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Abstract.Let F be a conjunction of atoms of the form max(x, y)+k ≥ z,
where x, y, z are variables and k is a constant value. Here we consider
the satisfiability problem of such formulas (e.g., over the integers or ra-
tionals). This problem, which appears in unexpected forms in many ap-
plications, is easily shown to be in NP. However, decades of efforts (in
several research communities, see below) have not produced any polyno-
mial decision procedure nor an NP-hardness result for this -apparently
so simple- problem.
Here we develop several ingredients (small-model property and lattice
structure of the model class, a polynomially tractable subclass and an
inference system) which altogether allow us to prove the existence of
small unsatisfiability certificates, and hence membership in NP intersec-
tion co-NP. As a by-product, we also obtain a weakly polynomial decision
procedure.
We show that the Max-atom problem is PTIME-equivalent to several
other well-known -and at first sight unrelated- problems on hypergraphs
and on Discrete Event Systems, problems for which the existence of
PTIME algorithms is also open. Since there are few interesting problems
in NP intersection co-NP that are not known to be polynomial, the Max-
atom problem appears to be relevant.

Keywords: constraints, max-plus algebra, hypergraphs.

1 Introduction

Difference Logic (DL) is a well-known fragment of linear arithmetic in which
atoms are constraints of the form x+k ≥ y, where x, y are variables and the
offset k is a constant value. Due to its many applications to verification (e.g.,
timed automata), it is one of the most ubiquitous theories in the context of Satis-
fiability Modulo Theories (SMT). In SMT systems, a theory solver is essentially
a decision procedure for the satisfiability of conjunctions of theory atoms. For
DL satisfiability is equivalent to the absence of negative cycles in the digraph

having one edge x
k
→ y for each atom x+k ≥ y, and can be decided in polynomial

time (e.g., by the Bellman-Ford algorithm; cf. [NOT06] for background on SMT
and algorithms for DL, among other theories).

Motivated by the need of SMT techniques for reasoning about delays in
digital circuits, it is natural to extend the atoms of DL to max-atoms of the
form max(x, y)+k ≥ z. The satisfiability of conjunctions of such constraints
appears to be a new problem, hereafter referred to as the Max-atom problem.
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The Max-atom problem is easily seen to belong to NP, since after guessing in
each atom max(x, y)+k ≥ z which one of x and y is the maximal variable, the
problem reduces to DL. As in DL, there is no essential difference here between
interpretations over integers or rationals1: Given a conjunction of n atoms with
rational offsets max(xi, yi)+pi/qi ≥ zi, for i in 1 . . . n, if lcm is the least common
multiple of the q′is, one can express each atom as max(xi, yi)+ri/lcm ≥ zi for
certain ri’s and solve the equisatisfiable conjunction of atoms max(xi, yi)+ri ≥ zi

over the integers. Therefore, unless explicitly stated otherwise, here we will only
consider integer models and offsets.

The language of conjunctions of max-atoms of the form max(x, y)+k ≥ z is
quite expressive, and many interesting problems can be modeled by polynomially
many such max-atoms. Some simple examples follow. DL literals x+ k ≥ y
can of course be expressed as max(x, x)+k ≥ y. Equalities max(x, y)+k = z
can be written as max(x, y)+ k ≥ z ∧ z− k ≥ x ∧ z− k ≥ y. Strict
inequalities max(x, y)+k > z can be expressed as max(x, y)+k−1 ≥ z. One can
express max on both sides, as in max(x, y)+k = max(x′, y′)+k′ by introducing
a fresh variable z and writing max(x, y)+k = z ∧ max(x′, y′)+k′ = z. One
can also express different offsets on different arguments of max; for instance
max(x+5, y−3) ≥ z can be written as max(x, y′)+5 ≥ z ∧ y′+8 = y, where y′

is fresh. Furthermore, since max(e1, e2, e3) is equivalent to max(e1, max(e2, e3)),
one can express nested or larger-arity max-atoms such as max(e1, e2, e3) ≥ z by
writing max(e1, x) ≥ z ∧ max(e2, e3) = x, where x is fresh.

A less simple equivalence (see Section 5) exists with a problem used in Control
Theory for modeling Discrete Event Systems. It amounts to solving two-sided
linear max-plus systems: sets of equations of the form

max( x1+k1, . . . , xn+kn ) = max( x1+k′
1, . . . , xn+k′

n )
where all n variables of the system occur on both sides of every equation, which
makes it non-trivial to show that max-atoms can be equivalently expressed in this
form. Finding a polynomial algorithm for this problem has been open for more
than 30 years in the area of max-plus algebras [BZ06]. An elegant algorithm was
given and claimed to be polynomial in [BZ06], but unfortunately in [BNRC08]
we have given an example on which it behaves exponentially. Currently still no
polynomial algorithm is known.

Yet another equivalent problem (see again Section 5) concerns shortest paths
in directed weighted hypergraphs. In such hypergraphs, an edge goes from a set
of vertices to another vertex. Hence a natural notion of a hyperpath (from a set
of vertices to a vertex) is a tree, and a natural notion of length of the hyperpath
is the maximal length (the sum of the weights) of a path from a leaf to the
root of this tree. For arbitrary directed hypergraphs with positive or negative
weights, no polynomial algorithm for determining (the existence of) such shortest
hyperpaths has been found.

