
Feature Selection Forcing Overtraining May Help to
Improve Performance

Enrique Romero
Llenguatges i Sistemes Inform`atics
Universitat Politècnica de Catalunya
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Abstract—One of the main drawbacks of Machine Learning
systems is the negative effect caused by overtraining. If the points
in the dataset are perfectly fitted, the generalization performance
is usually bad. We propose to take profit of overtraining, together
with Feature Selection, to improve the performance of a learning
system. The main idea lies in the hypothesis that when the
dataset is as fitted as possible, the system is forced to use all
the available variables as much as possible. Noisy and useless
variables can be detected if generalization improves when the
system is not allowed to use them. Forcing overtraining, noisy and
useless variables should be more outstanding. In order to test this
hypothesis, we performed several Feature Selection experiments
using Feed-forward Neural Networks. The particular Feature
Selection procedure used wasSequential Backward Selection.
Experimental results with several real-world problems suggest
that our hypothesis seems to be well-founded. Ironically, forcing
overtraining may help to achieve good performance.

I. I NTRODUCTION

Suppose that someone wants to apply a Machine Learning
(ML) technique to a certain problem. There exist many sit-
uations where one does not havea priori neither a model
that could describe the phenomenon nor the knowledge of
which variables are adequate to describe it. This is very
common in Medicine or Psychology, for example. The expert
may have several intuitions about the variables related to the
problem, but by no means has neither the security that those
are all the features needed to explain the phenomenon nor the
confidence that all the features are useful. When important
variables are missing, the problem cannot be solved. If some
variables are useless, solutions that use them will probably
have important performance problems. In addition, the number
of available examples is usually small and they may be noisy
or incomplete. In this situation, a Feature Selection (FS)
procedure may be a very useful tool to select a good subset
of variables. In addition of reducing the input dimension, FS
may lead to a marked improvement in the performance of
a ML system [5]. A justification for this assertion comes
from the Bias/Variance decomposition [3], which suggests that
the optimal performance is obtained when a tradeoff between
the quality of the approximation to the training set and the
variance of the solution is achieved. When too many variables
are present the system can (surely) approximate very well
the training set, but it is (probably) too complex, increasing
the variance term. As far as the variables are eliminated, the

complexity of the system is reduced (together with its capacity
of approximation).

We will focus our work in classification tasks. In this
paper we propose the use of Feed-forward Neural Networks
(FNNs) to perform FS within thewrapper approach [6]. In
particular, theSequential Backward Selection (SBS) procedure
was applied in our experiments (see Section II for a brief
description of SBS and the wrapper approach). Our main
motivation to use the SBS method was the expectation that
it could be possible to identify noisy and useless variables as
the features deleted in the first steps of the SBS procedure,
while maintaining all the possible interactions among the
initial set of variables. TheSequential Forward Selection (SFS)
procedure, for example, does not satisfy this property. Ideally,
there would exist an optimal point where the addition or
elimination of any variable would lead to a worse performance.

In order to encourage the SBS procedure to eliminate noisy
and useless variables in the first steps, we propose to fit the
data as much as possible (that is, forcing overtraining). In
theory, generalization improves when the system does not use
noisy and useless variables. Our hypothesis is that this effect
will be more evident if we try to fit the training set as much
as possible (that is, when overtraining is highly present), since
in this situation the variables in the system are forced to be
as used as possible. Therefore, forcing overtraining, together
with FS, may help to achieve good performance. This idea
may be valid for both linear and non-linear classifiers.

The main motivation to use FNNs was their well-known
universal approximation capability [7]. Using FNNs it is
possible to fit enough the data to test our hypothesis.

After the selected variables are discarded, a different ap-
proach to the problem can be performed. In spite of the fact
that the negative effect of overtraining may still be present, we
expect that it will probably be lower. A standard technique that
tries to control the overtraining (early stopping, for example)
is expected to obtain better results with this reduced number
of variables. We tested our proposal with several real-world
problems. Experimental results suggest that our hypothesis
seems to be well-founded.

The rest of the paper is organized as follows. In Section
II, the FS problem is briefly described. The main ideas are
explained in Section III. An algorithmic description of the
proposed scheme is given in Section IV. The experimental



work is presented in Section V. Finally, some conclusions and
future work are drawn in Section VI.

