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Abstract. This paper presents a constraint-based method for gemgrativer-
sally quantified loop invariants over array and scalar Wdes Constraints are
solved by means of an SMT solver, thus leveraging recentaagin SMT solv-
ing for the theory of non-linear arithmetic. The method hesrbimplemented in a
prototype program analyzer, and a wide sample of examplestréting its power
is shown.
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1 Introduction

Discovering loop invariants is an essential task for vémifythe correctness of software.
In particular, for programs manipulating arrays, usuatig das to take into account in-
variant relationships among values stored in arrays afdrs@iables. However, due to
the unbounded nature of arrays, invariant generation &sdfprograms is a challenging
problem. In this paper we present a method for generatingewsally quantified loop
invariants over array and scalar variables.

Namely, programs are assumed to consist of unnested lodpmaar assignments,
conditions and array accesses. Bet (A, ..., An) be the array variables. Given an
integerk > 0, our method generates invariants of the form:

Ya : 0<a<CWV)-1 :Zi’Elezla;in[dija+8ij(\7)] + BV) + b, < 0,

whereC, &;j, B are linear polynomials with integer ciiieients over the scalar variables
Vanda;j, dij,b, € Zforalli e {1,...,m}, j € {1,...,k}. This family of properties is
quite general and allows handling a wide variety of programs

Our method builds upon the so-callednstraint-based invariant generatiap-
proach for discovering linear invariants [1], i.e., inaaris expressed as linear inequali-
ties over scalar variables. By means of Farkas’ Lemma, thielem of the existence of
an inductive invariant for a loop is transformed into a gatislity problem in proposi-
tional logic over non-linear arithmetic. Despite the pdiof the approach, its appli-
cation has been limited so far due to the lack of good soharthe obtained non-linear
constraints.

However, recently significant progress has been made in Skdufo the theory
of non-linear arithmetic. In particular, tigarcelogic SMT solver has shown to be very
effective on finding solutions in quantifier-free non-lineaemer arithmetic [2]. These
advances motivated us to revisit the constraint-basedapprfor linear invariants and
extend it to programs with arrays.

* Partially supported by Spanish MB@ICINN under grant TIN 2010-68093-C02-01.
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2 Preliminaries

2.1 Transition Systems

Henceforth we will model programs by meandrainsition systemdA transition system
P = (U, L, o, T ) consists of a tuple ofariablestu, a set oflocations £, aninitial
location¢y and a set ofransitions7 . Each transitiorr € 7 is a triple(¢, ', p;), where
¢, ¢’ € L are thepre andpostlocations respectively, ang is thetransition relation
a first-order Boolean formula over the program varialiesd their primed versions
U’, which represent the values of the variables after the itiansin general, to every
formula P (or expressiorE) over the program variablaswe associate a formul®’
(or expressiorke’) which is the result of replacing every variahlein P (or E) by its
corresponding primed versiaf.

In this paper we will considescalarvariables, which take integer values, arday
variables. We will denote scalar variables W@and array variables bg. The size of
an arrayA € ais denoted byA| and thedomainof its indices is{O...|A| — 1} (i.e.,
indices start at 0, as i@-like languages). We assume that arrays can only be indexed
by expressions built over scalar variables. Hence, by mefihe readwrite semantics
of arrays, we can describe transition relations as arragléms (possibly guarded by
conjunctions of equalities and disequalities betweeras@{pressions) and quantified
information of the formVa : 0 < @ < |Al— 1A P(a) : Ale] = Ala], whereP
does not depend on array variables. For example, Fig. 1 shopregram together
with its transition system. paths between two locations is associated to a transition

(r)ya=(A) T ={n,7,72, 771}

int main() v=
{ L=A{lo,l1,ls,13} Initial location is I

int 1=4, r=5, A[8];
wh::Lle (1>=0 and r<8) i = LAY =IAA] =0 A
if (777) Va:0<a<8Aa#r: Ala] = Ald]
Al[r++]1=0;
else Tl =4nr" =5

A[1--]1=0;

Tl >0Ar <8AId(l,1, A)

T (l<0Vr>8) Ald(l,r A)
e ll=l—1Ar"=rANAl]=0A
Va:0<a<8Aa#l: Alla] = Al

Fig. 1. Program and its transition system. Predicatenld( ., uc) is short foru; = up A--- Au =
u., i.e., indicates those variables that remain identicaraftransition.

relationp, which is obtained by composition of the corresponding titaorss relations.
For instance, in the transition system in Fig. 1, the trémsitelations of the paths
mo = (lo, 70, 1), 11 = (I3, 72, 13, 73, 11) @andmz = (I1, 72,13, 74, 11) are:
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Pro V=4 AT =5

P IZ0AT<8AT=r+1Al'=1AA[r]=0A
Ya : 0<a<8Aa#r : Ala] = Ala]

P, IZ0AT<8AV=I-1Ar=rAA[l]l=0A

Ya : 0<a<8Aa#l: Ala] =Ad].

A path iscyclicif it contains a cycle. A set of locatior$is acutsetif every cyclic path
contains a location i. Locations in a cutset amutpoints In our example, paths;
andrn, are cyclic,{l;} is a cutset and thus is a cutpoint.

Let P be a transition system with initial locatiafg, andS a cutset ofP. We call
thecontrol-flow-graph ofP induced byS the graph whose nodes ake= {{o} U S, and
such that for every path; in the transition system connecting two locatidgnand¢; of
N there exists a directed edgg, ¢;, 7;j). Note that therefore, every edge of the graph
has an associated path in the transition system.

For a given strongly connected component (SG®f the control-flow-graph, its
initiation paths are those paths in the transition system that labetige ffom a lo-
cation out ofs to a location ins, and itsconsecutiorpaths are those labeling an edge
connecting only locations is. For instance, the control-flow graph resulting from tak-
ing the cutsetl;} in our example has two nodds,andl;, with one edge from to
l1 (o), and two self-edges &t (r1 andny). Thus, the SCC consisting &f has one
initiation path frg), and two consecution paths;(andr).

