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Need for Software Verification

Critical systems

safety
security
economy

Fundamental finding errors asap. See Microsoft’s
Software Productivity Tools group: verification pays off

Invariants are crucial for program verification!
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Invariants in Verification

STATES
  BAD  BAD

STATES

INVARIANTS

SYSTEM
STATES

CORRECTNESS OF THE SYSTEM:
SYSTEM STATES ∩ BAD STATES = ∅
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Overview of Abstract Interpretation

Abstract interpretation allows computing invariants:

intervals (Cousot & Cousot 1976, Harrison 1977)

x ∈ [0, 1] ∧ y ∈ [0,∞)

congruences (Granger 1991)

x ≡ y mod(2)

linear inequalities (Cousot & Halbwachs 1978, Colón &
Sankaranarayanan & Sipma 2003)

x + 2y − 3z ≤ 3
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Overview of Abstract Interpretation

octagonal inequalities (Mine 2001)

x− y ≤ 3

octahedral inequalities (Clariso & Cortadella 2004)

x− y + z ≤ 2

...

polynomial equalities and inequalities

x = y2

(a + 1)2 > b2 ≥ a2
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Abstract Interpretation: Overapproximation

Sets of variable values overapproximated by abstract values

Linear
Inequalities

Polynomial
Equalities

Intervals

System
States
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Abstract Interpretation: Operations

Invariants generated by symbolic execution of system
using abstract values

Symbolic execution requires abstracting concrete
operations on states:

merging in loops
and conditionals

Union

guards in loops
and conditionals

Intersection

assignments

Image Projection

assignments
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Abstract Interpretation: Extrapolation

Termination is not guaranteeed in general

Union in loops must be extrapolated:
widening operator introduced to ensure termination
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Why Care about Polynomial Invariants?

Linear invariants used to verify many classes of systems:

Imperative programs
Logic programs
Hybrid systems
...

But some applications require polynomial invariants:

The abstract interpreter ASTRÉE employs
polynomial invariants to verify absence of run-time errors

in flight control software
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Related Work (1)

Iterative fixpoint approaches

Forward propagation
Rodríguez-Carbonell & Kapur 2004
Colón 2004

Backward propagation
Müller-Olm & Seidl 2004

Constraint-based approaches

Sankaranarayanan & Sipma & Manna 2004
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Related Work (2)

Work Restrictions Conds = Conds 6= Complete

MOS, POPL’04 bounded deg no no yes

SSM, POPL’04 fixed form yes no no

MOS, IPL’04 fixed form no yes yes

COL, SAS’04 bounded deg yes no no

RCK, SAS’04 bounded deg yes yes yes∗

RCK, ISSAC’04 no restriction no no yes
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Overview of our Method

States abstracted to ideal of polynomials evaluating to 0

Programming language admits

Polynomial assignments: variable := polynomial

Polynomial equalities and disequalities in conditions:
polynomial = 0 , polynomial 6= 0

Implementation successfully applied to many programs

Ideals of polynomials represented by special finite bases
of generators: Gröbner bases

Many tools available manipulating ideals, Gröbner
bases, e.g. Macaulay 2, Maple
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Ideals of Polynomials (1)

Intuitively, an ideal is a set of polynomials and all their
consequences

An ideal is a set of polynomials I such that
0 ∈ I

If p, q ∈ I, then p + q ∈ I

If p ∈ I and q any polynomial, pq ∈ I
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Ideals of Polynomials (2)

E.g. polynomials evaluating to 0 on a set of points S

0 evaluates to 0 everywhere

∀ω ∈ S, 0(ω) = 0

If p, q evaluate to 0 on S, then p+ q evaluates to 0 on S

∀ω ∈ S, p(ω) = q(ω) = 0 =⇒ p(ω) + q(ω) = 0

If p evaluates to 0 on S, then pq evaluates to 0 on S

∀ω ∈ S, p(ω) = 0 =⇒ p(ω) · q(ω) = 0
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Ideals of Polynomials (3)

E.g. multiples of a polynomial p, 〈p〉
0 = 0 · p ∈ 〈p〉

q1 · p + q2 · p = (q1 + q2)p ∈ 〈p〉

If q2 is any polynomial, then q2 · q1 · p ∈ 〈p〉

In general, ideal generated by p1,...,pk:

