the plane that contains f
and X, allows an exact approximation to f when combined with X';. The
vector i (not on this plane) does not have this property. Optimizing the
coefficients is not enough if % is selected.

that contains X and f, it is not necessarily the vector that,
together with X, best approximates the target vector f.
Any vector lying on the plane that contains X'| and f (g, for
example) allows an exact approximation of f. Regardless of
the coefficients optimization, matching the residue does not
take into account the interactions with the previously
selected terms. Any vector lying on the plane that contains
f and a vector of the subspace spanned by the previous
terms allows an exact approximation of the target vector.
The vector that best matches the residue does not
necessarily satisfy this property.

Important exceptions to the idea of matching the residue
are the orthogonal least squares learning (OLSL) algorithm
[11] and the kernel matching pursuit (KMP) with pre-fitting
algorithm [48], where an (implicit or explicit) orthogona-
lization procedure is performed. In these algorithms, every
point in the data set is considered as a candidate frequency.
After calculating the optimal coefficients for every possible
network, the best one (in terms of the minimum squared
error) is selected.

In this work, we present an algorithm for sequential
approximation with optimal coefficients and interacting
frequencies (SAOCIF) for FNNs, which combines two
key ideas. On the one hand, it optimizes the coefficients, so
that the best approximation with the selected vectors is

always achieved, as in Fig. 1. On the other, the frequencies
are selected at every step taking into account the
interactions with the previously selected terms in a flexible
manner. The interactions are discovered by means of their
optimal coefficients. In the example in Fig. 2, SAOCIF
would select g (instead of /), because it allows a better
approximation of f when combined (interacts) with X7.
The contribution of the new frequency is measured in terms
of its capability of approximation to the target vector
together with the previously selected frequencies. There is
no explicit intention to match the residue. That is the idea
of interacting frequencies. Therefore, it may be able to
obtain, with the same number of hidden units, better
approximations than matching the residue as best as
possible. In terms of the bias/variance decomposition, it
will be possible to obtain simpler models with the same
bias, since the same level of approximation may be
achieved with less hidden units.

The proposed algorithm can be seen as an extension and
generalization of the OLSL and KMP with pre-fitting
algorithms in several ways. First, it is not restricted to
select the candidate frequencies from the points in the data
set. In this sense, a number of different heuristics can be
used to select the frequencies. Second, it allows to choose
the activation function for every hidden unit. Finally, it is
possible to further tune the selected frequencies with any
non-linear optimization technique.

The idea behind SAOCIF can be extended to approx-
imation in Hilbert spaces, maintaining orthogonal-like
properties. The theoretical results obtained prove that,
under reasonable conditions, the residue of the approxima-
tion is (in the limit) the best one that can be obtained with
any subset of the given set of vectors. The importance of
the interacting frequencies lies in the hypothesis that, as it
can be seen in Fig. 2, it seems more plausible to find better
partial approximations selecting the new frequency taking
into account the interactions with the previous frequencies
than just matching the residue as best as possible. There-
fore, the rate of convergence is expected to increase.

Several experiments were performed in order to test the
algorithm. Experimental results show a very satisfactory
performance when compared to other sequential ap-
proaches. In particular, SAOCIF works better than
methods that select the new frequencies based on the idea
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of matching the residue, confirming the suitability of the
interacting frequencies approach. When the number of
hidden units is fixed a priori, better performance is
obtained (with a moderate increase in the execution times).
When the desired approximation accuracy is fixed a priori,
SAOCIF allows to obtain models with less hidden units.
These results are in agreement with the bias/variance de-
composition.

The rest of the paper is organized as follows. An
overview of some sequential approximations can be found
in Section 2. The definition of SAOCIF and the algorithm
are presented in Section 3. The extension to general Hilbert
spaces is discussed in Section 4. The experimental results
are described in Section 5. Finally, Section 6 concludes and
outlines some directions for further research.