2.2 Constraint-Based Invariant Generation

Here we review theonstraint-based invariant generati@pproach [1]. Let us assume
that we have selected all cutpoints, obtained all the SC@sdmntified all respective
initiation and consecution paths. The following well-knotheorem establishes f&u
cient conditions for a set of properties to be invariant atdhtpoints:

Theorem 1. Let I‘f, el I% be a cutset of a SCC s. Let,P. ., P, be properties over the
program variabledi such that the following implications hold:

i) forallinitiation pathsz' from some | to somé VU, T py = P
ii) for all consecution pathg® from somelq to somef: VU,T p,c APj = P

ThenR, ..., Pp are invariant at lf el I%. We say R, ..., Pp areinductive invariants

The idea of the constraint-based method is to consider al&enfor candidate
invariant properties, e.g., linear inequalities in thelacaariables. These templates in-
volve both program variables as well as parameters whosewsalre initially unknown
and have to be determined so as to ensure invariance. Tonthjghee implications in
Theorem 1 are expressed by meangafstraints(hence the name of the approach)
on the unknowns. If implications are encoded soundly, amytiem to the constraints
yields invariant properties for the cutpoints. In partanif linear inequalities are taken
as target invariants as in [1], implications can be tramagxt into arithmetic constraints
over the unknowns by means of the following result from pelytal geometry:
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Theorem 2 (Farkas’ Lemma [3]). Consider a system S of linear inequalitigsa +
-+ apXy+ b <0( € {1,...,m}) over real-valued variablesx. .., X,. When S is
satisfiable, it entails a linear inequalityi®; + - - - + ChX, + d < 0 iff there exist non-
negative real numberk, As, ..., Am, sSuch thate = X", Aiais,...,ch = X0, diain, d =
(=M, Aiby) — Ao. Further, S is unsatisfiablgfithe inequalityl < 0 can thus be derived.

Therefore, Farkas’ Lemma allows one to transformtdarproblem into ard prob-
lem. If all &; andb; are known values, the resulting satisfiability problem isShAT
problem over linear arithmetic. Otherwise, an SMT problemraon-linear arithmetic
is obtained. Moreover, if one is interested in linear ingat$s with integer cdécients,
as some unknowns are integer (the invariantfdents) and some are real (the mul-
tipliers Ao, A1, . . ., Am), @an SMT problem in mixed arithmetic is obtained. However, a
Farkas’ Lemma applies to reals, one may lose some inductggiants, namely those
that only hold using the fact that the program variables iategjiers.

3 Array Invariants

In this section we present a constraint-based techniqugefioerating array invariants
for loop programs without nesting. Moreover, programs aimed to contain linear
expressions in assignments, andwhile conditions, as well as in array accesses.

The idea of the method is, similarly as in [1], to express threditions of Theorem 1
as algebraic constraints on the parameters of a prefixedam¢gemplate. In order to
provide the reader with intuition on how this is achieved,uUs consider again the
example in Fig. 1. In this program, an arrayis filled with zeros from the middle
outwards, moving alternatively to the left and to the rigtgt us show that property
P=Va:0<a<r-1-1:Aea+!+1] = 0is an inductive invariant for this
program.

First of all, let us prove that initiation paths (namety) entail the property. In
particular, we have to prove thidt= 4 A 1’ =5 — P’.! Thisis trivial, sincd’ = 4 and
r’ =5imply thatr’ — I’ = 1is 0, i.e., the domain of the universally quantified varabl
in P’ is empty.

In general, our invariant generation method is aimed atarsally quantified formu-
las, and we ensure that initiation paths imply the invagdnytforcing that the domains
of the universally quantified variables are empty.

Secondly, let us prove that consecution paths (eandn,) preserve the property.
For example, forr; we have to prove that

PAI>Z0OAT<8ATr=r+1al'=1lAA[r]=0
AVa :0<a<8Aa#r : Alel=Aa] —» P.

Now notice that the expressioh-1" — 1, which determines the domain®@in P’, also
has the property that—1"—1 = (r+1)—1-1 = (r -1 - 1)+ 1. This means that, aftet,
the domain ofr has exactly one new elemeant=r —| - 1. First, let us see that, after the
path, propertyN'[a + 1" + 1] = A'[a + | + 1] = 0 holds for the other values of i.e.,a €
{O,...,r—1-2}. Indeed thisis the case: sin¢e : 0 <a <8Aa#r : Ala] = Ala],

1 From now on, program variables and their primed versionsiaresrsally quantified.
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all positions ofA” except for the-th remain the same. Bét[r] = A[(r—1-1)+1" +1]
precisely corresponds to=r — | — 1. Hence fronP we have thaly'[a + I’ + 1] = O for
alla €{0,...,r—1-2}. Now we only need to provA’[a+I"+1] =0fora =r-1-1,

which follows from the premis@&’[r] = 0. In conclusionP’ holds.

In general, our invariant generation method will requirgttlafter each consecution
path, at most one new element is added to the domain of ouersailly quantified
invariant, and that the contents of the arrays involved @itivariant are not changed
after the path.

Back to the example, as regavgswe have to prove that

PAI=0AT<8Al=l-1Ar=rnAA[l]l=0
AVa :0<a<8Aaa#l: Ala] =Aeae] —» P.

Again, the expressiari—I"—1 also satisfies that—I"-1 =r—(1-1)-1 = (r-1-1)+1.
Hence the domain af has exactly one new element. But unlike in the previous dase,
changesits value. To pro® from P, it is convenient to rewrit® so that array accesses
are expressed in terms Afa + I + 1]. By making a shiftP is equivalentto/a : 1 <

a<r’ =I"-1: Ala+l"+1]=0.Again,since/a : 0<a<8Aa#l: Ala] = Alal,

all positions of A’ except for thd-th remain the same. BW[l] = A’[I’ + 1] precisely
correspondsta = 0. ThereforeN[a+1"+1] =0foralla € {1,...,r" =" = 2}. Further,
asA'[l] = 0, we have thal'[a + I’ + 1] = O for @ = 0. ThusP’ holds.

Apart from proving thatP is invariant, we may also want to check that the array
accesses that occur in it are correct. As regards initigiaths, since the domain of
afterng is empty, there is nothing to check. Regarding consecutihsp for example
for 71 we have to see that

I>0Ar<8Ar=r+1Al'=l ->VYa:0<a<r' -I"-1:a+l"+1>0Aa+I"+1<8,

where for the sake of simplicity we have ignored the arrayabde. Now, given that
array accesses are linear functionginit is suficient to check correctness far= 0
anda =r’'-1"-2,i.e., that the above premisesental 1 >0 A I'+1 <8 A r'=1>
0 A r'=1 < 8. Let us assume that we have already looked for linear iniygirevariants
over scalar variables (e.g., with the techniques in [1,@} have found thdt<r — 1
is a loop invariant. Adding this invariant to the transititation sifices to prove the
above implication. A similar argument applies for.

In general, our invariant generation method guaranteeshbearray accesses oc-
curring in the synthesized invariants are correct. As ingkample, this is achieved
by ensuring that the accesses of the extreme values of gallyequantified variables
are correct. Since this often requires arithmetic propettif the scalar variables of the
program, in practice it is convenient that, prior to the &ilon of our array invariant
generation techniques, a linear relationship analysithiscalar variables has already
been carried out.