〈p1, ..., pk〉 = {
∑k

j=1
qj · pj for arbitrary qj}

Hilbert’s basis theorem: all ideals are finitely generated
−→ there is finite representation for ideals
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Operations with Ideals

Several operations available. Given ideals I, J in the
variables x1, ..., xn:

projection: I ∩ C[x1, ..., xi−1, xi+1, ..., xn]

addition: I + J = {p + q | p ∈ I, q ∈ J}

quotient: I : J = {p | ∀q ∈ J, p · q ∈ I}

intersection: I ∩ J

All operations implemented using Gröbner bases

These operations are used in abstract semantics
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Our Widening Operator

Parametric widening I∇d J

Based on taking polynomials of I ∩ J of degree ≤ d

Definition uses Gröbner bases:

I∇d J := V(I({p ∈ GB(I ∩ J) | deg(p) ≤ d}))

Termination guaranteed
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Example

a := 0; b := 0;

while b 6= c do

a := a + 2b + 1; b := b + 1;

end while

F0(I) = 〈0〉

F1(I) = (〈a〉+ 〈I0(a← a′)〉) ∩ C[a, b, c]

F2(I) = (〈b〉+ 〈I1(b← b′)〉) ∩ C[a, b, c]

F3(I) = I3∇2(I2 ∩ I6)

F4(I) = 〈I3〉 : 〈b− c〉

F5(I) = I4(a← a− 2b− 1)

F6(I) = I5(b← b− 1)

F7(I) = I(V(I3 + 〈b− c〉))

In 6 steps found loop invariant:

a = b2
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Particular case: loops without nesting

Are there programs for which no widening is required?

Yes: unnested loops with solvable assignments with
eigenvalues in Q+

Solvable assignments generalize linear assignments

a := 0 ;

b := 0 ;

while b 6= c do

a := a + 2b + 1 ;

b := b + 1;

end while
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a := a + 2b + 1 ;

b := b + 1;

end while
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Overview of the Method

(an, bn, c) ≡ program state after n loop iterations






an+1 = an + 2bn + 1

bn+1 = bn + 1
,







a0 = 0

s0 = 0

Solution to recurrence:







an = n2

bn = n

Program states characterized by ∃n(a = n2 ∧ b = n)

Quantifier elimination:b = n =⇒ a = b2 is loop invariant

Gröbner bases can be used to eliminate loop counters
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Our Handling of Conditional Statements (1)

x := R;

y := 0;

r := R2 −N ;

while ? do

if ? then

r := r + 2x + 1;

x := x + 1;

else

r := r − 2y − 1;

y := y + 1;

end if

end while
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Our Handling of Conditional Statements (2)

1st idea:

1. Compute invariants for two distinct loops:

while ? do while ? do

r := r + 2x + 1; r := r − 2y − 1;

x := x + 1; y := y + 1;

end while end while

2. Compute common invariants for both loops

Finding common invariants ≡
Finding intersection of invariant ideals

But this is not sound!
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Our Handling of Conditional Statements (3)

2nd idea: take intersection as initial condition and repeat

Program Algorithm

x̄ := ᾱ; I ′ := 〈1〉; I := 〈x1 − α1, · · · , xm − αm〉;

while ? do while I ′ 6= Ido

x̄ := f(x̄); I ′ := I;

or I :=
⋂

∞

n=0
[ I(x̄← f−n(x̄))

x̄ := g(x̄);
⋂

I(x̄← g−n(x̄)) ];

end while end while
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Properties of our Algorithm

No widening employed!