Slight increases in expressive power lead to NP-hardness. For instance, hav-
ing both max and min it is easy to express any 3-SAT problem with variables
x1 . . . xn, by: (i) an atom T > F (T , F are variables); (ii) for all xi the atoms

1 Except, possibly, for the weakly polynomial algorithm that will be given in Section 3.
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min(xi, x
′
i) = F and max(xi, x

′
i) = T ; (iii) for each clause like xp ∨ xq ∨ xr, an

atom max(xp, x
′
q , xr) ≥ T .

Altogether, decades of efforts in the hypergraph and the max-plus communi-
ties have not produced any polynomial decision procedure nor an NP-hardness
result for the different versions of the –apparently so simple– Max-atom problem.
In this paper we give several interesting new insights.

In Section 2 we first prove some relevant results on the models of sets (con-
junctions) of max-atoms: we give a small-model property, and show that the
model class is a (join semi-) lattice. These properties allow us to prove that a set
of max-atoms is unsatisfiable if, and only if, it has an unsatisfiable subset which
is right-distinct, i.e., where each variable occurs at most once as a right-hand
side of a max-atom.

In Section 3 we define max-derivations as transformation systems on states
(assignments to the variables) as a formalism for searching models, and use the
properties of the previous section to obtain a weakly polynomial algorithm for
the integers, which is also a strongly polynomial one for a relevant subclass of
problems.

In Section 4 we define a chaining inference system for max-atoms of the
form max(x1 +k1, . . . , xm +km) ≥ z, and building upon the previous results
we show that it is sound and refutation complete. Moreover, we prove that for
right-distinct sets chaining can be turned into a polynomial-time decision pro-
cedure, thus showing that the Max-atom problem is in co-NP (one only needs
to guess the small unsatisfiability certificate: the right-distinct unsatisfiable sub-
set). Since there are few interesting problems in NP ∩ co-NP that are not known
to be polynomial, this one appears to be relevant. Moreover, given the history
of problems in this class, such as deciding primality [AKS04], there is hope for
a polynomial-time algorithm.

The paper ends with the proofs of equivalence with solving two-sided lin-
ear max-plus systems and shortest paths in hypergraphs (Section 5) and the
conclusions (Section 6).

2 Models of Conjunctions of Max-atoms

The following lemma ensures that models of a set of max-atoms are invariant
under “uniform” translations:

Lemma 1. Given a set of max-atoms S defined over the variables V and an
assignment α : V → Z which is a model of S, for any d ∈ Z the assignment α′

defined by α′(x) = α(x) + d is a model of S.

Definition 1. Given a set of variables V , the size of an assignment α : V → Z is
the difference between the largest and the smallest value assigned to the variables,
i.e., size(α) = maxx,y∈V (α(x) − α(y)).

Lemma 2 (Small Model Property). If a set of max-atoms S is satisfiable,
then it has a model of size at most the sum of the absolute values of the offsets,
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i.e., at most

KS =
∑

max(x,y)+k≥z ∈ S

|k|.

Proof. We may assume that all constraints in the set are equations: replace
each max-atom max(x, y) + k ≥ z by the constraints max(x, y) + k = z ′ and
max(z, z′) = z′. The class of models does not change essentially by adding these
auxiliary constraints and variables, as one just has to add/omit interpretations
for the fresh variables. Furthermore, the sum of the absolute values of the offsets
does not change. Therefore, we may assume that S is a set of constraints of the
form max(x, y) + k = z (where possibly x and y are the same variable).

Let α be a model of S. Based on α we define a weighted graph whose vertices
are the variables. For every constraint max(x, y) + k = z, if α(x) ≥ α(y) then
we add a red edge (x, z) with weight k and a green edge (y, x) without a weight;
and otherwise, if α(y) > α(x) then we add a red edge (y, z) with weight k and
a green edge (x, y) without a weight. While changing the model, the graph will
remain all the time the same.

A red (weakly) connected component is a subgraph such that there are red
paths between any two variables in the subgraph, where the red edges may be
used in any direction. The segment of a red connected component is the range
of integers from the lowest value to the highest one assigned to the variables in
the component. The size of such a segment is at most the sum of the absolute
values of the weights of the edges in the component.

Red connected components partition the set of variables. If their segments
overlap, then already size(α) ≤ KS . If there is a gap somewhere, say of size p,
then the gap is closed by a suitable translation, e.g., by decreasing by p all values
assigned to variables above the gap. This respects all red edges and their weights
since the gap is between segments of red connected components and components
are translated as a whole. Green edges are also respected since we only close gaps
and never a variable x with initially a higher value than another variable y ends
up with a value strictly lower than y. Since all edges are respected we keep a
model, all the time closing gaps until there are no gaps left. We end up with a
model α′ without gaps and hence size(α′) ≤ KS . ut

The previous lemma gives an alternative proof of membership in NP of the
Max-atom problem: it suffices to guess a “small” assignment; checking that it is
indeed a model is trivially in P.

Lemma 3 below proves that the model class of a set of max-atoms is a (join
semi-) lattice, where the partial ordering is ≥ (pointwise ≥):

Definition 2. Given a set of variables V and assignments α1, α2 : V → Z, we
write α1 ≥ α2 if for all x ∈ V , α1(x) ≥ α2(x).

