#### **Automatic Generation of**

#### **Polynomial Loop Invariants:**

#### **Algebraic Foundations**

**Enric Rodríguez-Carbonell** 

Universitat Politècnica de Catalunya **Deepak Kapur** 

University of New Mexico

#### **Overview of the Talk**

- 1. Motivation for automatically generating invariants
- 2. Simple loops with sequences of assignments
- 3. Loops including conditional statements
- 4. Algorithm for generating polynomial invariants
- 5. **Termination** of the algorithm

# Motivation Program Verification

- Program verification failed due to:
  - program annotation by hand
  - weak theorem provers
- Current theorem provers are quite powerful
- About program annotation:
  - Pre/postconditions: useful documentation
  - Loop invariants: tedious to write

⇒ Automatic generation of loop invariants

# Sequences of Assignments Example: Square Root Program

```
{Pre: N \ge 0 }

a := 0; s := 1; t := 1;

while (s \le N) do

a := a + 1;

s := s + t + 2;

t := t + 2;

end while

{Post: a^2 \le N < (a + 1)^2 }
```

- Need invariant to verify program
- Good invariant:  $a^2 \leq N \wedge t = 2a + 1 \wedge s = (a+1)^2$

# Sequences of Assignments Generating Invariants (1)

• **Program states**  $\equiv$  solution to the recurrence

$$\begin{cases} a_{n+1} = a_n + 1 \\ s_{n+1} = s_n + t_n + 2 \\ t_{n+1} = t_n + 2 \end{cases}, \begin{cases} a_0 = 0 \\ s_0 = 1 \\ t_0 = 1 \end{cases}$$

 $(a_n, s_n, t_n) \equiv \text{program state after } n \text{ loop iterations}$ 

## **Sequences of Assignments Generating Invariants (2)**

$$\begin{cases}
 a_n = n \\
 s_n = (n+1)^2 \\
 t_n = 2n+1
\end{cases}$$

The infinite formula

$$(a = 0 \land s = 1 \land t = 1) \lor (a = 1 \land s = 4 \land t = 3) \lor \cdots \equiv$$
  
 $\equiv \bigvee_{n=0}^{\infty} (a = n \land s = (n+1)^2 \land t = 2n+1)$ 

is invariant

Want a finite invariant formula !

# **Sequences of Assignments Eliminating Loop Counters**

• The infinite formula can be replaced by

 $\exists n(a = n \land s = (n+1)^2 \land t = 2n+1)$ 

- Need for quantifier elimination
- In the example it is obvious:

 $a = n \implies s = (a + 1)^2 \land t = 2a + 1$  is loop invariant

 Gröbner bases can be used to eliminate auxiliary variables such as loop counters

#### **Polynomial Invariants Form an Ideal**

• For any program state (a, s, t),

$$s - (a + 1)^2 = 0$$
  
 $t - (2a + 1) = 0$ 

• For any polynomials p, q,

 $p(a, s, t)(s - (a + 1)^2) + q(a, s, t)(t - (2a + 1)) = 0$ 

In general polynomial invariants form an ideal

# Handling Conditional Statements Example: Factor Program

• Good invariant:  $N \ge 1 \land N + r = x^2 - y^2$ 

# Handling Conditional Statements Generating Invariants (1)

- 1st idea:
  - 1. Compute invariants for two distinct loops:

```
while true do

r := r + 2x + 1; while true do

r := r - 2y - 1;

x := x + 1; y := y + 1;

end while end while
```

- 2. Compute *common* invariants for both loops
- Finding *common* invariants  $\equiv$ Finding *intersection* of polynomial invariant ideals
- Gröbner bases used to compute intersection of ideals

# Handling Conditional Statements Generating Invariants (2)

while true do r := r + 2x + 1; while true do r := r - 2y - 1; x := x + 1; y := y + 1;end while end while

 $\langle y , -r - N + x^2 \rangle$   $\langle x - R , r - R^2 + N + y^2 \rangle$  $\langle x^2 - r - N - y^2 , yx - Ry , y^3 - R^2y + ry + Ny \rangle$ 

**Problem:** not all polynomials in the intersection are invariants

- The only invariant polynomial is  $x^2 r N y^2$
- Others are not invariants of the original loop

# Handling Conditional Statements Generating Invariants (3)

Tree of all possible execution paths:



- Found common invariants to the two extreme paths
- True invariants are common to all paths !

#### Handling Conditional Statements Generating Invariants (4)

- 2nd idea: intersecting with more paths
- For example: paths with at most one alternation



# Algorithm for Computing Invariants (1)ProgramAlgorithm $x := \bar{\alpha};$ $I' := \langle 1 \rangle; I := \langle x_1 - \alpha_1, \cdots, x_m - \alpha_m \rangle;$ while true do $i' := \langle 1 \rangle; I := \langle x_1 - \alpha_1, \cdots, x_m - \alpha_m \rangle;$ while true dowhile $I' \neq I$ do $\bar{x} := f(\bar{x});$ I' := I;or $I := \bigcap_{n=0}^{\infty} [I(\bar{x} \leftarrow f^{-n}(\bar{x}))$ $\bar{x} := g(\bar{x});$ $\cap I(\bar{x} \leftarrow g^{-n}(\bar{x}))];$

end while

end while

#### Algorithm for Computing Invariants (2)

- After *N* iterations:
  - $I \equiv$  intersection for all paths with  $\leq N 1$  alternations



