
Semiring-Induced Propositional Logic:
Definition and Basic Algorithms ∗ †

Javier Larrosa, Albert Oliveras and Enric Rodrı́guez-Carbonell
Technical University of Catalonia

Barcelona, Spain
larrosa,oliveras,erodri@lsi.upc.edu

Abstract

In this paper we introduce an extension of propositional logic that allows clauses to be weighted
with values from a generic semiring. The main interest of this extension is that different instantiations
of the semiring model different interesting computational problems such as finding a model, counting
the number of models, finding the best model with respect to an objective function, finding the best
model with respect to several independent objective functions, or finding the set of pareto-optimal
models with respect to several objective functions.

Then we show that this framework unifies several solving techniques and, even more importantly,
rephrases them from an algorithmic language to a logical language. As a result, several solving
techniques can be trivially and elegantly transferred from one computational problem to another. As
an example, we extend the basic DPLL algorithm to our framework producing an algorithm that we
call SDPLL. Then we enhance the basic SDPLL in order to incorporate the three features that are
common in all modern SAT solvers: backjumping, learning and restarts.

As a result, we obtain an extremely simple algorithm that captures, unifies and extends in a well-
defined logical language several techniques that are valid for arbitrary semirings.

Keywords: semiring, marginalization problem, DPLL

1 Introduction

The importance of semirings to unify apparently unrelated combinatorial computational problems has
been known and studied for a long time [28, 27, 5, 19, 1]. Some well-known unifiable problems occur
in (soft) constraint networks, probabilistic networks or relational databases, each of them having many
real-life domains of application.

There are many advantages for semiring unification. On the one hand, it provides a very general
formalism for algorithmic development: instead of re-discovering the same technique for each particular
type of problem, it can be formulated in an abstract form and immediately applied to any problem that
fits into the framework (e.g. Adaptive Consistency [12], Directional Resolution [11], Nonserial Dynamic
Programming [3], the basic pseudo-boolean method [9], and many others [1] are essentially independent
developments of the same algorithm). On the other hand, the unification provides a convenient formalism
for algorithmic generalization (see e.g. [8] and [29]).

In this paper we study this idea in the context of propositional logic. First of all, we extend propo-
sitional logic by incorporating a generic semiring and allowing boolean formulas to be weighted with
semiring values. We define its semantics and extend classical notions such as logical implication (|=) or
equivalence (≡).

Then we show that semiring-induced propositional logic can model in a natural way very important
combinatorial problems over boolean variables such as finding a model (SAT), counting the number of
∗Partially supported by the Spanish Ministry of Science and Innovation through the projects TIN2006-15387-C03-02 and

TIN2007-68093-C02-01.
†A version of this paper extended with proofs is available at http://www.lsi.upc.edu/˜erodri/lpar16ex.

pdf

1

larrosa,oliveras,erodri@lsi.upc.edu
http://www.lsi.upc.edu/~erodri/lpar16ex.pdf
http://www.lsi.upc.edu/~erodri/lpar16ex.pdf

Semiring-Induced Propositional Logic Larrosa, Oliveras and Rodrı́guez-Carbonell

semiring A ⊕ ⊗ 0 1 applic.
Abool {0,1} ∨ ∧ 0 1 SAT
Acount R+ + × 0 1 #SAT
Amax× R+ max × 0 1 Max-SAT
Amin+ R+∪{∞} min + ∞ 0 Max-SAT
A n An ⊕n ⊗n (0, . . . ,0) (1, . . . ,1)
A f A f ⊕ f ⊗ f {0} {1}

Figure 1: The first four rows show four different semirings with immediate application. The last two rows
show two different semiring constructors (multidimensional and frontier extensions) which are relevant
to model multi-criteria problems.

models (#SAT), finding the best model with respect to an objective function, finding the best model with
respect to several independent objective functions or finding the set of pareto-optimal models with respect
to several objective functions.

The principal advantage of the extension is conceptual because techniques for these problems are
mostly defined in a procedural way and it is difficult to see the logic that is behind the execution of
the procedure (see e.g. [7, 13, 30]). With our approach, solving techniques can be explained in logical
terms. As an example, we extend the basic DPLL algorithm [10] to semiring-induced logic producing
an algorithm that we call SDPLL. When SDPLL is instantiated with different semirings to model, for
example, SAT, #SAT or Max-SAT, it is faithful to the simplest algorithms for each problem [10, 4, 7].
Therefore, we show that these algorithms were in fact the same algorithm modulo the corresponding
semiring. Additionally, it immediately provides basic enumeration algorithms to not-so-studied problems
such as multi-objective model optimization. Then, we enhance the basic SDPLL with three features that
are present in all modern SAT solvers [22]: backjumping, learning and restarts. Thus, we show that they
are also valid in our much more general framework.

2 Semirings

In this paper, a semiring A = (A,⊕,⊗) consists of a non-empty set A together with two binary operations
⊕ and ⊗ such that both operations are commutative and associative, and ⊗ distributes over ⊕1.

If there is an element 0 ∈ A such that 0⊕a = a and 0⊗a = 0 for all a ∈ A then A is a semiring with
zero element. Similarly, if there is an element 1 ∈ A such that 1⊗a = a for all a ∈ A then A is a semiring
with unit element. It can be assumed without loss of generality that a semiring has a zero element, as
noted in [19]. Semirings admit at most one zero and one unit element.