2. Sequential approximations

In this section, several sequential approximations for
regression are described. Matching the residue is the
underlying idea for most of the proposed schemes.
Although some of them optimize the coefficients, the
frequencies are selected without taking into account the
interactions with the previously selected terms. Important
exceptions are the OLSL and the KMP with pre-fitting
algorithms, where an (implicit or explicit) orthogonaliza-
tion is performed. An extensive review on sequential
methods for regression can be found in [26].

2.1. Dynamic node creation

The dynamic node creation method [2] is a sequential
method where, during the training, a new hidden node is
added when the rate of decrease of the average squared
error is less than a certain value. After a new node is added,
the whole network is trained with standard back-propaga-
tion until the solution is satisfactory or another node is
needed. Several variants of the dynamic node creation
procedure can be found in the literature [7,5,50,43].

2.2. Resource-allocating network

The resource-allocating network is presented in [36].
When the network performs well on a presented pattern,
the whole network is trained. Otherwise, a new Gaussian
RBF hidden unit is added. Therefore, a memorization of
training patterns is performed in some sense. The training
of the whole network is performed with gradient descent.
Several variations of this model can be found in [23,52,42].
All of them are specific for RBFNSs.

2.3. Projection pursuit

Projection pursuit is a family of optimization methods
which can be found in the statistics literature [18].
Projection pursuit regression (PPR) [16], as a particular
case of function approximation, estimates the conditional

expectation of a random variable ¥ € R given X € R by
means of a sum of ridge functions Z _19,(a; - x) as follows
(the a;’s act as the frequencies). Suppose that the first N — 1
terms of the approximation have been determined. That is,
the vectors a; and the functions g; (1<j<N — 1) have been
calculated. Let ry_;(x) be the remdue at step N — 1. Find
ay and gy such that [|ry_1(x) —gy(an-x)|| is the
minimum. This process is repeated until the residue is
smaller than a user-defined threshold. This procedure may
be improved by back-fitting: omit some of the earlier
summands g;, determine better replacements, and then
iterate. In [21] it is proved that, under mild smoothness
conditions, a minimizing direction ay exists at every step
such that limy_, - E[ry] = 0. Later, it was proved that the
convergence may be accelerated approximating by an
optimal convex combination [22]. The upper bounds for
the rate of convergence of approximations with FNNs
derived in [3] are based on this result.

2.3.1. Projection pursuit in signal processing

Some methods with the same underlying ideas as
projection pursuit can be found in the signal processing
area. In [33], matching pursuit (MP) is described, an
algorithm that decomposes any signal into a linear
expansion of waveforms that are selected from a (possibly
redundant) dictionary of functions F, with |g,|| =1 for
every g, € F. Similar to PPR, the MP algorithm works
choosmg at step N an element g, € F which closely
matches the residue RVf, that is (RN, g,
osup, [ (RNf, g g,)|, where O0<oa<l. The convergence
property of MP is proved in [33], based on the results in
[21]. After N steps, a recalculation of the coefficients can be
made, named back-projection, to approximate fat best with
the selected vectors. This idea was formalized in the
orthogonal MP algorithm [35]. Similar results are obtained
in [38] with a particular set of functions: the normalized
Gaussian functions with adjustable variance and time-
frequency center.

2.3.2. Projection pursuit with neural networks

The two layer architecture of a neural network is well
suited to construct an approximation with PPR. The
projection pursuit learning network (PPLN) [19] is
modeled as a one hidden layer MLP that learns unit by
unit, and layer by layer cyclically after all the training
patterns are presented. Weights are learned while the other
ones remain fixed, and no global optimization of the
coefficients is performed.

The incremental linear quasiparallel (ILQ) algorithm, a
sequential algorithm for neural networks based on the
ideas of PPR and MP, is presented in [25]. Every iteration
consists of two steps. In the first one, the frequency of the
new hidden unit is determined. In the second one, all
output weights are recalculated. Given a set of functions G,
the frequencies are determined trying to find g, € G so that
nearly maximizes |{f — fy_;,¢)| over g € G. Therefore, the
resulting method is similar to orthogonal MP, where there
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exists a back-projection procedure at every iteration. Based
on the results in [22], upper bounds for the rate of
convergence are derived in [25].