II. FEATURE SELECTION

The problem of FS can be defined as follows [8]: given a
set ofNf candidate features, select a subset that performs the
best under some evaluation criterion. From a computational
point of view, the previous definition of FS leads to solve
a search problem in a space of�Nf elements. In order
to obtain a solution, we need to specify two components:
the feature subset evaluation criterion and the procedure
for searching through candidate subsets of features. Many
different evaluation criteria have appeared in the literature,
based on different measures, such as distance, information,
consistency, dependence or accuracy, among others [8]. Con-
cerning the search procedure there also exists a wide range
of methods to avoid the computationally prohibitive (in the
general case) exhaustive search. Some of them determine the
optimal feature subset under certain assumptions, such as the
Branch and Bound algorithm, which needs monotonicity of
the evaluation criterion. Other methods seek for a suboptimal
solution heuristically. Rather well-known methods of this type
are the sequential ones, where features are deleted from (or
added to) the partial solution at every step. The simplest ones
are the SBS and the SFS procedures. SBS is a top-down
process. Starting from the complete set of available features,
one feature is deleted at every step of the algorithm, chosen
on the basis of which of the available candidates gives rise
(when deleted) to the best value of the selection criterion. SFS
is a bottom-up process. The procedure begins by considering
each of the variables individually and selecting the one which
gives the best value for the selection criterion. At every step,
the feature which gives rise (when added) to the best value
of the selection criterion is added to the set. It is expected
that performance may improve as far as features are deleted
(added), but at some point the elimination (inclusion) of further
features results in performance degradation [5].

Specially important is the wrapper approach (see, for exam-
ple, [6]), where the feature subset selection is done using an
induction algorithm as a black box (that is, no knowledge of
the algorithm is needed, just the interface). The feature subset
evaluation criterion is the accuracy of the induced classifiers
(which is not necessarily monotone).

III. OVERTRAINING, FNNS AND SBS

One of the main drawbacks of ML frameworks in general
is the poor generalization behaviour as a consequence of
overtraining. If the points in the training set are perfectly
fitted, the generalization performance is usually bad, specially
in real-world problems. As previously said, in addition to the
possible lack of information (including both missing values
and missing variables), features in real-world datasets may be
noisy or useless for the problem at hand.A priori, when many
variables are present, there may be many different solutions
capable of approximating the same training set. But only a few
number of these solutions will lead to good generalization.

There is no reason to think that a good one will be selected
by our inducer. If the system gives some importance to noisy
or useless variables in order to approximate the dataset, it will
use this information for new data, probably leading to poor
generalization even if we try to control the overtraining. The
problem is that the relevance of the variables is not known a
priori. Imagine that we have collected a database where we
have a useless variable, say the color of the eyes, to predict
a heart disease. Unfortunalely, there is no reason to think
that this variable will not be used in the training procedure
to approximate the dataset. Therefore, generalization will
probably be poor, even if we try to control the overtraining.
The existence of many solutions consistent with the data
contribute to high variance in the Bias/Variance decomposition
[3]. This behaviour is more probable to happen when only a
small number of examples is available.

In this context, it may be convenient to use an FS procedure.
Suppose that the system uses a (very) noisy or useless variable
to approximate the dataset (the color of the eyes to predict
a heart disease). Without this variable, generalization should
improve (or, at least, should not worsen). Our hypothesis is
that this effect will be more evident if we try to fit the training
set as much as possible, that is, when overtraining is highly
present. An intuitive justification of this statement could be
the fact that, if we try to adjust perfectly the dataset, we
are forcing all the variables to be as used as possible in the
resulting solution. In this situation, noisy and useless variables
should emerge more clearly if generalization improves when
the system is not allowed to use them. Ironically, we want
to improve generalization forcing overtraining. This reasoning
may be valid for both linear and non-linear classifiers.

We conjecture that this idea will allow to detect useless and
(very) noisy variables for the problem at hand. After these
variables have been discarded, a different approach to the
problem can be performed, since we can consider (of course,
with a certain probability of error) that all the remaining
variables are quite useful. It does not necessarily imply that the
system will not present the negative effect of the overtraining
with the selected variables, but it will probably be lower. A
standard technique that tries to control the overtraining (early
stopping, for example) is expected to obtain better results with
this reduced number of variables.