Definition 3. Given a set of variables V and two assignments α1, α2 : V → Z,
the supremum of α1 and α2, denoted by sup(α1, α2), is the assignment defined
by sup(α1, α2)(x) = max(α1(x), α2(x)) for all x ∈ V .
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Lemma 3. Given a set of max-atoms S defined over the variables V and two
assignments α1, α2 : V → Z, if α1 |= S and α2 |= S then sup(α1, α2) |= S.

Proof. Let us denote sup(α1, α2) by α∗. Assume α1 |= S and α2 |= S and let
max(x, y)+k ≥ z be an atom in S. By assumption, max(αi(x), αi(y))+k ≥ αi(z)
for i = 1, 2. Also by definition for i = 1, 2 we have α∗(x) ≥ αi(x) and α∗(y) ≥
αi(y), so max(α∗(x), α∗(y)) + k ≥ αi(z). Thus max(α∗(x), α∗(y)) + k ≥ α∗(z),
that is, the atom max(x, y) + k ≥ z is satisfied by α∗. Hence α∗ |= S. ut

Using the previous lemmas, we have the following result:

Lemma 4. Let S be a set of max-atoms, and let z be a variable such that for
some r > 1 all max-atoms with z as right-hand side are L1, ..., Lr. The set S
is satisfiable if and only if all S − {Li} (i in 1 . . . r) are satisfiable.

Proof. The “only if” implication is trivial, since S −{Li} ⊆ S for all i in 1 . . . r.
Now, for the “if” implication, let αi be a model of S − {Li}. By Lemma 1, for
every i in 2 . . . r we can assume w.l.o.g. that αi(z) = α1(z). Let us define α∗ =
sup(α1, ..., sup(αr−1, αr)...). Then α∗(z) = αi(z) for all i in 1 . . . r. Moreover,
since for all i in 1 . . . r we have in particular αi |= S − {L1, ..., Lr}, by iterating
Lemma 3, α∗ |= S − {L1, ..., Lr}. It remains to be seen that α∗ |= Li for any i
in 1 . . . r. Let thus max(x, y) + k ≥ z be Li, for a given i in 1 . . . r. Since r > 1,
there is j in 1 . . . r such that i 6= j. Since αj |= S − {Lj} and i 6= j, αj |= Li.
So max(α∗(x), α∗(y)) + k ≥ max(αj(x), αj(y)) + k ≥ αj(z) = α∗(z). Hence
α∗ |= Li. ut

The next definition and lemma will be paramount for building short certifi-
cates of unsatisfiability:

Definition 4. A set of max-atoms S is said to be right-distinct if variables
occur at most once as right-hand sides, i.e., for every two distinct max-atoms
max(x, y) + k ≥ z and max(x′, y′) + k ≥ z′ in S we have z 6= z′.

Lemma 5. Let S be a set of max-atoms. If S is unsatisfiable, then there exists
an unsatisfiable right-distinct subset S ′ ⊆ S.

Proof. Let V be the set of variables over which S is defined. Let us prove the
result by induction on N = |S|−|{z ∈ V | z appears as a right-hand side in S}|:

– Base step: N = 0. Then all variables appearing as right-hand sides are
different. So S is right-distinct, and we can take S ′ = S.

– Inductive step: N > 0. Then there is a variable which appears at least twice
as a right-hand side. Let z be such a variable. By Lemma 4, since S is
unsatisfiable, there exists an atom L ∈ S with right-hand side z such that
S − {L} is unsatisfiable. Now, by induction hypothesis on S − {L} there is
an unsatisfiable right-distinct set S ′ ⊆ S − {L} ⊂ S. ut
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3 Max-derivations

W.l.o.g. in this section max-atoms are of the form max(x, y)+k ≥ z with x 6= z,
y 6= z. This can be assumed by removing trivial contradictions max(x, x) + k ≥
x (k < 0), trivial tautologies max(x, y) + k ≥ x (k ≥ 0), and by replacing
max(x, y) + k ≥ x by max(y, y) + k ≥ x if k < 0 and x 6= y.

Definition 5. Given a set of max-atoms S defined over the variables V and two
assignments α, α′, we write α →S α′ (or simply α → α′, if S is understood from
the context) if there is a max-atom max(x, y) + k ≥ z ∈ S such that:

1. α′(z) = max(α(x), α(y)) + k
2. α′(z) < α(z) (hence we say that z decreases in this step)
3. α′(u) = α(u) for all u ∈ V , u 6= z.

Any sequence of steps α0 → α1 → · · · is called a max-derivation for S.

Lemma 6. Let S be a set of max-atoms defined over the variables V . An as-
signment α : V → Z is a model for S if and only if α is final, i.e., there is no
α′ such that α → α′.

The following lemma expresses that max-derivations, while decreasing vari-
ables, never “break through” any model:

Lemma 7. Let S be a set of max-atoms and let α be a model of S. If α0 →
· · · → αm and α0 ≥ α, then αm ≥ α.