With similar ideas, a number of objective functions to
obtain the new frequency are explored in [27], all of them
with the aim of matching the residue.

2.4. Cascade-correlation

In the neural networks literature, the most used
constructive method is, probably, cascade-correlation
(CASCOR) [14]. CASCOR combines two key ideas. The
first one is the cascade architecture, in which the newly
added hidden unit receives inputs from the input layer as
well as from the previously added hidden neurons. The
second one is the learning algorithm. For each new hidden
unit, the algorithm tries to maximize the correlation (or,
more precisely, the covariance) between the output of the
new unit and the residual error signal of the network. In
order to maximize this function, a gradient ascent is
performed. The input weights of the hidden units are
frozen at the time the new unit is added to the network, and
only the output connections are trained. There exist
variations of CASCOR where the architecture is not
cascaded, and where the learning rule is changed to train
directly for minimization of the output errors (see [37] for
details). Anyway, the frequencies obtained by these
methods are the result of matching the residue at the
previous step with only one term. There exist many
variants of the original CASCOR algorithm in the
literature (see, for example, [20,28,30-32,46]). A compar-
ison of some of them can be found in [29].

2.5. Orthogonal sequential neural networks methods

The orthogonal least squares learning (OLSL) algorithm
is proposed in [11], a learning procedure for RBFNs based
on the orthogonal least squares method [9]. The procedure
starts with a single Gaussian RBF hidden unit and it
sequentially increases the number of hidden units, one at a
time, until the model error is satisfactory. The frequency of
the new hidden unit (the center) is selected among the
points in the data set. The classical Gram—Schmidt
orthogonalization method is used at each step to form a
set of orthogonal vectors for the space spanned by the
output vectors of the previously selected hidden units. For
every point in the data set, the orthogonal component of its
output vector to that space is obtained. The new
information introduced by this unit is caused by that part
of its output vector which is orthogonal to the space
spanned by the output vectors of previously selected
hidden units. In this context, an output vector is an
element of R7, where T is the number of patterns, obtained
by applying the Gaussian function to every point in the
data set. After computing its optimal coefficient (with the
squared-error function), the point in the data set maximiz-
ing the error reduction ratio is selected. The procedure is

terminated when a predetermined percentage of the total
error is reduced. Some extensions of the original procedure
can be found in [10,12].

Recently, the kernel matching pursuit (KMP) algorithm
was described [48], an extension of MP that can be used to
build kernel-based solutions to supervised machine learn-
ing problems. The emphasis of the KMP scheme is put on
the building of an alternative to support vector machines
(SVMs) [47] that controls the sparsity of the solution (that
is, the number of support vectors). Whereas good general-
ization abilities of SVMs are related to margin maximiza-
tion, KMP is designed to build sparse kernel-based
solutions minimizing the squared error function. As in
SVMs, the frequencies of the resulting network are a subset
of the points in the data set. Given a data set D, the
dictionary (needed in MP) is defined as the set of functions
F = {K(x,x;) : x; € D}, where K is a symmetric positive
definite kernel function. Three versions of KMP are defined
in [48]: basic KMP (similar to basic MP), KMP with back-
fitting at every step (similar to orthogonal MP) and KMP
with pre-fitting (similar to OLSL). The optimization
problems posed can be solved exactly because a finite
dictionary is used. Experimental comparisons between
KMP with pre-fitting and SVMs for several classification
problems show comparable results with typically much
sparser models for KMP with pre-fitting. A very similar
method, but particular for Gaussian processes, can be
found in [44]. The main difference lies in the loss function
to be optimized.