3.1 Invariant Generation for Programs with Arrays

Leta= (A, ..., Any) be the tuple of array variables. Given a positive intdger0, our
method generates invariants of the form
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Ya : 0<a<CMV)-1 :Z{lej:la;in[dija+8ij(\7)] +BV) + b, < 0,

whereC, &;; and8 are linear polynomials with integer cieients over the scalar vari-
ablesv = (vi,...,Vy) andaj, dij, b, € Z, foralli e {1,...,m}andj e {1,...,k}.

This template covers a quite general family of propertieg Sect. 5 for a sample

of diverse programs for which we can successfully produeguligwariants and which
cannot be handled by already existing techniques.

The invariant generation process at the cutpoint of the steddoop under consid-

eration is split into three steps, in order to make the apgrecamputationally feasible:

1. Expressiong are generated such that the dom@in. .C — 1} is empty after every

initiation path reaching the cutpoint, agddoes not change or is increased by one
after every consecution path. This guarantees that anyepsopniversally quan-
tified with this domain holds after all initiation paths artetdomain includes at
most one more element after every consecution path. We gweglnthesis of dif-
ferent expressions that under the known information defiasame domain. In the
running example, we genera®@,r) =r — | — 1.

. For every expressiaf obtained in the previous step and for every amayinear
expressionsia+&; over the scalar variables are generated such that (o +&i
is a correct access for allin {0...C — 1}; (ii) none of the already considered po-
sitions in the quantified property is changed after any etie@cwf the consecution
paths; andi{i), after every consecution path, eittf&grdoes not change or its value
is & — di. Namely, if C does not change, thefff = &; ensures that the invariant
is preserved. Otherwise, the invariant has to be extendea few value ofv. If
&; does not change, from the previous condition forad {0, ..., C — 1} we have
Aldia + &] = Aldia + &]. So we will try to extend the invariant with = C.
Otherwise, if& = & - d;, then for alla € {1,...,C} we haveA[di« + &] =
Aildi(e — 1) + &]. So we will try to extend the invariant with = O.
In the running example, we generatg = 1 and&y1 = | + 1.

. For the selecte@ we choosé expressions;;; for every array®; among the gener-
ated&;, such that for each consecution path either all sele@tedemain the same
after the path, or all have as new vaftie— d;; after the path. Then, in order to gen-
erate invariant properties we just need to find integeffunentsa; andb, and an
expressior3 such that, depending on the case, either the property iddliivhen
a = C atthe end of all consecution paths that increaseit is fulfilled whena = 0
at the end of all consecution paths that incraaseurther,8 andb, have to fulfill
that the quantified property is maintained o {0...C — 1}, assuming that the
contents of the already accessed positions are not modified.

For instance, in the running example foe 1 we generatey; = 1,8 = b, = 0,
corresponding to the invariaitr : 0 < a < r—1-1: Ala+I+1] < 0; andag; = -1,
B =b, =0, correspondingto the invariavi : 0 < o <r—I1-1: -Ala+l+1] < 0.

Next we formalize all these conditions, which ensure tharggolution to the last

phase provides an invariant, and show how to encode them agp&dblems.

While for scalar linear templates the conditions of Theofecan be directly trans-

formed into constraints over the parameters [1], this isamgér the case for our tem-
plate of array invariants. To this end we particularize Tleeol in a form that is suitable



SMT-Based Array Invariant Generation 7

for the constraint-based invariant generation method prboef of this specialized theo-
rem, given in detail below, mimics the proof of invariancetad running example given
at the beginning of this section.

Let 7y ... 7, be the initiation paths to our cutpoint amff...z§ the consecution
paths going back to the cutpoint.

Theorem 3. LetC, B8 and&;; be linear polynomials with integer cfi€ients over the
scalar variables, andg, dij, b, € Z, forie {1...mjand je {1...k}. If

1. Every initiation pathr! with transition relationo, satisfiepp,; = €’ = 0.
2. For all consecution paths$ with transition relationp,c, we havep,c = (C’
CvVv C=C+1).
3. For all consecution paths, alli € {1...m}and je {1...k}, we have,c A C' >
0=0<&<IAl-1 A 0<dj(C'-1)+& <|A]-1
4. For all consecution pathsS we have either
(@ pg A C'>0=¢&=gjforallie{l...mand je{l...k}, or
0) pg=>C" =C+1 A &jj=&j—djforalli e{l...mand je{l...k}.
5. For all consecution pathsS, we have,c = Va:0<a <C-1:Aldja+&j] =
Aldja+ &j] foralli e {1...mjand je {1...k}.
6. For all consecution pathsS, we have
—p ANC=C+1l= EiTle:laajA{[dijC+ &l + B +b,C < 0, if case 4a
applies.
— pre = 212 & A[€j] + B < 0, if case 4b applies.
7. For all consecution pathsS, we have
—pg ANO0<a<C-1A X+8B+b,a<0= x+8 +b,a <0for some fresh
universally quantified variable x, if case 4a applies.
—pg ANO<a<C-1A X+B+b,a<0= x+8 +by(a+1)<0forsome
fresh universally quantified variable X, if case 4b applies.

ThenVa:0<a<C-1 :Zi”:‘lzj:la”Ai[dija + &ij] + B + bya < Ois invariant.

Proof. Following Theorem 1, we show that the property holds afteheéaitiation path,
and that it is maintained after each consecution path.

The first condition easily holds by applying 1, since we haat,, = C" = 0 for
every initiation pathr!, which impliesva : 0 <o < C' -1 :Z}n;lzz(zlajin/[dija+8/ij] +
B’ + b,a < 0, since the domain of the quantifier is empty.

For the consecution conditions we have to show that for alkeoution paths$,
we havep,c AVa:0<a<C-1: Z{lejzla;in[dija + &ij] + B + bya < 0 implies
Va:0<a<C -1:205 ajAldje +&j] + 8"+ ba < 0.

By condition 2, we havg,c = (C" = C v C’ = C + 1), and by condition 4 either
P AC' >0= & =§&jforallie{l..m}je(l...kl,orp,c =C =C+1A&j =
&ij—djforallie{l...m}, je{l...k}. We distinguish three cases:

1. ¢’ = C and all&'j; = &j. Then we have to ensutér : 0 < @ < C-1:
Z}T;Z;(:lajjA{[dija’ + 8i_j] + B + b,a < 0. By condition 5, we can replack by
A in the given domain, and hence we have to showthat 0 < o < C-1:

Z{lelea”Ai[dija +&ij] + B’ + b,a < 0. Then, since the array part coincides with
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the one of the assumption, we can replace it in both placesimg $resh variable
x. Now it sufices to show that, assuming 8+ b,a < 0, we havex+ 8’ +b,a < 0
for all value ofx, which follows from the premises and condition 7.

