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Introduction

Need for Hardware Verification

Errors in hardware are:

very costly:

• Pentium division bug cost Intel 0.5 billion $

• Wide Field Infrared Explorer (WIRE) spacecraft from

NASA failed soon after launch

irreversible: no patches possible once product is on market

Need for Hardware Verification to Increase Reliability !
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Introduction

Verifying Hardware

When verifying hardware we have:

• Gate list

• High-level specification

PROBLEM: Huge gap !

SOLUTION: Abstraction

Reverse engineering discovers

properties hidden in circuits
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Introduction

Abstracting Circuits

c0

x0 0y

0s

x1 y1

1s

c4

x3 3y

3s

x2 y2

2s

x̄, ȳ, s̄ : 4-bit integers

s̄ + 16c4 = c0 + x̄ + ȳ
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Introduction

Arithmetic Circuits are Difficult

Arithmetic circuits are difficult to verify

BDD’s representing multipliers have huge size

Current techniques cannot handle real-sized multipliers

Arithmetics has not been sufficiently exploited

=⇒ Combination logics/arithmetics
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Overview of the Method

GOAL: extract numerical relations from arithmetic circuits

APPLICATION: preprocessing step to alleviate formal

verification with other methods

Boolean values abstracted to integers

Boolean functions abstracted to polynomials

Gaussian elimination used to infer numerical relations
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Simple Example: Binary Addition

Full Adder

s
x
y

c in
outc

Full adder: sum of two bits with carry in and carry out

Input signals: x, y, cin

Output signals: s, cout

GOAL: generate the equation

s + 2cout = x + y + cin
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Simple Example: Binary Addition

From Boolean Functions to Polynomials

x AND y = xy
x XOR y = x + y − 2xy

x OR y = x + y − xy
NOT x = 1 − x

x ∈ {0,1} =⇒ x2 = x

s = x XOR y XOR cin

cout = (x AND y) OR (x AND cin) OR (y AND cin)

s = x + y − 2xy + cin − 2cinx − 2ciny + 4cinxy
cout = xy + cinx + ciny − c2inxy − x2ycin − xy2cin + x2y2c2in

s = x + y − 2xy + cin − 2cinx − 2ciny + 4cinxy
cout = xy + cinx + ciny − 2cinxy
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Simple Example: Binary Addition

Applying Gaussian Elimination

Non-linear terms are considered as new variables

Variables eliminated using Gaussian elimination

s = x + y + cin − 2xy − 2cinx − 2ciny + 4cinxy
cout = xy + cinx + ciny − 2cinxy

⇓
s + 2cout = x + y + cin

Sometimes the aimed equation has non-linear terms:

for carry look-ahead,

2n · (G + Pcin) +
∑n−1

i=0 2isi = cin +
∑n−1

i=0 2i(xi + yi)

−→ Heuristics to select the terms to be eliminated
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Abstract Domain

ABSTRACT VALUES:

vector spaces of polynomials with coefficients in Q

ABSTRACTION FUNCTION α

α : P({0,1}n) −→ {vector spaces in Q[x1, ..., xn]}
B 7−→ {vector space of

polynomials evaluating to 0 on B}

CONCRETIZATION FUNCTION γ

γ : {vector spaces in Q[x1, ..., xn]} −→ P({0,1}n)
V 7−→ {zeros of V in {0,1}n}
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Abstract Domain

Equations of output variables as −→ Polynomial
boolean functions of input variables −→ equations

Not all consequences of equations are linear combinations

• Linear algebra not complete !!

• Ideals of polynomials (Gröbner bases) bad complexity

INTERMEDIATE SOLUTION:

• approximate ideal generated by equations

• add new equations by multiplying by monomials,

using x2
i = xi

−→ Heuristics to select new equations to add
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Inductive Method

PROBLEM: Not feasible for big number of variables

SOLUTION:

• Decompose circuit into black-boxes inductively

• Behaviour of black boxes described by polynomials

• Bigger black boxes built from smaller black boxes

• Local signals (neither input nor output) eliminated by

Gaussian elimination
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Inductive Method
Example: 4-bit Carry-Ripple Adder

x0 0y

0s

x1 y1

1s

0 c4

x3 3y

3s

x2 y2

2s

c1 c2 3cc

s0 + 2c1 = c0 + x0 + y0

s1 + 2c2 = c1 + x1 + y1

s2 + 2c3 = c2 + x2 + y2

s3 + 2c4 = c3 + x3 + y3

s0 + 2s1 + 4s2 +8s3 +16c4 = c0 + x0 +2x1 +4x2 + 8x3 + y0 + 2y1 +4y2 + 8y3

s̄ + 16c4 = c0 + x̄ + ȳ
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Working with Small Coefficients

Coefficients in numerical relations we are interested are ±2i

Coefficients may be very large in computations

• Exact arithmetic is slow

• Risk of overflow

Use finite fields for the coefficients !

Advantages:

• Coefficients can be represented with few bits

• Arithmetics can be tabulated at compile-time

Disadvantages:

• Not sound

• ... but results can be later checked
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Working with Small Coefficients

Let p be an odd prime number such that 2 generates Z∗
p

There are many such prime numbers

Let q = (p − 3)/2. Then:

Z∗
p = {−2q,−2q−1, ...,−22,−2,−1,1,

1,2,22, ...,2q}

Heuristic approach:

1. Work with polynomials with coefficients in the finite field

2. Once result computed, translate back into coefficients as

powers of 2
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Working with Small Coefficients

±2i Z∗
19

-256 10
-128 5
-64 12
-32 6
-16 3
-8 11
-4 15
- 2 17
-1 18
1 1
2 2
4 4
8 8
16 16
32 13
64 7
128 14
256 9

8-BIT ADDER

s0 + 2s1 + 4s2 + 8s3 + 16s4 + 13s5 + 7s6 + 14s7 + 10c4 =
c0 + x0 + 2x1 + 4x2 + 8x3 + 16x4 + 13x5 + 7x6 + 14x7 + y0 +

2y1 + 4y2 + 8y3 + 16y4 + 13y5 + 7y6 + 14y7

⇓

s0 + 2s1 + 4s2 + 8s3 + 16s4 + 32s5 + 64s6 + 128s7 + 256c4 =
c0 + x0 +2x1 +4x2 +8x3 +16x4 +32x5 +64x6 + 128x7 + y0 +

2y1 + 4y2 + 8y3 + 16y4 + 32y5 + 64y6 + 128y7
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Future Work

Heuristics for eliminating terms in Gaussian elimination

Heuristics for adding new equations

Implementation in progress

Regularity-based techniques for partitioning circuits

Application to adders and multipliers

Integration to a verification system
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