Since the evaluation criterion is the performance of the
system, we decided to use a wrapper approach in order to
select the resulting feature subset. Therefore, we only needed
to specify the induction algorithm and the search procedure.
In order to fit the dataset as much as possible, we decided to
use FNNs. As it is well-known, FNNs have been shown to
be universal approximators [7]. Thus, they are an appropiate
induction framework to fit the data as required. Among all
the existing FS techniques, we decided to use a standard SBS
procedure, so that it could be possible to identify noisy and
useless variables as the features deleted in the first steps of the
SBS procedure, while maintaining all the possible interactions
among the initial set of variables (standard SFS, for example,
does not satisfy this property).



Algorithm
Let V� the full set ofNf features
for N � � up to Nf � � do

for each v � VN do
SetV � VN � fvg
Train the network withV and keep its generalization

performance. The network is overtrained, trying to
fit the data as much as possible.

end for
SetVN�� � VN � fv�g wherev� corresponds to the

best performance of the network in the previous loop
end for
ReturnVN� whereN� corresponds to the best performance

of the network in the previous loop
end Algorithm

Fig. 1. The SBS procedure with FNNs forcing overtraining at every step.

IV. A LGORITHM

The proposed SBS procedure with FNNs forcing overtrain-
ing can be seen in Figure 1. It works roughly as follows. First,
the parameters of the network are adjusted so as to achieve a
low value of the total squared error in a reasonable number
of epochsNe. Then, the SBS procedure starts. For every
variable, we train the networkNe epochs without this variable,
so that the training set is “as approximated as possible”
with the selected parameters. The variable such that, when
deleted, gives rise to the best generalization performance, is
permanently removed. This loop is repeated until only one
variable remains. Typically, it is expected that performance
will improve until some point where the elimination of further
features results in performance degradation. This is the subset
of features returned by the algorithm.

V. EXPERIMENTS

We now present the experiments performed in order to test
the hypothesis presented in Section III.

A. Datasets description

1) UCI and Statlog Benchmarks: We selected several
datasets from two well-known ML repositories: UCI [2] and
Statlog [9]. A wide variety of problems is represented by
these benchmarks, as can be seen in Table I. When the range
of inputs was not normalized, we performed a linear scale
transformation in��� ��. For real-valued variables, missing
values were substituted by the average within the class. For
discrete ones, they were substituted by the most frequent value
in the class.

2) IIM Dataset: We had the opportunity to work on a real-
world problem of medical diagnosis. The dataset contained
the data of 62 patients suffering from Idiopathic Inflama-
tory Myopathies (IIMs). IIMs, specially dermatomyositis, are
associated with an increased risk of cancer. Evaluation of
patients for the presence of an occult malignancy is worrisome,

Dataset #Var. #Cla. #Exa. Missing Source
Australian Credit 14 2 690 yes UCI/Statlog

Ionosphere 33 2 351 no UCI/Statlog
Sonar 60 2 208 no UCI/Statlog

Hepatitis 19 2 155 yes UCI/Statlog
Cleveland Heart 13 2 303 yes Statlog

Statlog Heart 13 2 270 no Statlog
Bupa Liver 6 2 345 no UCI

Lung Cancer 56 3 32 yes UCI
IIM Dataset 25 2 62 no New

TABLE I

DESCRIPTION OF THE DATASETS. THE COLUMN ’#VAR.’ INDICATES THE

NUMBER OF VARIABLES, THE COLUMN ’#CLA .’ THE NUMBER OF

CLASSES, AND THE COLUMN ’#EXA .’ SHOWS THE NUMBER OF EXAMPLES.

deserves time consumption and patients are often subjected
to extensive invasive investigations. Although some factors as
age, sex, refractory or recurrent disease and some types of
myositis specific antibodies (such as antisynthetase or anti-
Mi-2) have been proposed to be related to the risk of cancer
in IIM patients, conclusive studies are lacking [4].