Proof. By induction over m, the length of the derivation. For m = 0 there is
nothing to prove. Now, if m > 0 the step α0 → α1 is by an atom max(x, y)+k ≥
z. Let us prove that α1 ≥ α. We only need to show that the inequality holds for
the variable that changes, which is z; and indeed α1(z) = max(α0(x), α0(y)) +
k ≥ max(α(x), α(y)) + k ≥ α(z). Now, by induction hypothesis αm ≥ α. ut

The previous lemma, together with the Small Model Property (Lemma 2),
provides us with a weakly polynomial algorithm, i.e., an algorithm whose runtime
is polynomial in the input size if numbers are encoded in unary.

Theorem 1. The Max-atom problem over the integers is weakly polynomial.

Proof. Let S be a conjunction of max-atoms, with variables V , where |V | = n.
For deciding the satisfiability of S one can construct an arbitrary max-derivation,
starting, e.g., from the assignment α0 with α0(x) = 0 for all x in V . At each
step, one variable decreases by at least one. If S is satisfiable, by the Small Model
Property and by Lemma 1, there is a model α such that −KS ≤ α(x) ≤ 0 for
all x in V . Moreover, by the previous lemma, no variable x will ever get lower
than α(x) in the derivation. Altogether this means that, if no model is found
after n · KS steps, then S is unsatisfiable. ut
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Note that the previous result does not directly extend to the case of the
rationals since the transformation described in the introduction may produce an
exponential blow-up in the value of the offsets.

As a corollary of the proof of the previous theorem, we obtain a PTIME
decision procedure for sets of atoms of the forms max(x, y) ≥ z or max(x, y) > z.
More generally, this also applies to K-bounded sets, where in S the absolute
values of all offsets are bounded by a given constant K.

Example 1. Let S be the following set of max-atoms:

S = {u − 10 ≥ x, z ≥ y, max(x, y) − 1 ≥ z, max(x, u) + 25 ≥ z},

and let α0 be the assignment with α0(x) = α0(y) = α0(z) = α0(u) = 0. This
initial assignment α0 violates u − 10 ≥ x, which allows us to decrease x and
assign it the value −10: in terms of max-derivations α0 → α1, where α1 is the
assignment with α1(x) = −10, α1(y) = α1(z) = α1(u) = 0.

Now the assignment α1 only violates max(x, y)−1 ≥ z, which forces z to take
the value −1: in terms of max-derivations, α1 → α2, where α2 is the assignment
with α2(x) = −10, α2(y) = 0, α2(z) = −1, α2(u) = 0. Then α2 only violates
z ≥ y, which forces y to take the value −1 too: α2 → α3, where α3 is the
assignment with α3(x) = −10, α3(y) = α3(z) = −1, α3(u) = 0.

It is easy to see that 11 iterations of each of the last two steps will be needed
to find a model: finally we will have a derivation α0 →∗ α with α(x) = −10,
α(y) = α(z) = −11, α(u) = 0; since there is no α′ such that α → α′, α is a
model of S, hence S is satisfiable.

Notice that, if we replace 10 in S by larger powers of 10, we get a family
of inputs whose sizes increase linearly, but for which the number of steps of
the max-derivations reaching to a model grows exponentially. Since the number
of steps is polynomial in the value of the offsets, and not in the sizes of the
offsets, the algorithm based on max-derivations can be weakly polynomial but
not polynomial.

Now, if we consider the set of max-atoms S ′ = S ∪ {max(x, y) + 9 ≥ u},
we note that α above does not satisfy the new constraint. So we can decrease u
and assign it the value −1, which makes u − 10 ≥ x false and forces x to take
the value −11. Then max(x, y) − 1 ≥ z is violated, and z is decreased to −12.
Finally z ≥ y becomes false, so y is assigned −12. The loop of these four steps
can be repeated over and over, making all variables decrease indefinitely. Thus,
S′ is unsatisfiable as no model is found within the bound of n · KS steps given
in the previous theorem.

4 Chaining Inference System and Membership in Co-NP

In this section we deal with the (equivalent in expressive power) language of
max-atoms of the form max(x1+k1, ..., xn+kn) ≥ z. Here, T always stands for a
max-expression of the form max(y1+k′

1, . . . , ym+k′
m) with m ≥ 0; when written

inside a max-expression the whole expression is considered flattened, so then
max(T, z+k) represents max( y1+k′

1, . . . , ym+k′
m, z+k ).



8

Definition 6. The Max-chaining inference rule is the following:

max(x1+k1, ..., xn+kn) ≥ y max(T, y+k) ≥ z
max(T, x1+k1+k, . . . , xn+kn+k) ≥ z

(Max-chaining)

Definition 7. The Max-atom simplification rules are as follows:

max(T, x+k) ≥ x
max(T ) ≥ x

if k < 0 (Max-atom simplification-1)

max(T, x+k, x+k′) ≥ y
max(T, x+k′) ≥ y

if k ≤ k′ (Max-atom simplification-2)

Theorem 2. The Max-chaining rule and the Max-atom simplification rules are
sound, i.e., the conclusions of the inference rules are logical consequences of their
respective premises. Moreover, for each one of the Max-atom simplification rules,
the conclusion and the premise are logically equivalent.