3. Definition of SAOCIF and algorithm

As previously mentioned, most of the sequential models
for FNNs found in the literature choose the new term so
that it matches the previous residue as best as possible. This
strategy can be far from being the best one, since it does
not take into account the interactions with the previously
selected terms. In this section SAOCIF is presented, a
sequential scheme for FNNs where the contribution of the
new frequency is measured in terms of its capability of
approximation to the target vector together with the
previously selected ones.

3.1. Definition

Definition. Let H be the Hilbert space R”, where T is the
number of patterns in a data set D = {xy,...,xr}, f =
(f1,.-..f7) € H the target vector and Q a space of
frequencies. A SAOCIF for FNNS is a sequence of vectors
{Xn~}nys0 In H whose terms are defined as

(1) Xo=0.
2) Xy = Zg;ll iiv Voo, + i%vuw, so that

(a) The coefficients 4Y,..., AN |, 2\ are optimal. That
is, the vector Xy is the best approximation of f'with



1544 E. Romero, R. Alquézar | Neurocomputing 69 (2006) 1540-1552

VeCtors Uy, . - -, Uy > Vwy € H 1n terms of minimiz-
ing the squared error |f — Xn||* (that is, with the
metric induced by the usual inner product in R”).
(b) The frequency wy € 2 is selected taking into

account the interactions of wv,, Wwith
Ugy(s - - - » Uy, 1N Order to minimize ||f — Xnl?
Remarks.

(1) In FNNs terminology, every frequency wj € Q is
associated with a hidden unit ¢, (wk,x), where ¢, is
the activation function. The ith component of v,, is the
value of the hidden unit ¢ (ws, x) at the ith point in D.
That is, vy, = (@r(wr, x1), ..., @r(wk, x7)). The output
function of the network with N hidden wunits is
Xn(x) = S0, A pr(n, %)

(2) At step N, a new frequency (wy) is considered, the
number of terms of the approximation is increased by one
(i%vw,v), and the coefficients A%, . . ., /1%_1 are optimized in
order to obtain the best approximation of f with vectors
Uy -« > Vwy_» Uy - The frequencies wy,...,wy_1 are kept
fixed. The vectors vg,,..., 0wy ,Vw, are not necessarily
mutually orthogonal.

(3) As it is well known [1], since Xy is the best
approximation of f with vy, ..., u,_,, Vuy, it holds that

Vk: 1<k<N {(f — Xy, 00,) =0, (1)

where (-,-) is the inner product in H. That is, f — Xy is
orthogonal to the space spanned by vy, ..., 0wy > Vwy. BY
definition of inner product, (1) is equivalent to the
following linear equations system:

AN AN )
= ((fa U(U] )7 > (f’ UU)N,] )a (f, U(/)N))[’ (2)

where Ay[i,j] = (v, vo,) for 1<i,j<N. Thus, once the
frequencies wy,...,oy_1, oy € 2 have been selected, the
optimal coefficients 4Y,..., 2N |, AN can be computed by
solving (2).

(4) Using (1), it is immediate to Verify that

If = Xnl* = Hf Z A Vo || = 1A P llve, 1%, 3)
k=1,k#j

If = XnIP = 117 = 11X w2, )

1Xn* = sz (s Vo) (5)

As it can be observed, there is a great parallelism between
these properties and those satisfied by an approximation
with orthogonal vectors.

3.2. Algorithm
A sequential training algorithm for FNNs following the

ideas of SAOCIF definition is presented in Fig. 3. Hidden
units are added one at a time, choosing the frequencies in a

Algorithm
repeat
Increase by 1 the number of hidden units N
Pick an activation function for the new hidden unit
repeat
Assign a candidate frequency w to the new hidden unit
Compute the optimal coefficients {\, }1<k<n by solving (2)
Set wy :=w if ||f— Xy Hz is minimized
until the frequency wy is satisfactory or
there are no more candidate frequencies (criterion 1)
Optionally, tune the selected frequency wy
Fix the frequency wy in the network
until the network is satisfactory (criterion 2)
end Algorithm