2.C' = C+1andall&i = &j. Then we have to ensutér : 0 < @ < C :
202 & Aldija + &ij] + 8" + bya < 0. By conditions 1 and 2 we have0C,
and henc& = C’ — 1 belongs to the domaif®...C} andC’ > 0. Then, by condi-
tion 3, we have that & d;;C + &;j < |A| -1 = |A]| - 1 for alli andj. Therefore,
we can extract the cage= C from the quantifier obtaininge : 0 <a <C-1:
Zirzlzj:laiin'[dija'+8ij] +8B'+b,a <0 andziﬂlzjzla”,%[di,-c+8ij] +8B'+b,C < 0.
The first part holds as before by the premises and conditiansl¥, and the second
part holds by the premises and condition 6.

3.C' = C+1landall&;; = &j — dij. Then we have to ensufér : 0 < @ < C :
Z{le?zla”Ai’[dija+8ij —dij] + 8" + b, < 0. Since, by conditions 1 and 2, we have
0 < C, we have thaC belongs to the domaif0D...C}. By condition 3, we have
0 < &'j = & — dij < |A]| - 1. Therefore, we can extract the case- 0 from the
quantifier obtaining/e : 1 < a < C : X 3% &y A dja+&ij— ] + 27, B’ +b,a <
0 andZi’lej:la”Ai’[&j —di;]+8’ < 0. For the first one, replacingby «+1 we have
Va:l<a+1l<C: Zi’Qle:la;jA{[di,—(a+1)+8ij —dij] +ZS:lB/+ba(a'+ 1)< 0,or
equivalentiva : 0<a<C-1 :Zinglzj:la”Ai’[dija+8ij] +20L B8 +b,(a+1) < 0,
which holds by applying conditions 5 and 7 as before. Thersg@part holds again
by the premises and condition 6, using the fact &igt= &;; — di;. O

As we have described, our invariant generation method stanef three phases.
The first phase looks for expressiafsatisfying conditions 1 and 2. The second one
provides, for every generatétdand for every array, expressiong; with their corre-
sponding integerg; that fulfill conditions 3, 4 and 5. Note that, to satisfy cadiat 4,
we need to record for each expression and path whether wethave; or & = & —d;,

S0 as to ensure that all expressiéishave the same behavior. Finally, in the third phase
we have to find co@icientsa;; andb, and an expressiaa fulfilling conditions 6 and 7.

Solutions to all three phases are obtained by encoding theittmns of Theorem 3
into SMT problems in non-linear arithmetic thanks to Farkasmma. Note that, be-
cause of array updates, transition relations may not beuaatipns of literals (i.e.,
atomic predicates or negations of atomic predicates). Asactice the guarded array
information is useless until the last phase, in the first tlvages we use the uncondi-
tional part of a transition relatiop, i.e., the part op that is a conjunction of literals,
denoted byJ (p).

3.2 Encoding Phase 1

LetC becyvy + ... + ChVy + Coy1, Wherev are the scalar variables andre the integer
unknowns. Then conditions 1 and 2 can be expressed as:

T,V AL (U(pg) = C =00A AL, (U(pe)=>C" =C v C'=C+1).

We cannot apply Farkas’ Lemma directly due to the disjumctiothe conclusion of
the second condition. To solve this, we move one of the tveodls into the premise
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and negate it. As the literal becomes a disequality, it caggiieinto a disjunction of
inequalities. Finally, thanks to the distributive law, kas’' Lemma can be applied and
an existentially quantified SMT problem in non-linear amitstic is obtained. We also
encode the condition that each newly generateadust be diferent from all previously
generated expressions at the cutpoint, considering akhdjr known scalar invariants.

3.3 Encoding Phase 2

Here, for eachC obtained in the previous phase and for each afkaywe generate
expressiong; and integersl, that satisfy conditions 3 and 5, and also condition 4 as a
single expression and not combined with the other expressio

The encoding of condition 3 is direct using Farkas’ LemmawNet us sketch the
encoding of condition 4. Lef; beejvs +. . . +e,vp+€n11, Whereé are integer unknowns.
Then, asg; is considered in isolation, we need

Fd VWV AL pe=2(C'=C+1AE=8E-d) Vv <0V E=8).

To apply Farkas’ Lemma, we use a similar transformation esdodition 2. In addition,

itis imposed that the newly generated expressions dierdint from the previous ones.
Regarding condition 5, the encoding is rathdfatient. In this case, for every con-

secution pathr$, arrayA and expressio® = A/[W] = M in Prs, We ensure that

Va(pe N0<a<C-1AG= W=zda+& vV M=A[W])).

To avoid generating useless expressions, we add in the imgcdondition stating that
if & = &; then for every consecution path wherés incremented, there is at least an
acces#[W] in the path such thatV = d;(C’ - 1) + &/. Otherwise, i.e., i = & - d;,
then for every consecution path whérés incremented, there is at least an ac@gps/|

in the path such thaw/ = &/.

3.4 Encoding Phase 3

Condition 7 is straightforward. Regarding condition 6, é#meoding does not need non-
linear arithmetic, but requires to handle arrays:

3a,b,b, Yv,V,A A
Ay (g = I aANlE] +8 < 0) A
(oig A C'=C+1 = X030 aA[C+E] +B8 +b,C < 0).

Here, the use of the guarded array information is crucialvéi@r, since we want to
apply Farkas’ Lemma, array accesses have to be replacedvynieersally quantified
integer variables. In order to avoid losing too much infotiora we add the array read
semantics after the replacement; i.e Ajf] and A[ j] have been respectively replaced
by fresh variableg andz;, theni = j = z = z; is added.
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4 Extensions

4.1 Relaxations on Domains
Let us consider the following program:

int A[2*N], min, max, i;

if (A[0] < A[1]) { min = A[®]; max Al1]; 3}

else { min = A[1]; max = A[0]; }

for (i = 2; i < 2*N; 1 +=2) {
int tmpmin, tmpmax;
if (A[i] < A[i+1]) { tmpmin = A[ i ]; tmpmax = A[i+1]; }
else { tmpmin = A[i+1]; tmpmax Al 1 1; }
if (max < tmpmax) max = tmpmax;
if (min > tmpmin) min = tmpmin; }

It computes the minimum and the maximum of an even-lengtyasimultaneously,
using a number of comparisons which i§ times its length. To prove correctness, the
invariantsV¥a : 0 < @ <i—1:v[e] 2 minand¥a : 0 < @ <i-1:v[a] < maxare
required. To discover them, two extensions of Theorem 3exgaired:

— The domain of the universally quantified variableannot be forced to be initially
empty. In this example, when the loop is entered, both iavesi already hold for
a = 0,1. This can be handled by applying our invariant generati@hod as

described in Sect. 3.1, and for each computed invariamigrnyi extend the property
for decreasing values of = —1, -2, etc. as much as possible. Finally, a shiftof

is performed so that the domain@begins at 0 and the invariant can be presented
in the form of Sect. 3.1.