Theorem 3. Max-chaining, together with the Max-atom simplifications rules,
is refutation complete. That is, if S is an unsatisfiable set of max-atoms that is
closed under the Max-chaining and Max-atom simplification rules, then there is
a contradiction in S, i.e., a max-atom of the form max() ≥ x.

Proof. We prove a slightly stronger result, namely the refutation completeness
with a concrete ordered application strategy, assuming an ordering on the vari-
ables x1 > . . . > xn occurring in S. We prove that if there is no contradiction in
S then S is satisfiable. This is done by induction on n.

Base case: if n = 1 all atoms in S are of the form max(x+k1, . . . , x+km) ≥ x,
with m ≥ 1, and where at least one of the ki is positive (otherwise Max-atom
simplification-1 generates the contradiction max() ≥ x). Therefore these max-
atoms are tautologies and hence satisfiable.

Induction step. Assume n > 1. Let S1 be the subset of S of its max-atoms in
which the variable x1 occurs. Let SR1 and SL1 be the subsets of S1 of max-
atoms in which x1 occurs exactly once, only at the right-hand sides and only
at the left-hand sides, respectively. By an easy induction applying the previous
theorem, all max-atoms in S1 are logical consequences of the ones in SR1 and
SL1, since S is closed under the Max-Simplification rules. Let S ′

1 be the set of the
|SR1|·|SL1| max-atoms that can be obtained by applying the max-chaining steps
on x1 between max-atoms of these two sets. Now let S2 be the set S \ S1. Note
that it is closed under the Max-chaining and Max-atom simplification rules and
that S2 ⊇ S′

1. Since S2 has one variable (x1) less than S, by induction hypothesis
there exists a model α for S2.

We will now extend α to a model α′ for S. That is, we will have α′(xi) = α(xi)
for all i > 1, and in addition α′ will also be defined for x1, in such a way that
α′ |= SR1∪SL1, which implies α′ |= S1, and hence, since α |= S2, we will obtain
α′ |= S.
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Let SR1 be of the form { T1 ≥ x1, . . . , Tm ≥ x1 } (m > 0), and let α(T )
denote the evaluation of T under the assignment α. 2 Now we define α′(x1) to
be min( α(T1), . . . , α(Tm) ). W.l.o.g., say, α′(x1) = α(T1). Let T1 be of the form
max(y1 +k1, . . . , ym +km), so that α′(x1) = max(α(y1)+k1, . . . , α(ym)+km).
Clearly α′ satisfies by construction all atoms in SR1. It only remains to show
that α′ is also a model of SL1, i.e., of the atoms of the form max(x1+k, T ) ≥ z.
For each such atom in SL1, the corresponding conclusion by max-chaining with
the atom max(y1+k1, . . . , ym+km) ≥ x1 is the atom max(y1+k1+k, . . . , ym+
km +k, T ) ≥ z, which is in S2 and is hence satisfied by α. So, as α′(x1) =
max(α(y1)+k1, . . . , α(ym)+km), also max(x1+k, T ) ≥ z is satisfied by α′. ut

Notice that the algorithm described in the proof of the previous theorem is
a generalization of the Fourier-Motzkin elimination procedure.

Example 2. Let us consider again the system introduced in Example 1 extended
with max(x, y) + 9 ≥ u, which makes it unsatisfiable. Atoms are written now in
the format used in this section.

{ max(u − 10) ≥ x, max(z) ≥ y,
max(x − 1, y − 1) ≥ z, max(x + 25, u + 25) ≥ z
max(x + 9, y + 9) ≥ u}

By applying a closure strategy as described in the proof of the previous theorem,
we get a contradiction:

Rule Set of Max-Atoms
max(u − 10) ≥ x, max(z) ≥ y,
max(x − 1, y − 1) ≥ z, max(x + 25, u + 25) ≥ z
max(x + 9, y + 9) ≥ u

max-chaining x max(z) ≥ y, max(u − 11, y − 1) ≥ z,
max(u + 15, u + 25) ≥ z, max(u − 1, y + 9) ≥ u

atom-simplification-2 max(z) ≥ y, max(u − 11, y − 1) ≥ z,
max(u + 25) ≥ z, max(u − 1, y + 9) ≥ u

atom-simplification-1 max(z) ≥ y, max(u − 11, y − 1) ≥ z,
max(u + 25) ≥ z, max(y + 9) ≥ u

max-chaining y max(u − 11, z − 1) ≥ z, max(u + 25) ≥ z,
max(z + 9) ≥ u

atom-simplification-1 max(u − 11) ≥ z, max(u + 25) ≥ z, max(z + 9) ≥ u
max-chaining z max(u − 2) ≥ u, max(u + 34) ≥ u
atom-simplification-1 max() ≥ u

Theorem 4. The Max-atom problem for right-distinct sets is decidable in poly-
nomial time.