Termination in n + 1 steps, where n = number of variables

Correct and complete:
finds all polynomial equality invariants

Implemented in Maple:

1. Solving recurrences

2. Eliminating variables
3. Intersecting ideals











Gröbner bases
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Proof of Termination (1)

x := 0; y := 0;

while ? do

x := x + 1;

or

y := y + 1;

end while

Program states ≡ N× N

Initial state (x, y) = (0, 0) −→ initial ideal 〈x, y〉
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Proof of Termination (2)

y

x

Step 0: 〈x, y〉 → {(0, 0)} dimension 0
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Proof of Termination (2)

x

y

Step 0: 〈x, y〉 → {(0, 0)} dimension 0

Step 1: 〈xy〉 → {(α, 0)} ∪ {(0, α)} dimension 1
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Proof of Termination (2)

y

x

Step 0: 〈x, y〉 → {(0, 0)} dimension 0

Step 1: 〈xy〉 → {(α, 0)} ∪ {(0, α)} dimension 1

Step 2: 〈0〉 → R2 dimension 2
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Proof of Termination (2)

y

x

The dimension has increased at every step,
and there is a finite number of variables!
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Example

x := R;

y := 0;

r := R2 −N ;

while ? do

if ? then

r := r + 2x + 1;

x := x + 1;

else

r := r − 2y − 1;

y := y + 1;

end if

end while

Invariant polynomial equality:

x2 − y2 = r + N
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Introduction

Generation of Invariant Polynomial Equalities

Applications of Polynomial Equality Invariants

Imperative programs
Petri nets
Hybrid systems

Generation of Invariant Polynomial Inequalities

Conclusions and Future Work
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Imperative Programs

Pre: { N ≥ 1}

x := R; y := 0; r := R2 −N ;

Inv: { N ≥ 1 ∧ x2 − y2 = r + N }

while r 6= 0 do

if r < 0 then

r := r + 2x + 1;

x := x + 1;

else

r := r − 2y − 1;

y := y + 1;

end if

end while

Post: {x 6= y ∧N mod (x− y) = 0}

N ≥ 1 =⇒

R2 − 02 = (R2 −N) + N

x2 − y2 = r + N ∧ r < 0 =⇒

(x+1)2−y2 = (r +2x+1)+N

x2 − y2 = r + N ∧ r > 0 =⇒

x2− (y +1)2 = (r−2y−1)+N

N ≥ 1 ∧ x2 − y2 = r + N =⇒

x 6= y ∧N mod (x− y) = 0
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Petri Nets: Introduction

Petri nets: mathematical model for studying systems

concurrency
parallelism
non-determinism

Applications:

Manufacturing and Task Planning
Communication Networks
Hardware Design
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Definitions

A Petri net is a bipartite directed graph where:

Nodes partitioned into places (©) and transitions (|)
Arcs are labelled with a natural number

A marking maps a number of tokens to each place

1 1

2
1

1
1 3 p

3

p
2

p
1

2

1

1

2
p

3

t2t1

p
1

p
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Dynamics (1)

Dynamics of a Petri net described by

initial marking
firing of transitions

A transition is enabled if there are ≥ tokens in each input
place than indicated in the arcs

When a transition is enabled, it can fire:

1. the number of tokens indicated in the arcs is removed
from input places

2. tokens are produced in output places according to
arcs
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Dynamics (2)

p
1

p
3

p
2

t1 t2
t1

p
1

p
3

p
2

t1 t2

1 1

2
1

1
3

1 1

2
1

1
1 31
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Dynamics (3)

Enabling of transitions may also depend on inhibitor arcs

An inhibitor arc is an arc connecting place p to transition t so
that there cannot be tokens in p for t to be enabled

p
3

p
2

t1 t2

p
1

p
1

p
3

p
2

t1 t2

1

2
1

1
1 3

t1 enabled

1

2
1

1
1 3

t1 disabled
inhibitor 

arc

Automatic Generation of Polynomial Invariants for System Verification – p.42/67



Dynamics (3)

Enabling of transitions may also depend on inhibitor arcs

An inhibitor arc is an arc connecting place p to transition t so
that there cannot be tokens in p for t to be enabled

p
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t1 t2

p
1

p
1

p
3

p
2

t1 t2

1

2
1

1
1 3
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Dynamics (4)

Deadlocks are markings for which all transitions are disabled

p
1

p
3

p
2

t1 t2 t1 disabled

t2 disabled

1 1

2
1

1
3 DEADLOCK !!1

Given a Petri net with an initial marking:

Invariant properties of reachable states ?

Any deadlocks ?