— The domain of the universally quantified variableannot be forced to increase at
most by one at each loop iteration. For instance, in this gtamat each iteration
the invariants hold for two new positions of the array. THosa fixed parameter
4, Condition 2 in Theorem 3 must be replaceddy = (C' = C Vv C =
C+1 vV --- vV C =C+4).Inthis example, taking = 2 is required. Further,
conditions 4b, 6 and 7 must also be extended accordinglyeim#tural way.

4.2 Sorted Arrays

The program below implements binary search: given a nonedsingly sorted arrai
and a value, it determines whether there is a positiorAilcontainingx:

assume(N > 0);
int A[N], 1 =0, u = N-1;
while (1 <= u) {
int m = (1+u)/2;
if (A[m] < x) 1
else if (A[m] > x) u
else break; 1}

m+1;
m-1;
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To prove that, on exiting due to> u, the propertye : 0 < @ < N—-1: Ali] # X
holds, onecanusethdtr : 0<a <l-1:Ale] < xandVa:u+1l<a<N-1:
Ala] > x are invariant. To synthesize them, the fact thas sorted must be taken into
account. The following theorem results from incorporating property of sortedness
into Theorem 3:

Theorem 4. LetC, B8 and&;; be linear polynomials with integer cfieients over the
scalar variables, and;g, dij, b, € Z, forie {1...mjand je {1...k}. If

1. Forallief{l... mfand je {1...k} we have h > 0,and d; > 0 = &; > 0, and
dj <0=a; <0.
2. Each initiation pathr} with transition relationo,, fulfills p,y = ¢’ = 0.
3. Eachinitiation pathr; with transition relationo,s fulfills
Pa = VB 0<B<|AI-1:A[B-1]<Alp]forallie{l...m}.
4. Each consecution pattf with transition relationp,¢ fuffills p,c = C" > C.
5. For all consecution pathsS alli € {1...m}and je {1...k} we have
Pre A C'>0=0<&4<IAI-1 A0<dj(C"-1)+&4 <IAl-1
6. For all consecution pathsS we have one of the following:
@) pg A C'>0 A aj>0=8ij <& and
pg AC'>0A aj<0=85 >&jforalli e{l...m}, je{l...k}
() pre = C" >Cand
P A & >0= & <& - (C'-C)djj and
P A aj<0= & 2&;-(C'-C)djforalli e{l...m}, je{l... k.
7. For all consecution pathsS, we havep,c = V6 : 0 < B < |A|-1:A[B] = AlA]
foralli e {1...mj.
8. For all consecution pathsS, we have
—pe ANC'>C= zirglz'].‘:la”/x![di,-(c - 1)+ &4l + B +b,(C’'-1) <0,
if case 6a applies.
= Pag = Z}lelj(:laiin/[dij(C/ -C-1)+&j]+8 +b,(C'-C-1)<0,
if case 6b applies.
9. For all consecution pathsS, we have
—pg ANO0<a<C-1A X+B+b,a<0= x+8 +b,a <0for some fresh
universally quantified variable x, if case 6a applies.
—pxg NO0<a<C-1AX+B+ba<0=X+8 +by(a+C -C)<O0for
some fresh universally quantified variable x, if case 6b igspl

ThenVa:0<a<C-1 :Zi”:‘lz'j‘:la”Ai[dija +&ij] + B + bya < Ois invariant.

Proof. First of all, let us remark that arrays are always sorted im-decreasing order,
and that their contents are never changed. This follows thydtion from conditions 3
and 7. Moreover, it can also be seen from conditions 2 andt4thka0 is an invariant
property.

Now, we will show that the property in the statement of theotleen holds after ev-
ery initiation path reaching our cutpoint and that it is ntained after every consecution
path going back to the cutpoint.

The first condition easily holds applying 2, since we have tha= C’ = 0 for
every initiation pathr!, which impliesva : 0 < e < C'-1 :Z{QlE;(:la;in’[dija+8’ij] +
B’ + b,a < 0, since the domain of the quantifier is empty.
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For the consecution conditions we have to show that for alkeoution pathsS,

we havep,c AVa:0<a<C-1 :Zinz“lz']lea”Ai[dija + &ij] + B + bya < 0 implies
Va:0<a<C -1:30 3% ajA[dja +&ij] + 8 +b,a <0.

By condition 4, we have thatc = C” > C. We distinguish three cases:

. C’ = Cand case 6a holds.df = 0 there is nothing to prove. Otherwigé > 0, and
by hypothesiswe have thédt : 0 < o < C-1 :Zi@lZ}<:1aJAi[dija+8ij]+B+baa <
0. Together withp,¢, this impliesYa :0<a <C-1 :Zilezjzlain[dija +&ij] +
B’ + b,a < 0 by instantiating appropriatelyin condition 9.

Now, let us show that for all € {1...m}, forall j € {1...k} and for alla €
{0...C - 1} we havea;;A[dje + &'j] < ajA[dija + &ij]. Let us consider three
subcases:

— aj > 0. Then&'j; < &;j by condition 6. Hence for alt € {0...C — 1} we have
dija + &'jj < dija + &;j. This impliesA[dije + £'4j] < Alldije + &;j] asAi is
sorted in non-decreasing order. Therefayé[dijo + &'ij] < a;Aldija + &;j].

— a; < 0. Then&';; > &;; by condition 6. Hence for alv € {0...C - 1} we
havedija + 8’”‘ > dija + 8”. This impliesAi[di,-a + 8/”] > Aj[dija' + 8”] as
A is sorted in non-decreasing order (note that, by conditioweéshave that
0 < dje + & < IAl-1 = |A]| -1, so array accesses are within bounds).
Thereforaai,-Ai[di,-a + 8'ij] < a”-Ai[dija + 8”].

— &; = 0. Then the inequality trivially holds.

Altogether we have thate : 0 < @ < C -1 : 3" 3% a;Aldja + &ij] + B +
b, < 0. Now our goal easily follows, taking into account tigit= C and that by
condition 7 we can replack by A'.

. C’ > C and case 6a holds. Theh > 0, and following the same argument as in the
previous case we getthét : 0 < o <C-1 :Z{lejzla”Ai’[dija+8’ij]+B’+baa <
0, whereA, has been replaced 8y by virtue of condition 7.