2 Note that when SR1 = ∅, if SL1 has the form { max(x1+k1, T1) ≥ z1, . . . , max(x1+
kn, Tn) ≥ zn } (n > 0) one just needs to define α′(x1) = max( α(z1)−k1, . . . , α(zn)−
kn ). If SL1 = ∅ too, then α′(x1) can be defined arbitrarily.
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Proof. For right-distinct sets, the closure process eliminating variables one by
one, as explained in the refutation completeness proof, can be done in polynomial
time if the Max-atom simplification rules are applied eagerly. The proof shows
that after each Max-atom simplification step, its premise can be ignored (i.e.,
removed) once the conclusion has been added, and that tautologies of the form
max(. . . , x+k, . . .) ≥ x with k ≥ 0 can also be ignored. Eliminating one variable
x can then be done in polynomial time, since there is only one leftmost premise of
chaining with x. After eliminating x, a new right-distinct set of max-atoms with
one variable less and at least one atom less is obtained, in which each atom has
arity bounded by the number of variables and the size of the offsets is bounded
by the sum of the sizes of the offsets in the input. ut

Example 3. In the previous example, an unsatisfiable right-distinct subset is:

{ max(u−10) ≥ x, max(z) ≥ y, max(x−1, y−1) ≥ z, max(x+9, y+9) ≥ u }.

Applying the polynomial-time closure we get a contradiction:

Rule Set of Max-Atoms
max(u − 10) ≥ x
max(z) ≥ y
max(x − 1, y − 1) ≥ z
max(x + 9, y + 9) ≥ u

max-chaining x max(z) ≥ y
max(u − 11, y − 1) ≥ z
max(u − 1, y + 9) ≥ u

atom-simplification-1 max(z) ≥ y
max(u − 11, y − 1) ≥ z
max(y + 9) ≥ u

max-chaining y max(u − 11, z − 1) ≥ z
max(z + 9) ≥ u

atom-simplification-1 max(u − 11) ≥ z
max(z + 9) ≥ u

max-chaining z max(u − 2) ≥ u
atom-simplification-1 max() ≥ u

Theorem 5. The Max-atom problem is in co-NP.

Proof. By Lemma 5, if a set of max-atoms is unsatisfiable, it has a right-distinct
unsatisfiable subset. This subset is a small unsatisfiability certificate, which, by
the previous theorem, can be verified in polynomial time. ut

Since there are few interesting problems in NP ∩ co-NP that are not known
to be polynomial, this problem (in its several equivalent forms) appears to be
relevant. Moreover, given the history of problems in this class, such as deciding
primality [AKS04], there is hope for a polynomial-time algorithm.
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5 PTIME Equivalences

In this section we show the polynomial reducibility between the Max-atom prob-
lem, the satisfiability problem for two-sided linear max-plus systems, and the
existence problem of shortest hyperpaths in hypergraphs.

Theorem 6. The Max-atom problem and the problem of satisfiability of a two-
sided linear max-plus system are polynomially reducible to each other.

Proof. Reducing this kind of max-equations to max-atoms can be done as ex-
plained in the introduction. For the reverse reduction, by the Small Model Prop-
erty, if S is satisfiable then it has a model α such that size(α) ≤ KS (notice that
KS can be computed in polynomial time). Let V = {x1, . . . , xn} be the set of
variables over which S is defined. Now, for each variable xi, we consider the
equation

max( x1 − 1, ..., xi−1 − 1, xi + KS, xi+1 − 1, ..., xn − 1) =
max( x1, ..., xi−1, xi + KS, xi+1, ..., xn),

which is equivalent to xi + KS ≥ xj , i.e., KS ≥ xj − xi for all j in 1 . . . n, j 6= i.
Let S′

0 be the two-sided linear max-plus system consisting of these n equations.
Now we add new equations to S ′

0 to obtain a system S′ which is equisatisfiable
to S. This is achieved by replacing every max-atom max(xi1 , xi2) + k ≥ xi3 in
S by the equation

max( xi1 + k, xi2 + k, xi3 , xj − KS − |k| − 1, ...) =
max( xi1 + k, xi2 + k, xi3 − 1, xj − KS − |k| − 1, ...),

where j ranges over all variable indices different from i1, i2, i3 (if any of the
indices i1, i2 or i3 coincide, an obvious simplification must be applied). The
offset −KS − |k| − 1 has been chosen so that variables with this offset do not
play a role in the maxima. If we leave them out, it is clear that the resulting
constraint max(xi1 + k, xi2 + k, xi3) = max(xi1 + k, xi2 + k, xi3 − 1) is equivalent
to the max-atom max(xi1 , xi2 ) + k ≥ xi3 . ut

For the relationship with shortest hyperpaths, first some preliminary notions
on hypergraphs are presented. We do this by contrasting them with the analogous
concepts for graphs.

A (directed, weighted) graph is a tuple G = (V, E, W ) where V is the set of
vertices, E is the set of edges and W : E → Z is the weight function. Each edge
is a pair (s, t) from a vertex s ∈ V called the source vertex to a vertex t ∈ V
called the target vertex.

A (directed, weighted) hypergraph is a tuple H = (V, E, W ) where V is the
set of vertices, E is the set of hyperedges and W : E → Z is the weight function.
Each hyperedge is a pair (S, t) from a non-empty finite subset of vertices S ⊆ V
called the source set to a vertex t ∈ V called the target vertex. Thus, a graph
is a hypergraph in which for all hyperedges the source set consists of a single
element.



12

Given a graph G = (V, E, W ) and vertices x, y ∈ V , a path from x to y is
a sequence of edges defined recursively as follows: (i) if y = x, then the empty
sequence ∅ is a path from x to y; (ii) if there is an edge (z, y) ∈ E and a path sx,z

from x to z, then the sequence sx,y obtained by appending (z, y) to the sequence
sx,z is a path from x to y.