Automatic Generation of Polynomial Invariants for System Verification – p.43/67



Dynamics (4)

Deadlocks are markings for which all transitions are disabled

p
1

p
3

p
2

t1 t2 t1 disabled

t2 disabled

1 1

2
1

1
3 DEADLOCK !!1

Given a Petri net with an initial marking:

Invariant properties of reachable states ?

Any deadlocks ?
Automatic Generation of Polynomial Invariants for System Verification – p.43/67



Translation into Loop Programs

Define variable xi meaning number of tokens at place pi

Initial marking transformed into sequence of initializing
assignments

Transitions transformed into conditional statements

Enabling of a transition with input place pi and label ci:

· · · (xi 6= 0) ∧ (xi 6= 1) ∧ · · · ∧ (xi 6= ci − 1) · · ·

Enabling of a transition with inhibitor place pi: xi = 0

Firing of a transition

with input place pi and label ci: xi := xi − ci;

with output place pi and label ci: xi := xi + ci;
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Translation into Programs (2)

p
1

p
3

p
2

1 1

2
1

1
1 3

t1 t2

x1 := 1;x2 := 1;x3 := 2;

while ? do

t1 : if x1 6= 0 ∧ x2 6= 0 ∧ x3 6= 0→

x1 := x1 − 1;

x2 := x2 + 2;

x3 := x3 − 1;

t2 : [] x2 6= 0∧ x3 6= 0∧ x3 6= 1→

x1 := x1 + 1;

x2 := x2 − 1;

x3 := x3 − 2;

end if

end while
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Translation into Programs (3)
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end if

end while
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Generating Polynomial Invariants (1)

Abstract interpretation is applied to the loop program to
obtain polynomial invariants of the Petri net

Example:

p
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t1 t2
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p
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2
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t1 t2
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t1 t2
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Generating Polynomial Invariants (2)

Polynomial invariants obtained:

Inv =



























5x1 + 3x2 + x3 − 10 = 0

5x2
3 + 2x2 − 11x3 = 0

x2x3 + 2x2
3 − 5x3 = 0

5x2
2 − 17x2 + 6x3 = 0

In this example invariants characterize reachability set

Inv ⇔ (x1, x2, x3) ∈ {(0, 3, 1), (1, 1, 2), (2, 0, 0)}

In general overapproximation of reach set is obtained
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Introduction

Generation of Invariant Polynomial Equalities

Applications of Polynomial Equality Invariants

Imperative programs
Petri nets
Hybrid systems

Generation of Invariant Polynomial Inequalities

Conclusions and Future Work
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Hybrid Systems: Introduction

Hybrid System: discrete system in analog environment

Examples:

A thermostat that heats/cools depending on the
temperature in the room

HEATING COOLING

maximum temperature

minimum temperature

THERMOSTAT THERMOSTAT

A robot controller that changes the direction of
movement if the robot is too close to a wall.
A biochemical reaction whose behaviour depends on
concentration of substances in environment
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Definition

A hybrid system is a finite automaton with real-valued
variables that change continuously according to a
system of differential equations at each location

x = −x +5 x = −x

x = 1

x = 3

maximum temperature

OFFON minimum temperature

HEATER HEATER

ON OFF

2x =

condition
initial

Restricted to linear differential equations at locations
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Dynamics (1)

A computation is a sequence of states
(discrete location, valuation of variables)

(l0, x0), (l1, x1), (l2, x2), ...

such that

1. Initial state (l0, x0) satisfies the initial condition
2. For each consecutive pair of states (li, xi), (li+1, xi+1):

Discrete transition: there is a transition of the
automaton (li, li+1, ρ) such that (xi, xi+1) |= ρ

Continuous evolution: there is a trajectory going
from xi to xi+1 along the flow determined by the
differential equation ẋ = Ax + B at location li = li+1
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Dynamics (2)

Goal: generate invariant polynomial equalities

We know how to deal with discrete systems
How to handle continuous evolution?

Problem:
computing polynomial invariants of linear systems of
differential equations
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Form of the Solution

Solution to ẋ = Ax + B can be expressed as polynomials in t,
e±at, cos(bt), sin(bt), where λ = a + bi are eigenvalues of matrix A.