It only remains to prove thala : C <a <C -1: E{lej:la”—Ai’[di,-a + &l +

B + b,a < 0 (note that, by condition 5, we have that<0&’; < |A]| -1 and

0 < dij(C" - 1)+ &4 < IA] -1, so again array accesses are within bounds). To
this end, let us consider € {C...C’ — 1} and let us show that; A'[dija + &'jj] <
ajA[dij(C" - 1)+ &l foralli e {1...m}and for allj € {1...k}. We distinguish
three cases:

— dj > 0. Thena < C’ — 1 impliesdija < d;j(C’ - 1), and henceljo + &'jj <
dij(C’ - 1) + &j. As Al is sorted in non-decreasing order, we ha&vgd;jo +
&l < Aldij(C" - 1) + &j]. Finally, by condition 1 it must be;; > 0, and
multiplying at both sides the last inequality the goal isaiitéed.

— dij < 0. Thene < C’ — 1 impliesdije > d;;(C’ — 1), and hencelja + &'jj >
dij(C’ - 1) + &ij. As Al is sorted in non-decreasing order, we ha&yfgja +
&ijl = Aldij(C’" - 1) + &j]. Finally, by condition 1 it must be;; < 0, and
multiplying at both sides the last inequality the goal isadiéd.

— d;j = 0. The goal trivially holds.

ThUSZiZlZ;(:lajjAi'[dija’+8'ij] +8B < Z{leilea”Ai'[dij (C'-1)+¢&'ij]1+ 8. Now, by
condition 1 we havé, > 0, hencer < C’ — 1 impliesb,a < b,(C’ — 1). Therefore
Z}n;lZ;(:laiin/[dija + 8/”‘] + B + bya < Z}lelj(:laiin'[dij(C' - 1) + 8'”‘] + B +
b,(C’ — 1) < 0 by condition 8.
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3. ¢’ > Cand case 6b holds (notice tf@lt= C and case 6b together are not possible).
By hypothesiswe havée : 0< o < C-1 :Z{lezlea”Ai[dija+8i,-]+B+b(,a <0.
Together withp,¢, thisimpliesve : 0 <o < C-1 :Z}lelj(:laiin[dij(I-Faij] +B+
b,a < 0 by instantiating appropriatelyin condition 9. By shifting the universally
quantified variable the previous formula can be rewritteWas ¢’ - C < a <
C' -1: 2020 ajAldij(@ - (C' - Q)+ &j] + B + by(a—(C'-C)) <0.

Now, let us show that for all € {1...m}, for all j € {1...k} and for alla €
{C'=C...C’' — 1} we haveajjAi[dija + &'jj] < a;Aldij(@ - (C’' - C)) + &ij]. Letus
consider three subcases:

—a; > 0. Then&'j; < & — (C’ — C)di; by condition 6. Hence for allv €
{C'—C...C' - 1} we havedija + &'ij < dij(@ — (C" — C)) + &;j. This implies
Aldija + &j] < Aldij(e - (C" - C)) + &ij] asA is sorted in non-decreasing
order. Thereforey; Ai[dije + &'jj] < &;Aldij(a@ — (C" - C)) + &ij.

— aj < 0. Theng&j; = &j — (C’" — C)dj by condition 6. Hence for allv €
{C'—C...C' - 1} we havedija + &'ij = dij(@ — (C' — C)) + &j. This implies
Aldija + &j] = Aldij(e - (C" = C)) + &ij] asA s sorted in non-decreasing
order. Thereforey; Ai[dije + &'jj] < &;Aldij(a@ — (C" - C)) + &ijl.

— &; = 0. Then the inequality trivially holds.

Altogether we have thata : ¢’ -C < a < C' -1 : X1 2% a;Aldja + &j] +

B’ + b, < 0, whereA; has been replaced & by virtue og condition 7.

It only remains to prove thafa : 0 < a < C'-C-1: Z{le'j‘:la;jA{[di,—a +

&'j]1 + 8’ + b, < 0 (note that, by condition 5, we have that®';; < |A/|-1 and
0<dj(C"-1)+&j < IA| -1, so again array accesses are within bounds). To this
end, let us consider € {0...C" — C — 1} and let us show tha; A/[dija + &'jj] <
ajA[dij(C’'-C-1)+&jj]foralli e {1...mjandforallj € {1...k}. We distinguish
three cases:

—dj > 0. Thena < C’ - C - 1 impliesdjjee < dj(C’ — C - 1), and hence
dijo + &'jj < d;j(C' —C - 1)+ &'jj. As Al is sorted in non-decreasing order, we
haveA[dija + &'jj] < A[dij(C’ - C - 1)+ &'jj]. Finally, by condition 1 it must
bea; > 0, and multiplying at both sides the last inequality the geabtained.

—dj < 0. Thene < C' - C - 1 impliesdije > d;;(C’ - C - 1), and hence
dijo + &' = dij(C’ —C - 1)+ &'j. As Al is sorted in non-decreasing order, we
haveA[dija + &'jj] > A[dij(C’ - C — 1) + &jj]. Finally, by condition 1 it must
beg; < 0, and multiplying at both sides the last inequality the geabtained.

— d;j = 0. The goal trivially holds.

Thuss" X% & Aldija+&j]+8 < 57 3% & A[di(C'-C-1)+&'j]+8'. Now,
by condition 1 we have, > 0, hencer < C' - C -1 impliesb,a > b,(C’' - C -1).
Thereforex, X & A[dija+&ij] + 8’ +b,a < IS e Aldi(C -C-1)8] +
B’ + b,(C’ - C - 1) < 0 by condition 8.

]

By means of the previous theorem, (an equivalent versiorthef)desired invariants
can be discovered. However, to the best of our knowledgaltsesn the synthesis of
invariants for programs with sorted arrays are not repdrtéke literature. See Sect. 5
for other examples that can be handled by means of this eatens
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5 Experimental Evaluation

The method presented in Sects. 3 and 4 has been implemerkectaolCpplnv?. For
solving the generated constraints, we useBarelogic SMT solver [5]. As discussed
in Sect. 2.2, after applying Farkas’ Lemma an SMT problenmfixed non-linear arith-
metic is obtained. For this theoarcelogic has proved to be venyfiective in finding
solutions [2]; e.g., it won the division of quantifier-freemlinear integer arithmetic
(QF-NIA) in the 2009 edition of the SMT-COMP competitionw{w . smtcomp . org/
2009), and since then no other competing solver in this divisias solved as many
problems.

