
Inference of

Numerical Relations from

Digital Circuits

Enric Rodŕıguez-Carbonell Jordi Cortadella

Universitat Politècnica de Catalunya

Barcelona

1



Overview of the Talk

1. Introduction

2. Overview of the Method

3. Simple Example: Binary Addition

4. Abstract Domain

5. Inductive Method

6. Working with Small Coefficients

7. Future Work

2



Introduction

Need for Hardware Verification

Errors in hardware are:

very costly:

• Pentium division bug cost Intel 0.5 billion $

• Wide Field Infrared Explorer (WIRE) spacecraft from

NASA failed soon after launch

irreversible: no patches possible once product is on market

Need for Hardware Verification to Increase Reliability !

3



Introduction

Verifying Hardware

When verifying hardware we have:

• Gate list

• High-level specification

PROBLEM: Huge gap !

SOLUTION: Abstraction

Reverse engineering discovers

properties hidden in circuits

4



Introduction

Abstracting Circuits

c0

x0 0y

0s

x1 y1

1s

c4

x3 3y

3s

x2 y2

2s

x̄, ȳ, s̄ : 4-bit integers

s̄ + 16c4 = c0 + x̄ + ȳ

5



Introduction

Arithmetic Circuits are Difficult

Arithmetic circuits are difficult to verify

BDD’s representing multipliers have huge size

Current techniques cannot handle real-sized multipliers

Arithmetics has not been sufficiently exploited

=⇒ Combination logics/arithmetics

6



Overview of the Talk

1. Introduction

2. Overview of the Method

3. Simple Example: Binary Addition

4. Abstract Domain

5. Inductive Method

6. Working with Small Coefficients

7. Future Work

7



Overview of the Method

GOAL: extract numerical relations from arithmetic circuits

APPLICATION: preprocessing step to alleviate formal

verification with other methods

Boolean values abstracted to integers

Boolean functions abstracted to polynomials

Gaussian elimination used to infer numerical relations

8



Overview of the Talk

1. Introduction

2. Overview of the Method

3. Simple Example: Binary Addition

4. Abstract Domain

5. Inductive Method

6. Working with Small Coefficients

7. Future Work

9



Simple Example: Binary Addition

Full Adder

s
x
y

c in
outc

Full adder: sum of two bits with carry in and carry out

Input signals: x, y, cin

Output signals: s, cout

GOAL: generate the equation

s + 2cout = x + y + cin

10



Simple Example: Binary Addition

From Boolean Functions to Polynomials

x AND y = xy
x XOR y = x + y − 2xy

x OR y = x + y − xy
NOT x = 1 − x

x ∈ {0,1} =⇒ x2 = x

s = x XOR y XOR cin

cout = (x AND y) OR (x AND cin) OR (y AND cin)

s = x + y − 2xy + cin − 2cinx − 2ciny + 4cinxy
cout = xy + cinx + ciny − c2inxy − x2ycin − xy2cin + x2y2c2in

s = x + y − 2xy + cin − 2cinx − 2ciny + 4cinxy
cout = xy + cinx + ciny − 2cinxy

11



Simple Example: Binary Addition

Applying Gaussian Elimination

Non-linear terms are considered as new variables

Variables eliminated using Gaussian elimination

s = x + y + cin − 2xy − 2cinx − 2ciny + 4cinxy
cout = xy + cinx + ciny − 2cinxy

⇓
s + 2cout = x + y + cin

Sometimes the aimed equation has non-linear terms:

for carry look-ahead,

2n · (G + Pcin) +
∑n−1

i=0 2isi = cin +
∑n−1

i=0 2i(xi + yi)

−→ Heuristics to select the terms to be eliminated

12



Overview of the Talk

1. Introduction

2. Overview of the Method

3. Simple Example: Binary Addition

4. Abstract Domain

5. Inductive Method

6. Working with Small Coefficients

7. Future Work

13



Abstract Domain

ABSTRACT VALUES:

vector spaces of polynomials with coefficients in Q

ABSTRACTION FUNCTION α

α : P({0,1}n) −→ {vector spaces in Q[x1, ..., xn]}
B 7−→ {vector space of

polynomials evaluating to 0 on B}

CONCRETIZATION FUNCTION γ

γ : {vector spaces in Q[x1, ..., xn]} −→ P({0,1}n)
V 7−→ {zeros of V in {0,1}n}

14



Abstract Domain

Equations of output variables as −→ Polynomial
boolean functions of input variables −→ equations

Not all consequences of equations are linear combinations

• Linear algebra not complete !!