Fig. 3. An algorithm to construct an FNN following the ideas of
SAOCIF.

flexible manner, so as to adjust the network until a
satisfactory model is obtained. The algorithm works as
follows. Suppose that we are at step N and we have a
certain procedure to generate frequencies. For every
candidate frequency, the optimal coefficients of the net-
work are computed with that frequency installed in the new
hidden unit, in order to test the real contribution of the
frequency (together with the N — 1 previously selected
ones) to the approximation to the target vector. There is no
explicit intention to match the residue. That is the idea of
interacting frequencies. Note that, according to (4),
maximizing | Xyl*> is equivalent to minimizing
If — Xn|I?>. When the frequency is satisfactory or there
are no more candidate frequencies (criterion 1, see below),
the selected frequency can be optionally tuned.
Concerning the architecture needed to construct the
approximation, it must have the following characteristics:

(1) It must be a feed-forward architecture with a hidden
layer of units (including both MLPs and RBFNs).

(2) There are no restrictions about the dimension of the
input and the output. There will be as many as the
target function have. If there are several outputs, the
total inner products must be calculated as the summa-
tion of the individual inner products for every output.

(3) There is no restriction about the biases in the hidden
units, since they can be treated as part of the frequencies.

(4) There is no restriction about the activation functions in
the hidden units. They can be, for example, sigmoidal,
Gaussian, sines, cosines, wavelets, etc. Recent works
have shown that the use of non-sigmoidal activation
functions for MLPs may lead to very promising results
[45]. Obviously, different units may have different
activation functions. The output units must have a
linear activation function.

As it can be seen, the only real restriction in the archi-
tecture is the linear activation function in the output units.

The resulting algorithm combines the locality of
sequential approximations, where only one frequency is
found at every step, with the globality of non-sequential
methods, such as back-propagation [41], where every
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frequency interacts with the others. The interactions are
discovered by means of the optimal coefficients. The
importance of the interacting frequencies lies in the
hypothesis that they allow to find better partial approx-
imations, with the same number of hidden units, than
frequencies selected just to match the residue as best as
possible. In terms of the bias/variance decomposition, it
will be possible to obtain simpler models with the same
bias, since the same level of approximation may be
achieved with less hidden units.

3.3. Implementation

The strategy to select the candidate frequency is
probably the most important part of the algorithm. In
our experiments (see Section 5) three strategies were
introduced in order to test the algorithm:

(1) Random strategy: The frequencies are randomly
selected within a certain range.

(2) Input strategy: The frequencies are selected from the
points in the data set (as is often the case in RBFNs) in
a deterministic manner: for every hidden unit to be
added, every point in the training set is tested as a
candidate frequency.

(3) Breeder genetic algorithm (BGA) strategy: The frequen-
cies are selected with a more sophisticated strategy
from the field of evolutionary algorithms, where a
population of frequencies evolves driven by BGA [34]
with the squared error as the fitness function.

The number of candidate frequencies of every strategy may
be very different. Whereas for the Input one it is fixed
(given the data set), the random and BGA strategies can be
parameterized so as to assign as many candidate frequen-
cies as desired. This is clearly related to the computational
cost, as explained below.

Regarding the criterion 1 in Fig. 3, every strategy has its
own one. For the random strategy, a fixed number of
frequencies is selected. For the input one, the number of
points in the data set determines the number of frequencies
to test. For the BGA strategy, a maximum number of
generations is determined. Regarding the criterion 2 in
Fig. 3, many stopping criteria can be used: percentage of
learned patterns, early stopping with a validation set, low
relative rate of decrease of the error, etc.

SAOCIF satisfies a number of interesting properties to
implement it in an efficient fashion, as explained next.