Given a hypergraph H = (V, E, W ), a subset of vertices X ⊆ V , X 6= ∅
and y ∈ V , a hyperpath from X to y is a tree defined recursively as follows: (i)
if y ∈ X , then the empty tree ∅ is a hyperpath from X to y; (ii) if there is a
hyperedge (Z, y) ∈ E and hyperpaths tX,zi

from X to zi for each zi ∈ Z, then
the tree tX,y with root (Z, y) and children the trees tX,zi

for each vertex zi ∈ Z,
is a hyperpath from X to y. Therefore, when viewing graphs as hypergraphs, a
path is just a hyperpath where the tree has degenerated into a sequence of edges.
This notion of hyperpath corresponds to the unfolded hyperpaths or hyperpath
trees of [AIN92].

Using the weight function W on the edges E of a graph, one can extend the
notion of weight to paths. Namely, the weight of a path p, denoted by ω(p), can
be defined naturally as follows: (i) if p is ∅, then ω(p) = 0; (ii) if p is the result
of appending the edge e to the path q, then ω(p) = W (e) + ω(q).

On the other hand, in the case of hypergraphs several notions of hyperpath
weight have been studied [AIN92]. In this paper we consider the one of rank (also
called the distance [GLPN93]) of a hyperpath p, which is defined as: (i) if p is ∅,
then ω(p) = 0; (ii) if p is a tree with root the hyperedge e and children p1, ..., pm,
then ω(p) = W (e) + max

(

ω(p1), . . . , ω(pm)
)

. This natural notion intuitively
corresponds to the heaviest path in the tree.

From now on, we will assume that hypergraphs are finite, i.e., the set of
vertices V is finite.

Example 4. Fig. 1 (a) shows an example of a hypergraph. E.g., the hyperedge
({u}, x) has weight −10, while the weight of the hyperedge ({u, x}, z) is 25 . The
empty tree is a hyperpath from {u, y} to y with rank 0; Fig. 1 (b) shows another
hyperpath from {u, y} to y, with rank 24.

xu

({x, y}, z)

({u, x}, z)

0

25

−10

z

y

−1

(a) (b)

({u}, x)

({u}, x) ({z}, y)

({z}, y)

Fig. 1. Example of hypergraph.
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We now show that the Max-atom problem and the problem of existence of
shortest hyperpaths (i.e., with the least rank) in hypergraphs are equivalent, in
the sense that they can polynomially be reduced to one another.

Definition 8. Let H = (V, E, W ) be a hypergraph. Given a subset of vertices
X ⊆ V , X 6= ∅, the distance function δX : V → Z ∪ {±∞} is defined as

δX(y) = inf{ω(tX,y) | tX,y is a hyperpath from X to y},

where for S ⊆ R, we denote by inf(S) ∈ R ∪ {±∞} the infimum of S.
The distance function δX is said to be well-defined if δX(y) > −∞ for all

vertices y ∈ V .

With this definition, intuitively +∞ means “no hyperpath” and −∞ is re-
lated to negative cycles, for instance in the presence of an hyperedge such as
W ({x}, x) = −1.

Our goal is to show that the satisfiability of sets of max-atoms is equivalent
to the problem of, given a hypergraph H = (V, E, W ), decide if for all non-empty
X ⊆ V the distance function δX is well-defined, i.e., for all y ∈ V there exists a
shortest hyperpath from X to y. To that end, we need the following lemmas:

Lemma 8. Let H = (V, E, W ) be a hypergraph and X ⊆ V , X 6= ∅ be a set
of vertices such that −∞ < δX(y) < +∞ for all y ∈ V . If (Z, y) ∈ E, then
δX(y) ≤ W (Z, y) + maxz∈Z(δX (z)).

Proof. By hypothesis for all y ∈ V we have −∞ < δX(y) < +∞. Thus, in
particular, for all z ∈ Z there exists a hyperpath tz from X to z such that
ω(tz) = δX(z). Now the tree t with root (Z, y) and children the trees tz for each
z ∈ Z is a hyperpath from X to y. So δX(y) ≤ ω(t) = W (Z, y)+maxz∈Z(ω(tz)) =
W (Z, y) + maxz∈Z(δX (z)). ut

Lemma 9. Let H = (V, E, W ) be a hypergraph and α : V → Z be such that
α(y) ≤ maxz∈Z(α(z))+W (Z, y) for all hyperedges (Z, y) ∈ E. If t is a hyperpath
from a non-empty X ⊆ V to y ∈ V , then α(y) ≤ maxx∈X(α(x)) + ω(t).