In addition to the examples already shown in this pa@ppInv automatically gen-
erates array invariants for a number oftdient programs. The following table shows
some of them, together with the corresponding loop invé&sian

Heap property: Partial initialization [6]:
const int N; const int N;
assume(N >= 0); assume(N >= 0);
int A[2xN], 1i; int A[N], B[N], C[N], i, j;
for (i = 0; 2xi+2 < 2xN; ++i) for (i =0, j =0; i< N; ++i)
if (A[i]>A[2#i+1] or A[i]>A[2xi+2]) if (A[i] == B[i])
break; Clj++1 = 13
Loop invariants: Loop invariant:
Vo: 0<a<i-1: Ale] <Al2a +2] Voe:0<e<j-1:Cla]<a+i-j
Ya: 0<a<i-1: Al] <ARa+1] Ya:0<a<]j-1:Cla] 2«
Array palindrome: Array initialization [6]:
const int N; const int N;
assume(N >= 0); assume (N >= 0);
int A[N], 1i; int A[N], 1i;
for (i = 0; i < N/2; ++1i) for (i = 0; i < N; ++1)
if (A[i] != A[N-i-1]) break; A[i] = 2xi+3;
Loop invariant: Loop invariant:
Vo: 0<a<i-1: Ale] =AN-a-1] Vo: 0<a<i-1: Ale] =2a0+3
Array insertion: Sequential initialization [7]:
const int N; const int N;
int A[N], i, x, j; :
. . assume(N > 0);
assume(® <= i and i < N); . .
for (x = A[il, j = i-1; int A[ND, i
o 3 T AT for (i =1, A[0] = 7; i < N; ++i)
j >=0 and A[j] > x; --J) A[i] = A[i-1] + 1
A[j+1] = A[3]; ’
Loop invariant: Loop invariant:
Yo: 0<a<i-j-2:Ali-a] 2x+1 Yo: 0<a<i-2: Ale+1]=Aa]+1

2 The tool, together with a sample of example programs it calyas, can be downloaded at
www.lsi.upc.edu/~albert/cppinv-bin.tar.gz.
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Array copy [7]: First not null [7]:

const int N;

assume(N >= 0);

int A[N], s, 1i;

for (i =0, s =N; i< N; ++i)
if (s == N and A[i] != 0) {

const int N;

assume(N >= 0);

int A[N], B[N], i;

for (i = 0; i < N; ++i)

N . s=1;
AL = BII break;
}
Loop invariant: Loop invariant:
VYa: 0<a<i-1: Ale] =Ble] VYa: 0<a<i-1:Ale] =0
Array partition [8]: Array maximum [7]:

const int N;

assume(N > 0);

int A[N], i, max;

for (i = 1, max = A[0]; i < N; ++i)
if (max < A[i])

const int N;

assume(N >= 0);

int A[N], B[N], C[N], a, b, c;

for (a=0, b=0, c=0; a < N; ++a)
if (A[a] >= 0) B[b++]=A[a];

else Clc++]=A[a]l; max = A[i];
Loop invariants: Loop invariant:
VYoe:0<a<b-1:B[e] >0 Ya:0<a<i-1:Ale] <max
VYa:0<a<c-1:Cla] <0
First occurrence: Sum of pairs:
const int N; const int N;
assume(N > 0); assume(N > 0);
int A[N], x = getX(, 1, u; int A[N], x = getX(), 1 =0, u=N-1;
// A is sorted in ascending order // A is sorted in ascending order
for 1 =0, u=N; 1<u; ) { while (1 < w)
int m = (1+u)/2; if (A[1] + A[u] < x) 1 = 1+1;
if (A[m] < x) 1 = m+1; else if (A[1] + A[u] > x) u = u-1;
else u = m; } else break;
Loop invariants: Loop invariants:
VYae:0<a<l-1:Ale] <X Ya:0<a<l-1:Ale]+AlU < x

Vo:0<a<N-1-u:AN-1-0]>2x |[Ya:0<a<N-u-2:AIN-1-a]+A[l]>x

As a final experiment, we have r@pplnv over a collection of programs written
by students. It consists of 38 solutions to the problem ofifigdhe first occurrence
of an element in a sorted array of sikein O(log N) time. These solutions have been
taken from the online learning environment for computeigpamminglutge.org (see
www. jutge.org), which is currently being used in several programming sesiin the
Universitat Politecnica de Catalunya. The benchmarleswotresponds to all submitted
iterative programs that have been accepted, i.e., suctiahall input tests the output
matches the expected one. These programs can be consider@dealistic code than
the examples abovE&ifst occurrence program), since most often they are not the most
elegant solution but a working one with many more conditistetements than neces-
sary. For example, here is an instance of such a program:
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int first_occurrence(int x, int A[N]) {
assume(N > 0);
int e =0, d=N -1, m, pos;

bool found = false, exit = false;
while (e <= d and not exit) {

m = (e+d)/2;

if (x > A[m]) {

if (not found) e = m+1;
else exit = true;

}
else if (x < A[m]) {
if (not found) d = m-1;
else exit = true;
}
else {
found = true; pos = m; d = m-1;
I
if (found) {
while (x == A[pos-1]) --pos;
return pos; }
return -1; }

This particular example is interesting because, with tde&bur tool, we realized that
it does not work irO(log N) time as required, and is thus a false positive. Namely, our
tool produces the following invariants for the first loop:

Va: O<ae<e-1:Aa] <X,
Ya:d+1<a<N-1:Ala] > X.

By manual inspection one can see tf@aind —» (A[pod = x A d = pos- 1) and
exit — foundare also invariant. Therefore, if on exit of the loop the mdpe < d
holds, therexitandfoundare true and, with all this information, it is unknown whathe
the contents of the array betweeandpos— 1 are equal t. Since this segment can
be arbitrarily long, the second loop may taRéN) time to find the first occurrence of
X. This reasoning allowed us to cook an input for which inddedgrogram behaves
linearly. On the other hand, by means of the generated mverit can be seen that
the problem is that the loop may be exited too early, and thaeplacing in the first
loop the body of the first conditional by = m+1 and the second one hly = m-1, the
program becomes correct and meets the complexity requiresme

In general, for all programs in the benchmark suite our toa$ @&ble to find auto-
matically both standard invariants. The time consumed eag different depending on
how involved the code was. Anyway, the main problem as regdhiency is that in
its current form our prototype exhaustively generatesditscalar invariants and then,
using all of them, generates all array invariants. Furtharkiis needed to heuristically
guide the search of scalar invariants, so that only usefatimation is inferred.