By (4) we have |[f — Xy|I* = IfII* — [ Xw% with |f]*
constant. Therefore, the frequency that minimizes the error
is such that maximizes ||Xy|>. By (5) we know that
IX N1 = S0 AV (f, 0e,). The values of {({f, s, )}1 <k <y are
the independent vector of the linear equations system (2)
just solved to obtain {2} }; <x<y, which can be kept stored
in memory. Therefore, once the coefficients have been
obtained, || Xy||> can be computed with cost O(N),
avoiding one pass through the data set (the cost of directly

computing | X x| or ||f — X x> is O(T - N), where T'is the
number of examples). In our implementation,wy was
selected so as to maximize || X y||>, computed with (5).

Since the frequencies wy,...,wy_; are kept fixed, the
proposed linear equations system at step N is equal to the
system solved at step N — 1 for the selected frequency, but
with a new row and a new column. Therefore, the system
(2) posed at step N can be efficiently solved with bordered
systems techniques [13] as follows. Note that (2) can be
stated as

ANOY, ) =

= ((fa le>, ey (fs Uw;\;))la

where x, a, b are vectors with N — 1 components, and 7, 3,
y are scalars. It can be easily verified that

—at A7l b
_fodAvcb Al and
y—at-Ay_,-a
x=AyL(b—n-a). (6)

Since Ay_; and b are equal for every candidate frequency,
matrix Ay_; was inverted only once at every step, prior to
the selection of the first frequency, and kept stored in
memory. For every candidate frequency, its associated
linear equations system was solved using (6). Whereas the
inversion of a matrix has cost O(N?), the computational
cost of multiplying it by a vector is O(N?), where N is the
matrix dimension (in our case, the number of hidden units).

Regarding the computational cost, let Nsaocir be the
number of hidden units of the resulting network, F the
number of candidate frequencies for every added hidden
unit (assuming that it is equal for every one), 7' the number
of patterns and [ the input dimension. Using the
aforementioned implementation properties, and assuming
Nsaocir<F and Nsaocir< 7T, the computational cost of
the algorithm in Fig. 3 can be bounded by
C, ~N§AOCIF -F-h(T-I), where C, is constant and
h(T -I)e O(T -I). The conditions Nsaocir<7T and
Nsaocie <F are not real restrictions, since it makes no
sense, for example, constructing a network with more
hidden units than examples in the data set. Similarly, the
number of candidate frequencies is usually larger than the
number of hidden units. In addition, these conditions make
that the quadratic factor N3,ocqp i not so relevant, in
practice, as one could think (see Section 5). The computa-
tional cost mainly comes from the construction of the
linear equations system for every candidate frequency
rather than from solving it.

3.4. Comparison with other sequential schemes

The algorithm in Fig. 3 can be seen as an extension and
generalization of the OLSL and KMP with pre-fitting
algorithms (see Section 2) in several ways. First, it is not
restricted to select the candidate frequencies from the
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points in the data set. In this sense, a number of different
heuristics can be used. Second, it allows to choose the
activation function for every hidden unit. Finally, it is
possible to further tune the selected frequency with any
non-linear optimization technique. Note that the OLSL
and KMP with pre-fitting algorithms can be simulated with
the proposed algorithm by selecting the frequency with the
input strategy without tuning.

4. Extension to Hilbert spaces

In this section, SAOCIF is extended to general Hilbert
spaces. Consider the following approximation problem:
“Let H be a Hilbert space with inner product
(,) : Hx H— C, a space of parameters 2, and f € H a
vector to approximate with vectors v, = v(w), v: Q — H,
w € Q, such that Vo € Q ||v, || #0. Find w, w,,... € Q and
Asts... €C such that limy_eollf — Sp_ Ao ll = 07
This definition 1is, in essence, the traditional one in
approximation of vectors in Hilbert spaces [1]. The
condition |v,|#0 is equivalent, by the inner product
properties, to that of v, #0. Observe that every vector v, €
H depends on a parameter o € Q.

In this setting, the same definition of SAOCIF stated in
Section 3.1 is also valid for a general Hilbert space H, with
the metric induced by its inner product. As previously, the
term frequency refers to every wi,w,,... € Q, and coeffi-
cient to every A;,/,,... € C. The following results show
that SAOCIF converges towards the target vector in this
general setting under reasonable conditions.