On average, the 62 patients diagnosed of IIM in our study
were followed up for 8 years in the Hospital de la Vall
d’Hebron, Barcelona. The diagnosis of inflamatory myopathy
was based on a strict clinical definition and histologic criteria.
The input consisted of 25 variables containing clinical and
laboratory data. Fortunately, there was no missing value and
the values of the variables had (presumably) little noise.
The target was the presence or absence of cancer. All the
malignancies were registered and pathologically confirmed in
the hospital. The number of patients diagnosed of cancer was
11. This low number of examples in our dataset is due to the
fact that IIMs are extremely rare diseases.

Neither the noise in the data nor the absence of informa-
tion were seen as severe drawbacks in the IIM dataset. In
contrast, the existence of useless variables was considered our
outstanding problem. As explained previously, the reason is
that many of the variables were gathered without knowing
exactly their importance (although guessing that they could
help to give an insight of the problem). Real-valued variables
were normalized with mean� and variance�, whereas discrete
ones were codified in a unary 1-of-C scheme. In this problem
the two classes are clearly unbalanced. It was considered a
major error to predict absence of cancer when this was not
the case. Therefore, the sum-of-squares error function was
modified to assign equal importance to every class, as in [10].

B. Experimental Setting

The training of the networks was performed with standard
Back-propagation (BP) [12] in pattern learning mode (weights
are modified after the presentation of each example). We used
both linear and non-linear FNNs. For non-linear FNNs, and
in order to reduce the computational cost, we decided to use
Multi-layer Perceptrons (MLPs) with one hidden layer of units,
with the sine as the activation function in the hidden layer and



Benchmark Lin (All) Sin (All) Lin (SBS) Sin (SBS)
Australian Credit 85.9% 86.0% 87.4% (8) 87.2% (7)

Ionosphere 86.9% 89.5% 92.4% (11) 92.6% (11)
Sonar 77.4% 86.1% 90.6% (25) 91.6% (20)

Hepatitis 85.3% 76.0% 92.3% (3) 94.0% (6)
Cleveland Heart 83.4% 80.7% 83.8% (5) 82.5% (3)

Statlog Heart 83.3% 81.3% 85.2% (4) 84.5% (3)
Bupa Liver 68.3% 72.4% 69.1% (4) 71.8% (4)

Lung Cancer 46.9% 36.3% 87.5% (14) 87.5% (9)
IIM Dataset 73.6% 74.5% 93.2% (12) 94.2% (9)

TABLE III

GENERALIZATION RESULTS BEFORE AND AFTER THE APPLICATION OF THESBSPROCEDURE, EXPRESSED AS THE AVERAGE OF5 RUNS OF A

CROSS-VALIDATION PROCEDURE. THE NUMBER OF SELECTED VARIABLES IS INDICATED BETWEEN BRACKETS.

Dataset #Hidd. Weights Range Epochs
Australian Credit 20 [-1.0,+1.0] 1000

Ionosphere 10 [-0.5,+0.5] 300
Sonar 35 [-1.0,+1.0] 300

Hepatitis 15 [-2.5,+2.5] 500
Cleveland Heart 20 [-1.0,+1.0] 500

Statlog Heart 20 [-0.5,+0.5] 600
Bupa Liver 20 [-2.0,+2.0] 1500

Lung Cancer 20 [-1.0,+1.0] 100
IIM Dataset 15 [-0.5,+0.5] 150

TABLE II

DESCRIPTION OF THE PARAMETERS OF THE SINUSOIDAL

ARCHITECTURES.

the hyperbolic tangent in the output layer, as in [13]. Units in
the hidden layer had no bias, and the momentum term was
set to�. For every dataset, the number of hidden units, the
initial range of weights in the hidden layer and the number of
epochs trained can be seen in Table II. The learning rates were
adjusted for every particular dataset to fit the data as much as
possible.

C. Results

The generalization results for every dataset can be seen
in Table III as the average of 5 runs of a cross-validation
procedure. For the Lung Cancer and the IIM datasets a leave-
one-out method was applied, whereas the rest of the datasets
were tested with a 10-fold cross-validation.

For every dataset, the following experiments were per-
formed. First, an early stopping procedure was run with the
whole set of variables. These results can be seen in the
columns ’Lin (All)’ for linear networks and ’Sin (All)’ for
sinusoidal ones. Second, SBS was applied to every dataset
(both for linear and sinusoidal FNNs), as explained in Section
III and Section IV. The results with the set of variables selected
by SBS are shown in the columns ’Lin (SBS)’ for linear
networks and ’Sin (SBS)’ for sinusoidal ones. The number of
selected variables is indicated between brackets in the same
columns.

