
Automatic Generation of

Polynomial Loop Invariants:

Algebraic Foundations

Enric Rodŕıguez-Carbonell Deepak Kapur

Universitat Politècnica University

de Catalunya of New Mexico

1

Overview of the Talk

1. Motivation for automatically generating
invariants

2. Simple loops with sequences of assignments

3. Loops including conditional statements

4. Algorithm for generating polynomial invariants

5. Termination of the algorithm

2

Motivation

Program Verification

Program verification failed due to:

• program annotation by hand

• weak theorem provers

Current theorem provers are quite powerful

About program annotation:

• Pre/postconditions: useful documentation

• Loop invariants: tedious to write

=⇒ Automatic generation of loop invariants
3

Sequences of Assignments

Example: Square Root Program

{Pre:N ≥ 0 }
a := 0; s := 1; t := 1;

while (s ≤ N) do

a := a + 1;

s := s + t + 2;

t := t + 2;

end while

{Post: a2 ≤ N < (a + 1)2 }

Need invariant to verify program

Good invariant: a2 ≤ N ∧ t = 2a + 1 ∧ s = (a + 1)2

4

Sequences of Assignments

Generating Invariants (1)

Program states ≡ solution to the recurrence

an+1 = an + 1
sn+1 = sn + tn + 2
tn+1 = tn + 2

,

a0 = 0
s0 = 1
t0 = 1

(an, sn, tn) ≡ program state after n loop iterations

5

Sequences of Assignments

Generating Invariants (2)

an = n

sn = (n + 1)2

tn = 2n + 1

The infinite formula

(a = 0 ∧ s = 1 ∧ t = 1) ∨ (a = 1 ∧ s = 4 ∧ t = 3) ∨ · · · ≡

≡
∞
∨

n=0

(a = n ∧ s = (n + 1)2 ∧ t = 2n + 1)

is invariant

Want a finite invariant formula !

6

Sequences of Assignments

Eliminating Loop Counters

The infinite formula can be replaced by

∃n(a = n ∧ s = (n + 1)2 ∧ t = 2n + 1)

Need for quantifier elimination

In the example it is obvious:

a = n =⇒ s = (a + 1)2 ∧ t = 2a + 1 is loop invariant

Gröbner bases can be used to eliminate auxiliary variables

such as loop counters

7

Polynomial Invariants Form an Ideal

For any program state (a, s, t),

s− (a + 1)2 = 0

t− (2a + 1) = 0

For any polynomials p, q,

p(a, s, t)(s− (a + 1)2) + q(a, s, t)(t− (2a + 1)) = 0

In general polynomial invariants form an ideal

8

Handling Conditional Statements

Example: Factor Program

{Pre:N ≥ 1 ∧N mod 2 = 1 ∧R2 ≥ N > (R− 1)2 }
x := R; y := 0; r := R2 −N ;

while (r 6= 0) do

if (r < 0) then

r := r + 2x + 1; x := x + 1;

else

r := r − 2y − 1; y := y + 1;

end if

end while

{Post: x 6= y ∧N mod (x− y) = 0 }

Good invariant: N ≥ 1∧ N + r = x2 − y2

9

Handling Conditional Statements

Generating Invariants (1)

1st idea:

1. Compute invariants for two distinct loops:

while true do while true do

r := r + 2x + 1; r := r − 2y − 1;
x := x + 1; y := y + 1;

end while end while

2. Compute common invariants for both loops

Finding common invariants ≡
Finding intersection of polynomial invariant ideals

Gröbner bases used to compute intersection of ideals

10

Handling Conditional Statements

Generating Invariants (2)

while true do while true do

r := r + 2x + 1; r := r − 2y − 1;
x := x + 1; y := y + 1;

end while end while

〈 y , −r −N + x2 〉 〈 x−R , r −R2 + N + y2 〉

〈 x2 − r −N − y2 , yx−Ry , y3 −R2y + ry + Ny 〉

Problem: not all polynomials in the intersection are invariants

The only invariant polynomial is x2 − r −N − y2

Others are not invariants of the original loop

11

Handling Conditional Statements

Generating Invariants (3)

Tree of all possible execution paths:

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@�
�

�
�

�
�

��

�
��@

@@

@
@

@
@

@
@

@@

q q q q qq q
q q

q

y y y y y y y y

y y y y

y y

y

Found common invariants to the two extreme paths

True invariants are common to all paths !