Proof. Let us prove it by induction over the depth of t. In the base case t =
∅, and therefore y ∈ X . Since ω(∅) = 0, trivially α(y) ≤ maxx∈X(α(x)) =
maxx∈X(α(x)) + ω(∅). Now, if t has positive depth, its root is a hyperedge
(Z, y) ∈ E, and its children are trees t1, ..., tm connecting X to z1, ..., zm

respectively, where Z = {z1, ..., zm}. By induction hypothesis, for each i in 1 . . .m
we have α(zi) ≤ maxx∈X(α(x)) + ω(ti). Now:

α(y) ≤ max
1≤i≤n

(α(zi)) + W (Z, y) ≤ max
1≤i≤n

(max
x∈X

(α(x)) + ω(ti)) + W (Z, y) =

= max
x∈X

(α(x)) + max
1≤i≤n

(ω(ti)) + W (Z, y) = max
x∈X

(α(x)) + ω(t). ut

Finally we are in condition to prove the equivalence of the two problems. For
convenience, in what remains of this section we assume max-atoms to be of the
form max1≤i≤n(xi) + k ≥ z.
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Theorem 7. The Max-atom problem and the problem of well-definedness of the
distance functions of all subsets of vertices of a hypergraph are polynomially
reducible to each other.

Proof. First we prove that, given a set S of max-atoms, one can compute in
polynomial time a hypergraph H(S) whose distance functions are well-defined
if and only if S is satisfiable.

Let S be a set of max-atoms over the variables V . We can assume w.l.o.g. that
there exists a variable x ∈ V such that there are max-atoms x ≥ y ∈ S for every
y ∈ V (adding a fresh variable with these properties preserves satisfiability).
The hypergraph H(S) is defined as follows: its set of vertices is V ; and for each
max-atom maxz∈Z(z) + k ≥ y, we define a hyperedge e = (Z, y) with weight
W (e) = k.

Let us see that the distance function δx in H(S) is well-defined if and only if
S is satisfiable (we write δx instead of δ{x} for the sake of clarity). Let us prove
that if δx is well-defined then S is satisfiable. By construction, for each max-atom
maxz∈Z(z) + k ≥ y ∈ S there exists a hyperedge e = (Z, y) in H(S) with weight
W (e) = k. Now, since δx is well-defined and all vertices are hyperconnected to
{x}, by Lemma 8 we have maxz∈Z(δx(z)) + W (Z, y) ≥ δx(y), and so δx |= S.
Let us prove the converse, i.e., that if S is satisfiable then δx is well-defined, by
contradiction. Let us assume that δx is not well-defined and let α be a model of
S. Then there is y ∈ V such that δx(y) = −∞. This implies that for all w ∈ R

there exists a hyperpath tw from {x} to y such that ω(tw) < w; in particular, this
holds for w = α(y)−α(x). As α |= S, by Lemma 9 we have α(x)+ω(tw) ≥ α(y),
i.e., ω(tw) ≥ α(y) − α(x), which is a contradiction.

Finally, as in H(S) all vertices are hyperconnected to {x} by a hyperedge, it
is clear that δx is well-defined if and only if so is δX for all X ⊆ V , X 6= ∅.

Secondly, let us prove that given a hypergraph H , one can compute in poly-
nomial time a set S(H) of max-atoms such that H has a well-defined distance
function δX for all X ⊆ V , X 6= ∅ if and only if S(H) is satisfiable. Given
H = (V, E, W ), the variables of S(H) are V , the vertices of H ; and for each
hyperedge (Z, y) ∈ E, we consider the max-atom maxz∈Z(z) + W (Z, y) ≥ y.
The proof concludes by observing that H has a well-defined distance function
δX for all X ⊆ V , X 6= ∅ if and only if the same property holds for H(S(H)), if
and only if S(H) is satisfiable. ut

Example 5. The hypergraph corresponding to the set of max-atoms considered
in Example 1 is the one shown in Example 4.

6 Conclusions and Future Directions

The contributions of this paper can be summarized as follows:

– First, we have shown that the Max-atom problem is in NP ∩ co-NP. As
no PTIME algorithm for solving this problem has been found yet, this is
relevant since there are few interesting problems in NP ∩ co-NP that are not
known to be polynomial.
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– We have given a weakly polynomial decision procedure for the problem (when
the offsets are integers). This algorithm becomes polynomial under more
restrictive conditions on the input, e.g. by imposing a bound on offsets.

– Finally, we have shown the equivalence of deciding the Max-atom problem
with two other at first sight unrelated problems: namely, (i) the satisfiability
of two-sided linear max-plus systems of equations, used in Control Theory
for modeling Discrete Event Systems; and (ii) the existence for a given hy-
pergraph of shortest paths from any non-empty subset of vertices to any
vertex. Finding a PTIME algorithm for these problems has been open in the
respective areas for more than 30 years, and is still unsolved.

As regards future work, in the short term we would like to find a weakly
polynomial algorithm when the offsets may be arbitrary rational numbers. This
would perhaps give new insights about the long-term goal of finding a polynomial
algorithm for deciding the satisfiability of sets of max-atoms.

As noticed by an anonymous referee, the Max-atom problem is a special case
of the problem of finding a super-fixed point of a min-max function. A super-
fixed point of a function f on a (partially) ordered set A is an a ∈ A such that
f(a) ≥ a. Now, for instance, the satisfiability of S in Example 1 from Section 3
is equivalent to finding a super-fixed point of

f(u, x, y, z) = (u, u − 10, z, min(max(x, y) − 1, max(x, u) + 25))

with respect to the coordinate-wise partial order. More information on min-max
functions can be found in [G94]. The referee further mentioned a connection with
game theory in [C92]. We gratefully acknowledge these suggestions for future
research.
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