Proposition 1. Let H be a Hilbert space, and f € H. Any
SAOCIF {Xn}yso satisfies the following properties:

(Pa) YN>0 |If — Xyl*<IIf — Xl

(Po) If M= N, then (f — X u.f — Xn) = If = Xul*.

(Pc) Suppose that 2% #0. The vector v, is orthogonal to the
space spanned by {vy,,...,V0, ,} if and only if the
coefficients do not change between steps N — 1 and N.

(Pd) {Xnlyso is convergent in H. That is, 3ge€
H limy_ xllg — Xn| = 0.

The proof can be found in Appendix A.

Observe that by (Pc), the only directions that guarantee
that, without recalculating the coefficients, the approxima-
tion is optimal are the orthogonal directions. Therefore, if
vectors are not mutually orthogonal, coefficients must be
recalculated.

Theorem 1. Let H be a Hilbert space, f € H and a SAOCIF
{X~n}nso- Let g be such that limy_, g — Xyl =0 (Pd),
and suppose that for every i € C and every wy € Q we have

If = Xyt IP < — (X + poo)lI* + oy (7)

for every N>=0. That is, the approximation of f with X yy1
is better (up to ay) than the best approximation of the

residue | — Xy that one could achieve with only one vector
Dy € U(Q). If lim supy_, on <0, then:

(Ta) The vector g satisfies:
(Tal) Vwo e limNﬁoo(g — XN, Uw0> =0.
(Ta2) Y € 2 (f, Vwy) = (g5 Ve )-
(Ta3) (f —g,9) = 0.
(Tad) There is no subset of vectors in v(Q) that
approximate f more than g. That is,

f= Z Hic Uy,
k

If —gll= inf

w€C, Y eQ

(Tb) If there exists A C Q such that the set of vectors {vy
W € A} spans H, then {X n}y~¢ converges towards f.

The proof can be found in Appendix B.

Observe that these results are not very restrictive, since
the universal approximation capability is a necessary
condition for the convergence property. Hence, SAOCIF
allows (by selecting 2 and v(Q2)) to choose any (or some) of
the multiple vector families satisfying this property. In the
particular case of L?, it can be used with approximations
by algebraic polynomials, Fourier series, wavelets and
FNNs (including both MLPs and RBFNs), among others.

The hypothesis about the tolerance ay is, in essence, the
same as in [22,3,25,24]. Imposing conditions on oy, as in
[3,25], the rate of convergence can be proved to be
O(1/+/N), which has the same order as the optimal ones
that can be found in the literature. However, the actual rate
of convergence is expected to increase, since it seems more
plausible to find better approximations (or equivalently,
smaller o) selecting the new frequency taking into account
the interactions with the previously selected ones than, for
example, matching the residue as best as possible.

5. Experiments

We now comment some generalities about the experi-
ments performed in order to illustrate and test the
algorithm for SAOCIF presented in Section 3.

In the tables of results, MPR means “matching the
previous residue’, and it is a sequential scheme where the
new frequency is selected so as to match the previous
residue as best as possible and the previous coefficients are
not recalculated. MPR can be implemented with a
slight change in the algorithm in Fig. 3: the selected
frequency maximizes (f —X N,l,vw)z/ lvwl> and the
coefficient of the new hidden unit is computed as
Iy = (f — Xn_1,00)/llvw]|>. The idea behind MPR is
exactly the same as in PPR, PPLN or MP without back-
projection (see Section 2). As previously stated (see
Section 3.3), let F be the number of candidate frequencies
for every hidden unit, 7 the number of patterns and 7 the
input dimension. In this setting, the computational cost of
MPR can be bounded by C, - Nwmpr - F - hy(T - I), where
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Table 1
NMSE in the training and test sets after the addition of 30 hidden units for the MPR, OCMPR and SAOCIF schemes
Data set Training Test