ẋ

ẏ

v̇x

v̇y















=















0 0 1 0

0 0 0 1

0 0 0 −1/2

0 0 1/2 0





























x

y

vx

vy









































x = x∗ + 2 sin(t/2) v∗

x
+ (2 cos(t/2)− 2) v∗

y

y = y∗ + (−2 cos(t/2) + 2) v∗

x
+ 2 sin(t/2) v∗

y

vx = cos(t/2) v∗
x
− sin(t/2) v∗

y

vy = sin(t/2) v∗
x

+ cos(t/2) v∗
y
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Elimination of Time

Idea: eliminate terms depending on t from solution:

transform solution into polynomials using new variables

eliminate by means of Gröbner bases using auxiliary
equations

SOLUTION


























x = x∗ + 2zv∗
x

+ (2w − 2)v∗
y

y = y∗ + (−2w + 2) v∗
x

+ 2zv∗
y

vx = wv∗
x
− zv∗

y

vy = zv∗
x

+ wv∗
y

INITIAL CONDITIONS






v∗
x

= 2

v∗
y

= −2

AUXILIARY EQUATIONS
{

w2 + z2 = 1

⇓

v2
x + v2

y = 8 (conservation of energy)
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Example

vxx = 
vyy = 

vyvx = − / 2

vxvy / 2=

skipx = dx = d skip

vx vy= = 0

vxx = 
vyy = 

vx vy= = 0

b = 0 b = 0 b = 0

vy

vx
INITIAL

CONDITIONS
2=vx

=vy − 2

=x y= b = 0

− vxvx :=b b +1

MAGNETIC LEFTRIGHT

y = 
x = 

0x = := ;

RIGHT → vy = −2 ∧ vx = 2 ∧ 2db− 8b + y + x = 0

MAGNETIC → x− 2vy − d = 4 ∧ v2

x
+ v2

y
= 8 ∧ 2vx + y + 2db− 8b + d = 4

LEFT → vy = −2 ∧ vx = −2 ∧ 2db− 8b + y − x = 8
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Introduction

Generation of Invariant Polynomial Equalities

Applications of Polynomial Equality Invariants

Generation of Invariant Polynomial Inequalities

Conclusions and Future Work
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Drawing a Parallel from Equalities

Linear equalities
[Karr’76]

?

Polynomial equalities
[Colon’04]

Linear inequalities
[Cousot & Halbwachs’78]

?

Polynomial inequalities
[Bagnara & Rodríguez-Carbonell

& Zaffanella’05]
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From Linear to Polynomial Equalities

a := 0 ;

b := 0 ;

c := 1 ;

while ? do

a := a + 1 ;

b := b + c ;

c := c + 2 ;

end while
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From Linear to Polynomial Equalities

a := 0 ;

b := 0 ;

c := 1 ;

{ a = b ∧ c = 2a + 1 }

while ? do

a := a + 1 ;

b := b + c ;

c := c + 2 ;

end while
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From Linear to Polynomial Equalities

a := 0 ;

b := 0 ;

c := 1 ;

{ c = 2a + 1 }

while ? do

a := a + 1 ;

b := b + c ;

c := c + 2 ;

end while

Loop invariant
{ c = 2a + 1 }
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From Linear to Polynomial Equalities

a := 0 ;

b := 0 ;

c := 1 ;

while ? do

a := a + 1 ;

b := b + c ;

c := c + 2 ;

end while

Introduce new variable s

standing for a2

Extend program with new
variable s

a := 0 → s := 0 (0)

a := a + 1 → s := s + 2a + 1(0)
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From Linear to Polynomial Equalities

a := 0 ;

b := 0 ;

c := 1 ;

s := 0 ;

{ a = 0 ∧ b = 0 ∧ c = 1 ∧ s = 0 }

while ? do

a := a + 1 ;

b := b + c ;

c := c + 2 ;

s := s + 2a + 1 ;

end while
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From Linear to Polynomial Equalities

a := 0 ;

b := 0 ;

c := 1 ;

s := 0 ;