We also applied our tool to some of the submissions rejectddtge.org. In some
cases the generated invariants helped us to fix the progrgmfd the following code:

int first_occurrence(int x, int A[N]) {
assume(N > 0);
int i =0, j = N-1;
while (i <= j) {
if (x == A[i]) return i;
if (x < A[i]) return -1;
int m = (i+j)/2;
if (x < A[m]) j = m-1;
else i=m+l; }
return -1; }
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In this case, the generated invariants are:

Ya: O<a<i-1 :Al]<Xx,
VYa:j+1l<a<N-1:A] > Xx.

One may notice that the first invariant should have a striegulity, and that this
problem may be due to a wrong condition in the last conditidndeed, by replacing
the conditionx < Alm] by x < A[m], we obtain a set of invariants that allow proving
the correctness of the program.

6 Related Work

There is a remarkable amount of work in the literature aintedesynthesis of quan-
tified invariants for programs with arrays. Some of the téghes fall into the frame-
work of abstract interpretatiori9]. In [6], the index domain of arrays is partitioned into
several symbolic intervalk, and then each subarr#jl] is associated to a summary
auxiliary variableA,. Although assignments to individual array elements cas the
handled precisely, in order to discover relations amongtiméents at dierent indices,
hints must be manually provided. This shortcoming is overe [7], where addition-
ally relational abstract properties of summary variabled shift variables are intro-
duced to discover invariants of the fova : @ € | : y(Ag[a + ki, ..., Am[@ + K], V),
whereks, ..., km € Z andV are scalar variables. In comparison with our techniques,
the previous approaches force all array accesses to be @drier + k. As a conse-
quence, programs likArray palindrome or Heap property (see Sect. 5) cannot be
handled. Moreover, the universally quantified variabledsallowed to appear outside
array accesses. For this reason, our analysis can be maiseyre.g., in théirray
initialization and thePartial initialization [6] examples. Another technique based on
abstract interpretation is presented in [10]. While th@ipr@ach can discover more
general properties than ours, it requires that the userigeevemplates to guide the
analysis. Yet another abstract interpretation-basedaddthgiven in [11], wherdluid
updatesare defined on a symbolic heap abstraction.

Predicate abstractiotechniques [12] can also be seen as instances of abstract in-
terpretation. Here, a set of predefined predicates is ceresidtypically provided man-
ually by the user or computed heuristically from the prograrde and the assertions to
be proved. Then one generates an invariant built only owesetipredicates. This track
of research was initiated in [13], where by introducing ®kolconstants, universally-
quantified loop invariants for arrays can be discovered1H,[it is shown how the
strongest universally quantified inductive invariant ottee given predicates can be
generated. Further works integrate predicate abstraictiothe CEGAR loop [15, 16],
apply algorithmic learning [17] or discover invariants lvitomplex pre-fixed Boolean
structure [18]. Unlike most of these predicate abstraetiased techniques, our ap-
proach does not require programs to be annotated with essgrthus allowing one
to analyze code embedded into large programs, or with paeslicwhich sometimes
require ingenuity from the user. To alleviate the need ofp$tipg predicates, in [19]
parametric predicate abstractiowas introduced. However, the properties considered
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there express relations between all elements of two dalectioins, while our approach
is able to express pointwise relations.

Another group of techniques is based dinst-order theorem proving In
[20, 21], the authors generate invariants with alternatiohquantifiers for loop pro-
grams without nesting. First, one describes the loop dyositmy means of first-order
formulas, possibly using additional symbols denotingyatrpdates or loop counters.
Then a saturation theorem prover eliminates auxiliary sylsaand reports the conse-
quences without these symbols, which are the invariants. @ihe problems of the
method is the limited capability of arithmetic reasoningtuf theorem prover (as op-
posed to SMT solvers, where arithmetic reasoning is hardenin the theory solvers).
In [22] a related approach is presented, where invariagtganerated by examining
candidates supplied by an interpolating theorem proveadidition to siffering from
similar arithmetic reasoning problems as [20], the appnadso requires program as-
sertions.

Other methods ussomputational algebrge.g., [23]. One of the limitations of [23]
is that array variables are required to be either write-amlyead-only. Hence, unlike
our method, programs such &equential initialization [7] and Array insertion (see
Sect. 5) cannot be handled.

Finally, the technigue that has been presented in this fegbengs to theonstraint-
basedmethods. In this sense it is related to that in [24]. There,ahthors present a
constraint-based algorithm for the synthesis of invasaxpressed in the combined
theory of linear integer arithmetic (LI) and uninterprefedction symbols (UIF). By
means of the reduction of the array property fragment telllF, it is claimed that the
techniques can be extended for the generation of univgrgatintified invariants for
arrays. However, the language of our invariants is outsideatray property fragment,
since we can generate properties where indices do not rmeitesxccur in array ac-
cesses (e.g., see tAeray initialization or thePartial initialization examples in Sect.
5). Finally, the technique in [24] is applied in [8] to genkmg path invariants in the
context of the CEGAR loop. As the framework in [8] is indepentiof any concrete in-
variant generation technique, we believe that our methattidze used as an alternative
in a portfolio approach to path invariant-based prograntyaisa

7 Conclusions and Future Work

In short, the contributions of this paper are:

— a new constraint-based method for the generation of unaligrquantified invari-
ants of array programdJnlike other techniques, it does not require extra pred&at
nor assertions. It does not need the user to provide a teengitheer, but it can take
advantage of hints by partially instantiating the globatpéate considered here.

— extensions of the approach for sorted arra¥ys.our knowledge, results on the syn-
thesis of invariants for programs with sorted arrays areewarted in the literature.

— an implementation of the presented techniques that isyfreehilable.The con-
straint solving engine of our prototype depends on SMT. ldear techniques
will directly benefit from any further advances in SMT solgin
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For future work, we plan to extend our approach to a broadesobf programs. As a
first step we plan to relax Theorem 3, so that, e.g., ovemgibin positions in which the
invariant already holds is allowed. We would also like to dleamested loops, so that
for instance sorting algorithms can be analyzed. Anotimer &if work is the extension
of the family of properties that our approach can discoveneariants. E.g., a possibil-
ity could be considering disjunctive properties, or allogriquantifier alternation. The
former allows analyzing algorithms such as sentinel seavbfie the latter is necessary
to express that the output of a sorting algorithm is a pertimrtaf the input.

Moreover, the invariants that our method generates depenideocodicients and
expressions obtained in each of its three phases, whichmndpend on the previous
linear relationship analysis of scalar variables. We Idaveuture research to study
how to make the approach resilient to changes in the outcdmhe different phases.

Finally, as pointed out in Sect. 5, thdéfieiency of Cppinv can be improved. In
particular, further work is needed to heuristically guitle search of scalar invariants,
so that only useful information is inferred.
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grams written by students. We are also grateful to the anoogreferees of a previous
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