MPR OCMPR SAOCIF MPR OCMPR SAOCIF
HEAL1 0.001937 0.000017 0.000000 0.002219 0.000073 0.000000
HEA2 0.002146 0.000175 0.000028 0.005095 0.000710 0.000133
HEA3 0.015259 0.006857 0.003222 0.059817 0.019668 0.011035
HEA4 0.002875 0.002993 0.000406 0.009441 0.008655 0.000994
HEAS 0.002725 0.001107 0.000506 0.007358 0.003459 0.001706

For every model, the frequencies were selected with the BGA strategy without tuning.

C, is constant, Nypr is the number of hidden units of the
network obtained with MPR and /7hy(T -1) € O(T - I).
When back-projection is present (that is, the coefficients
are optimized after the selection of the frequency), we will
refer to this method as “optimal coefficients after matching
the previous residue” (OCMPR), equivalent to Orthogonal
MP or ILQ. In this case, and assuming that Nocmpr <F,
the computational cost of OCMPR can be bounded by
C3;-Nocmpr - F - hs(T - 1)+ Cy - N‘(%)CMPR’ where C3 and
C, are constant, Nocmpr 1S the number of hidden units of
the resulting network and A3(7 - I) € O(T - I). As it can be
seen, the respective computational costs of SAOCIF (see
Section 3.3), MPR and OCMPR strongly depend on the
number of hidden units of the final models (Nsaocir, Nmpr
and Nocwmpr)- This is a very important issue in order to
assess the execution times found for each method.

Several activation functions (““AF” in the tables) have
been tested, such as linear (lin), logistic (Igt), cosine (cos) in
the MLP model and Gaussian (gau) in the RBFN model.
Output units did not have biases, and in the hidden units
they were only present for the logistic activation function.
Regarding the strategies to select the frequencies, the
column “WR” indicates the range of weights to look for
candidate frequencies. When the value “input” is present, it
means that the candidate frequencies are selected from the
points in the training set, as explained in Section 3.
Standard parameters were used for the BGA (see [6], for
example). The average number of hidden units in the
resulting networks is shown in column “NH”. An “NP”
value means “‘not possible”, indicating that the learning of
the training set was unsatisfactory.

5.1. HEA data sets

The data sets described in [19] were used to compare the
approximation capabilities of MPR, OCMPR and SAO-
CIF. These data sets were constructed from five non-linear
two-dimensional functions with different levels of complex-
ity. Every training set contains 225 points generated from
the uniform distribution U[0, 1]* with their corresponding
function value. The test set comprises 10,000 points of a
regularly spaced grid on [0, 1]>. No noise was added. We
will refer to those data sets as HEAn, where n varies from 1

to 5. These data sets have been widely used in the literature
(see, for example, [27,32,46]). Different from [19], 10
independent training sets were constructed and trained
for every function. In some preliminary experiments, we
observed that overfitting was not present with these data
sets. Results are shown in Table 1 as the average, over 10
runs with the respective training sets for every function, of
the normalized mean squared error

S L (HEAn(x;) — X ()’
YL (HEAn(x;) — HEAn)’

NMSE =

after the addition of 30 hidden units. For every model
(MPR, OCMPR and SAOCIF), the frequencies were
selected with the BGA strategy (100 generations of an
initial random population of 100 individuals) without
tuning. The activation function was also selected for every
unit, in addition to the frequency as follows: for a
predefined set of activation functions, the process of
selecting the frequency is repeated for every activation
function in the set. Different units may have different
activation functions. The set of activation functions
contained the hyperbolic tangent, Gaussian function, sine,
cosine or the polynomial kernel k(x) = (x + 1)*, with MLP
units.

As it can be observed in Table 1, the approximation
capability of SAOCIF is superior to that of OCMPR,
which in turn compares favorably with MPR. General-
ization results are also better for SAOCIF than OCMPR
and MPR. Since over