1st iteration 2nd iteration

3rd iteration

# Algorithm for Computing Invariants (3)

- The value of *I* stabilizes
- Termination in O(m) iterations, where m = number of variables
- Correctness and completeness proofs in the report
- Implemented in Maple:
  - 1. Solving recurrences
  - 2. Eliminating variables3. Intersecting idealsGröbner bases

# Algorithm for Computing Invariants (4) Table of Examples

| PROGRAM   | COMPUTING    | VARIABLES | BRANCHES | TIMING  |
|-----------|--------------|-----------|----------|---------|
| freire1   | $\sqrt{2}$   | 2         | 1        | < 3 s.  |
| freire2   | $\sqrt[3]{}$ | 3         | 1        | < 5 s.  |
| cohencu   | cube         | 4         | 1        | < 5 s.  |
| cousot    | toy          | 2         | 2        | < 4 s.  |
| divbin    | division     | 3         | 2        | < 5 s.  |
| dijkstra  | $\sqrt{2}$   | 3         | 2        | < 6 s.  |
| fermat2   | factor       | 3         | 2        | < 4 s.  |
| wensley2  | division     | 4         | 2        | < 5 s.  |
| euclidex2 | gcd          | 6         | 2        | < 6 s.  |
| lcm2      | lcm          | 4         | 2        | < 5 s.  |
| factor    | factor       | 4         | 4        | < 20 s. |

PC Linux Pentium 4 2.5 Ghz

## **Termination (1)**

#### Toy program

$$x := 0; y := 0;$$
  
while true do  
 $x := x + 1;$   
or  
 $y := y + 1;$   
end while

- Program states  $\equiv \mathbb{N} \times \mathbb{N}$
- Assignments:

f(x,y) = (x+1,y) g(x,y) = (x,y+1)

• Initial state  $(x, y) = (0, 0) \longrightarrow$  initial ideal  $\langle x, y \rangle$ 

#### **Termination (2)**

Ist iteration of the algorithm

1st branch: f(x,y) = (x + 1,y)  $\begin{cases} x_{n+1} = x_n + 1 \\ y_{n+1} = y_n \end{cases}, \begin{cases} x_0 = 0 \\ y_0 = 0 \end{cases} \begin{cases} x_n = n \\ y_n = 0 \end{cases}$ Invariant ideal 1st branch:  $\langle y \rangle$ 2nd branch: g(x,y) = (x,y+1) $\begin{cases} x_{n+1} = x_n \\ y_{n+1} = y_n + 1 \end{cases}, \begin{cases} x_0 = 0 \\ y_0 = 0 \end{cases} \begin{cases} x_n = 0 \\ y_n = n \end{cases}$ Invariant ideal 2nd branch:  $\langle x \rangle$ 

Intersection ideal:  $\langle xy \rangle$ 



- Step 0:  $\langle x, y \rangle \rightarrow \{(0, 0)\}$ , dimension 0
- Step 1:  $\langle xy \rangle \rightarrow \{(\alpha, 0)\} \cup \{(0, \alpha)\}, \text{ dimension } 1$

The dimension has increased !

# **Termination (4)**

- 2nd iteration of the algorithm
  - Ideal computed: {0}
  - Solution space:  $\mathbb{R}^2$ , dimension 2

The dimension has increased again !

- At each step of the algorithm, the **dimension increases**
- If there are m variables, it terminates in O(m) steps

# **Related Work (1)**

- Karr (1976): linear equalities
- Cousot, Halbwachs (1978): linear inequalities
- Colón, Sankaranarayanan, Sipma (2003): *linear inequalities*
- Müller-Olm, Seidl (2003): polynomial equalities
- Sankaranarayanan et al (2004): *polynomial equalities*
- Müller-Olm, Seidl (2004): polynomial equalities
- Rodríguez-Carbonell, Kapur (2004): polynomial equalities

# Related Work (2) Overview Polynomial Invariants

| Work    | Restrictions   | Nesting | Conditions | Complete | Application             |
|---------|----------------|---------|------------|----------|-------------------------|
| [MOS03] | bounded degree | yes     | no         | yes      | <i>intra</i> procedural |
| [SSM03] | prefixed form  | yes     | yes        | no       | <i>inter</i> procedural |
| [MOS04] | prefixed form  | yes     | yes        | yes      | <i>inter</i> procedural |
| [RCK04] | bounded degree | yes     | yes        | yes      | <i>inter</i> procedural |
| [RCK04] | no restriction | no      | no         | yes      | <i>inter</i> procedural |

#### Conclusions

- **Correct** and **complete** algorithm for **polynomial** invariants
- First method not bounding a priori degree of invariants
- Applicable to loops without nesting
- Terminates in O(m) iterations, where m = number of variables
- Implemented and being integrated into a verifier
- Part of a general framework for generating invariants
  - Rich theory in algebraic geometry and polynomial ideals
  - Beyond numbers and polynomials we need:
    - $\circ$  solving recurrences
    - $\circ$  eliminating variables
    - o ...