12

Handling Conditional Statements
Generating Invariants (4)

2nd idea: intersecting with more paths

For example: paths with at most one alternation

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@�
�

�
�

�
�

��

�
��@

@@

@
@

@
@

@
@

@@

q q q q qq q
q q

q

No alternations

1 alternation

y y y y y y y y

y y y y

y y

y

〈x2 − r −N − y2, yx−Ry, y3 −R2y + ry + Ny〉
〈x2 − r −N − y2〉

13

Algorithm for Computing Invariants (1)

Program Algorithm

x := ᾱ; I ′ := 〈1〉; I := 〈x1 − α1, · · · , xm − αm〉;
while true do while I ′ 6= I do

x̄ := f(x̄); I ′ := I;

or I :=
⋂∞

n=0[I(x̄← f−n(x̄))

x̄ := g(x̄);
⋂

I(x̄← g−n(x̄))];

end while end while

14

Algorithm for Computing Invariants (2)

After N iterations:

I ≡ intersection for all paths with ≤ N − 1 alternations

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@�
�

�
�

�
�

��

�
��@

@@

@
@

@
@

@
@

@@

q q q q qq q
q q

q

q q q q q q

1st iteration

2nd iteration

3rd iteration

y y y y y y y y

y y y y

y y

y

15

Algorithm for Computing Invariants (3)

The value of I stabilizes

Termination in O(m) iterations,

where m = number of variables

Correctness and completeness proofs in the report

Implemented in Maple:

1. Solving recurrences

2. Eliminating variables
3. Intersecting ideals

}

Gröbner bases

16

Algorithm for Computing Invariants (4)

Table of Examples

PROGRAM COMPUTING VARIABLES BRANCHES TIMING

freire1 2
√

2 1 < 3 s.

freire2 3
√

3 1 < 5 s.

cohencu cube 4 1 < 5 s.
cousot toy 2 2 < 4 s.
divbin division 3 2 < 5 s.
dijkstra 2

√
3 2 < 6 s.

fermat2 factor 3 2 < 4 s.
wensley2 division 4 2 < 5 s.
euclidex2 gcd 6 2 < 6 s.
lcm2 lcm 4 2 < 5 s.
factor factor 4 4 < 20 s.

PC Linux Pentium 4 2.5 Ghz

17

Termination (1)

Toy program

x := 0; y := 0;

while true do

x := x + 1;

or

y := y + 1;

end while

Program states ≡ N× N

Assignments:

f(x, y) = (x + 1, y) g(x, y) = (x, y + 1)

Initial state (x, y) = (0,0) −→ initial ideal 〈x, y〉
18

Termination (2)

1st iteration of the algorithm

1st branch: f(x, y) = (x + 1, y)
{

xn+1 = xn + 1
yn+1 = yn

,

{

x0 = 0
y0 = 0

−→
{

xn = n

yn = 0

Invariant ideal 1st branch: 〈y〉

2nd branch: g(x, y) = (x, y + 1)
{

xn+1 = xn

yn+1 = yn + 1
,

{

x0 = 0
y0 = 0

−→
{

xn = 0
yn = n

Invariant ideal 2nd branch: 〈x〉

Intersection ideal: 〈xy〉
19

Termination (3)

-

6

x

y

v v v v

v

v

(0,0)

{(α,0)} ∪ {(0, α)}

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

z

Step 0: 〈x, y〉 → {(0,0)}, dimension 0

Step 1: 〈xy〉 → {(α,0)} ∪ {(0, α)}, dimension 1

The dimension has increased !

20

Termination (4)

2nd iteration of the algorithm

• Ideal computed: {0}

• Solution space: R2, dimension 2

The dimension has increased again !

At each step of the algorithm, the dimension increases

If there are m variables, it terminates in O(m) steps

21

Related Work (1)

Karr (1976): linear equalities

Cousot, Halbwachs (1978): linear inequalities

Colón, Sankaranarayanan, Sipma (2003): linear inequalities

Müller-Olm, Seidl (2003): polynomial equalities

Sankaranarayanan et al (2004): polynomial equalities

Müller-Olm, Seidl (2004): polynomial equalities

Rodŕıguez-Carbonell, Kapur (2004): polynomial equalities

22

Related Work (2)

Overview Polynomial Invariants

Work Restrictions Nesting Conditions Complete Application

[MOS03] bounded degree yes no yes intraprocedural
[SSM03] prefixed form yes yes no interprocedural
[MOS04] prefixed form yes yes yes interprocedural
[RCK04] bounded degree yes yes yes interprocedural
[RCK04] no restriction no no yes interprocedural

23

Conclusions

Correct and complete algorithm for polynomial invariants

First method not bounding a priori degree of invariants

Applicable to loops without nesting

Terminates in O(m) iterations,

where m = number of variables

Implemented and being integrated into a verifier

Part of a general framework for generating invariants

• Rich theory in algebraic geometry and polynomial ideals

• Beyond numbers and polynomials we need:

◦ solving recurrences

◦ eliminating variables

◦ ...

24