• Ideals of polynomials (Gröbner bases) bad complexity

INTERMEDIATE SOLUTION:

• approximate ideal generated by equations

• add new equations by multiplying by monomials,

using x2
i = xi

−→ Heuristics to select new equations to add

15



Overview of the Talk

1. Introduction

2. Overview of the Method

3. Simple Example: Binary Addition

4. Abstract Domain

5. Inductive Method

6. Working with Small Coefficients

7. Future Work

16



Inductive Method

PROBLEM: Not feasible for big number of variables

SOLUTION:

• Decompose circuit into black-boxes inductively

• Behaviour of black boxes described by polynomials

• Bigger black boxes built from smaller black boxes

• Local signals (neither input nor output) eliminated by

Gaussian elimination

17



Inductive Method
Example: 4-bit Carry-Ripple Adder

x0 0y

0s

x1 y1

1s

0 c4

x3 3y

3s

x2 y2

2s

c1 c2 3cc

s0 + 2c1 = c0 + x0 + y0

s1 + 2c2 = c1 + x1 + y1

s2 + 2c3 = c2 + x2 + y2

s3 + 2c4 = c3 + x3 + y3

s0 + 2s1 + 4s2 +8s3 +16c4 = c0 + x0 +2x1 +4x2 + 8x3 + y0 + 2y1 +4y2 + 8y3

s̄ + 16c4 = c0 + x̄ + ȳ

18



Overview of the Talk

1. Introduction

2. Overview of the Method

3. Simple Example: Binary Addition

4. Abstract Domain

5. Inductive Method

6. Working with Small Coefficients

7. Future Work

19



Working with Small Coefficients

Coefficients in numerical relations we are interested are ±2i

Coefficients may be very large in computations

• Exact arithmetic is slow

• Risk of overflow

Use finite fields for the coefficients !

Advantages:

• Coefficients can be represented with few bits

• Arithmetics can be tabulated at compile-time

Disadvantages:

• Not sound

• ... but results can be later checked

20



Working with Small Coefficients

Let p be an odd prime number such that 2 generates Z∗
p

There are many such prime numbers

Let q = (p − 3)/2. Then:

Z∗
p = {−2q,−2q−1, ...,−22,−2,−1,1,

1,2,22, ...,2q}

Heuristic approach:

1. Work with polynomials with coefficients in the finite field

2. Once result computed, translate back into coefficients as

powers of 2

21



Working with Small Coefficients

±2i Z∗
19

-256 10
-128 5
-64 12
-32 6
-16 3
-8 11
-4 15
- 2 17
-1 18
1 1
2 2
4 4
8 8
16 16
32 13
64 7
128 14
256 9

8-BIT ADDER

s0 + 2s1 + 4s2 + 8s3 + 16s4 + 13s5 + 7s6 + 14s7 + 10c4 =
c0 + x0 + 2x1 + 4x2 + 8x3 + 16x4 + 13x5 + 7x6 + 14x7 + y0 +

2y1 + 4y2 + 8y3 + 16y4 + 13y5 + 7y6 + 14y7

⇓

s0 + 2s1 + 4s2 + 8s3 + 16s4 + 32s5 + 64s6 + 128s7 + 256c4 =
c0 + x0 +2x1 +4x2 +8x3 +16x4 +32x5 +64x6 + 128x7 + y0 +

2y1 + 4y2 + 8y3 + 16y4 + 32y5 + 64y6 + 128y7

22



Overview of the Talk

1. Introduction

2. Overview of the Method

3. Simple Example: Binary Addition

4. Abstract Domain

5. Inductive Method

6. Working with Small Coefficients

7. Future Work

23



Future Work

Heuristics for eliminating terms in Gaussian elimination

Heuristics for adding new equations

Implementation in progress

Regularity-based techniques for partitioning circuits

Application to adders and multipliers

Integration to a verification system

24