{ a = b ∧ b = s ∧ c = 2a + 1 }

while ? do

a := a + 1 ;

b := b + c ;

c := c + 2 ;
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From Linear to Polynomial Equalities

a := 0 ;

b := 0 ;

c := 1 ;

s := 0 ;

{ b = s ∧ c = 2a + 1 }

while ? do

a := a + 1 ;

b := b + c ;

c := c + 2 ;

s := s + 2a + 1 ;

end while

Loop invariant
{ b = a2 ∧ c = 2a + 1 }

is more precise
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From Linear to Polynomial Inequalities

{ Pre : b ≥ 0 }

a := 0 ;

while (a + 1)2 ≤ b do

a := a + 1 ;

end while

{ Post : (a + 1)2 > b ∧ b ≥ a2 }
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From Linear to Polynomial Inequalities

{ Pre : b ≥ 0 }

a := 0 ;

while (a + 1)2 ≤ b do

a := a + 1 ;

end while

{ Post : (a + 1)2 > b ∧ b ≥ a2 }

Linear analysis cannot deal with
the quadratic condition

(a + 1)2 ≤ b
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From Linear to Polynomial Inequalities

{ Pre : b ≥ 0 }

a := 0 ;

{ a ≥ 0 ∧ b ≥ 0 }

while (a + 1)2 ≤ b do

a := a + 1 ;

end while

{ Post : (a + 1)2 > b ∧ b ≥ a2 }

Loop invariant { a ≥ 0 ∧ b ≥ 0 }

not precise enough
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From Linear to Polynomial Inequalities

{ Pre : b ≥ 0 }

a := 0 ;

s := 0 ;
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From Linear to Polynomial Inequalities

{ Pre : b ≥ 0 }

a := 0 ;

s := 0 ;

{ b ≥ s ∧ · · · }

while (a + 1)2 ≤ b do

a := a + 1 ;

s := s + 2a + 1 ;

end while

{ Post : (a + 1)2 > b ∧ b ≥ a2 }

Loop invariant
{ b ≥ a2 ∧ · · · }

enough to prove partial
correctness
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Linearization of Polynomial Constraints

Abstract values = sets of constraints

Given a degree bound d, all terms xα with deg(xα) ≤ d

are considered as different and independent variables
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Vector Spaces↔ Polynomial Cones

polynomial = 0

∀ polynomial p, p ∼ p = 0

Vector space =

set of polynomials V s.t.

0 ∈ V

∀p, q ∈ V and λ, µ ∈ R,

λp + µq ∈ V

0 = 0

p = 0 q = 0 λ, µ ∈ R

λp + µq = 0
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Vector Spaces↔ Polynomial Cones

polynomial = 0

∀ polynomial p, p ∼ p = 0

Vector space =

set of polynomials V s.t.

0 ∈ V

∀p, q ∈ V and λ, µ ∈ R,

λp + µq ∈ V

0 = 0

p = 0 q = 0 λ, µ ∈ R

λp + µq = 0

polynomial ≥ 0

∀ polynomial p, p ∼ p ≥ 0

Polynomial cone =

set of polynomials C s.t.

1 ∈ C

∀p, q ∈ C and λ, µ ∈ R+,

λp + µq ∈ C

1 ≥ 0

p ≥ 0 q ≥ 0 λ, µ ∈ R+

λp + µq ≥ 0
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Explicitly Adding Other Inference Rules

polynomial = 0

p = 0 deg(pq) ≤ d

pq = 0
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Introduction

Generation of Invariant Polynomial Equalities

Applications of Polynomial Equality Invariants

Generation of Invariant Polynomial Inequalities

Conclusions and Future Work
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Conclusions

Designed a new abstract domain for generating invariant
polynomial equalities based on ideals of polynomials

Identified a class of programs for which all polynomial
equality invariants can be generated

Applied polynomial equality invariants to verifying
imperative programs, Petri nets and hybrid systems

Designed a new abstract domain for generating invariant
polynomial inequalities based on polynomial cones
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Future Work

Extend the techniques to interprocedural analyses

Develop methods for tuning the precision/efficiency
trade-off

Find new areas of application for polynomial invariants

Design specific widening operators for the context of
polynomial invariants
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