To the best of our knowledge, the results obtained for UCI
and Statlog datasets are as good as most of previous published
results for FS procedures with these benchmarks. For the IIM
dataset, the results are also excellent. In order to have only
a brief reference, the best results and the results of BP in
[9] (when cross-validation tests were available) are included
in Table IV. Although these results are probably out of date,
they were performed with the same methodology than ours.
It should also be noted that all our results are obtained with
MLPs trained with BP, although there may be problems better
suited for other kind of classifiers or learning methods. In [9]
some of the datasets were tested with more than 20 different
methods, and the results of BP were far from the best, as can
be seen in Table IV. It is not clear, however, whether a FS
procedure has been applied in the results shown in [9] or not.

Benchmark Best (Statlog) BP (Statlog)
Australian Credit 86.9% 84.6%

Sonar 87.5% 84.7%
Hepatitis 92.9% 82.1%

Cleveland Heart 85.1% 81.3%
Statlog Heart 83.6% 65.6%

TABLE IV

STATLOG RESULTS[9] FOR THE DATASETS WHERE CROSS-VALIDATION

TESTS WERE AVAILABLE.

Anyway, the important point is the fact that there has been,
on average, a great improvement after the FS procedure has
been applied, leading to a very good performance. In our
opinion, this means that the system has eliminated noisy and
useless variables. Specially remakable is the behaviour of
linear networks, which are able to obtain very good results,
although usually with more variables than non-linear networks.
This supports the independence of our hypothesis from a
particular learning model.

Figure 2 shows, for every dataset, how varies the percentage
of correct examples in the training and test set with respect
to the number of eliminated variables in the SBS procedure.
Basically, two kinds of behaviour can be observed. There exist
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Fig. 2. Percentage of correct examples in the training and test set with respect to the number of eliminated variables in the SBS procedure for linear (top)
and sinusiodal (bottom) FNNs.



problems where the performance hardly improves. The Bupa
Liver dataset is probably the most representative example of
this type. On the other hand, there exist datasets where the
curve of performance has a more desired behaviour, as the
Lung Cancer or Hepatitis datasets: test error usually improves
as far as variables are being eliminated, up to a point where
starts to degenerate. It is interesting to note that these two
datasets are very different with respect to the number of
examples and variables.

There is a surprising coincidence when comparing linear
and non-linear networks in Figure 2. The respective test curve
shapes are very similar for the same problem. This fact could
also may be indicating that the method is quite independent
of the particular learning system used.

For some problems (Bupa Liver or Australian Credit, for
example), it could be possible that important variables are
lacking, since the system fails to approximate the training set
from the first steps of the SBS procedure.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper it is experimentally shown how overtraining
can be used, together with FS, to improve generalization
performance in many cases. The idea lies in the hypothesis
that when overtraining is present, the variables are forced to
have too much importance in the resulting solution. In this
situation, the effect of noisy and useless variables should be
more evident. The proposed methodology is based on perform
FS forcing overtraining, so that it can be easier to detect noisy
and useless variables. In our experiments, we used FNNs to
perform SBS within the wrapper approach.

There exist several issues that can be improved. For exam-
ple, the parameters (number of hidden units, learning rates,
etc) of the network should be readjusted after the elimination
of every variable in the SBS procedure. Although it is expected
that the new parameters should be quite similar to the previous
ones, they may not be necessarily equal. In this sense, an
automatic selection of the parameters would be desirable [11].
A different training algorithm may also be used in order to
reduce the computational cost. Larger datasets with a larger
number of variables could need a different treatment.

More experiments are needed to confirm the hypothesis. For
example, suppose that we select the variable to eliminate in the
SBS procedure performing early stopping instead of forcing
overtraining. According to our hypothesis, our method would
detect noisy and useless variables better than this approach.

In addition, there exist several issues that can be modified.
Although we have used FNNs in our experiments, we think
that our hypothesis is independent of a particular learning
model. The only requirement is the capacity of fitting the
training set. In a similar way, other FS procedures, instead of
SBS, could be used, such as hybrid or bidirectional methods
applying SBS and SFS alternatively or simultaneously.
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