Given a semiring A , a binary relation ≤A can be defined as follows: for any a,b ∈ A, a≤A b holds
if there exists c ∈ A such that a⊕ c = b. This relation can be shown to be a pre-order [19]; i.e., i) for all
a ∈ A, a≤A a (reflexivity), and ii) if a≤A b and b≤A c then a≤A c (transitivity). In this paper we will
restrict ourselves to semirings with zero and unit elements, noted A = (A,⊕,⊗,0,1), whose pre-order
is a partial order (i.e., it holds that a≤A b and b≤A a implies a = b).

The semiring order also has the properties that iii) a≤A b and a′ ≤A b′ imply a⊕a′ ≤A b⊕b′ and
a⊗ a′ ≤A b⊗ b′; and iv) for all a ∈ A, 0 ≤A a. As a consequence, ⊕ increases monotonically (i.e.,
a ≤A a⊕ b); and when applied to values smaller than or equal to 1, then ⊗ decreases monotonically
(i.e., if a,b≤A 1 then a⊗b≤A a). As usual, a 6= b and a≤A b will be noted as a <A b.

1This definition corresponds to what is called a commutative semiring elsewhere [15].

2

Semiring-Induced Propositional Logic Larrosa, Oliveras and Rodrı́guez-Carbonell

The first four rows of Figure 1 summarize well-known semirings that will be used to highlight the
expressivity of semiring-induced logic. The first column indicates the semiring name, columns 2− 6
show their components and column 7 indicates their paradigmatic application (to be seen in Section 4).
In all of them the induced order ≤A is the usual (total) order, except for Amin+ where it is reversed (e.g.
5≤Amin+

2).
Sometimes it is useful to derive a new semiring from an already existing one. In the following we

consider two useful extensions (they are summarized in the last two rows of Figure 1). The multidimen-
sional extension generates a new semiring whose values are vectors of semiring values.

Definition 1. Let A = (A,⊕,⊗,0,1) be a semiring. Its multidimensional extension [19] is A n = (An,
⊕n, ⊗n, 0n, 1n) where

• An = A× . . .×A

• (a1, . . . ,an)⊕n (b1, . . . ,bn) = (a1⊕b1, . . . ,an⊕bn)

• (a1, . . . ,an)⊗n (b1, . . . ,bn) = (a1⊗b1, . . . ,an⊗bn)

• 0n = (0, . . . ,0)

• 1n = (1, . . . ,1)

In this case, (a1, . . . ,an) ≤A n (b1, . . . ,bn) if and only if ∀1≤ j≤n, a j ≤A b j. Observe that if ≤A is
a total order then ≤A n is the usual product order in a product of posets. If a ≤A n b one says that b
dominates a.

Given a semiring, the frontier extension [6] generates a new semiring whose values are sets of non-
dominated values from the original semiring.

Definition 2. Let A = (A,⊕,⊗,0,1) be a semiring. The set of non-dominated elements of S ⊆ A is
defined as

||S||= {v ∈ S | ∀w∈S v≮ w} .
The frontier extension of A is A f =(A f , ⊕ f , ⊗ f , 0 f , 1 f), where

• A f = {||S|| | S⊆ A}

• S⊕ f R = ||S∪R||

• S⊗ f R = ||{a⊗b | a ∈ S,b ∈ R}||

• 0 f = {0}

• 1 f = {1}

In this case S ≤A f R holds if and only if for all a ∈ S there is b ∈ R such that a ≤A b. This is the
so-called frontier order widely used in multi-objective optimization.

Example 1. Consider semiring Abool = ({0,1}, ∨, ∧, 0, 1). Its bidimensional extension A 2
bool is the

set of two-dimensional bit vectors such as a = (0,1) and b = (1,1). Note that a ≤A 2
bool

b as 0 ≤Abool
1

and 1≤Abool
1, a∨2 b = (0∨1,1∨1) = (1,1) and a∧2 b = (0∧1,1∧1) = (0,1). The frontier extension

of A 2
bool is (A 2

bool)
f . Its values are sets of non-dominated two-dimensional bit vectors such as a =

{(0,1),(1,0)} or b = {(1,1)}. The set {(0,1),(1,1)} does not belong to the semiring as (1,1) dominates
(0,1). Note that a ≤(A 2

bool)
f b as every element of a is dominated by an element of b. Furthermore,

a∨2 f b = ||{(0,1),(1,0),(1,1)}||= {(1,1)} and a∧2 f b = {(0,1),(1,0)}.

3

Semiring-Induced Propositional Logic Larrosa, Oliveras and Rodrı́guez-Carbonell

3 Semiring-Induced Propositional Logic

3.1 Syntax

Let P be a finite set of propositional symbols that will remain fixed throughout the paper. If p ∈ P, then
p and ¬p are literals. The negation of a literal l, written ¬l, denotes ¬p if l is p, and p if l is ¬p. A
clause C is a (possibly empty) finite disjunction of literals. A unit clause consists of a single literal. The
empty clause is noted 2.

A (partial truth) assignment M is a set of literals such that if l is in M, then ¬l is not. A literal l is
true in M if l ∈M, is false in M if ¬l ∈M, and is undefined in M otherwise. The assignment M is total
if every symbol of P is defined in M. The set of total assignments is noted M .

An assignment M satisfies a clause C if at least one of its literals is true in M. It falsifies C if all the
literals of C are false in M. Otherwise, C is undefined in M. Note that the empty clause is falsified by
any M.

Let A = (A,⊕,⊗,0,1) be a semiring. A weighted clause is a pair (C,w) such that C is a clause and
w ∈ A with w <A 1 denotes its weight. A semiring-induced propositional formula is a set of weighted
clauses F = {(C1,w1), . . . ,(Ce,we)}2.

3.2 Semantics

Definition 3. Consider a formula F = {(C1,w1), . . ., (Ce,we)}. Each weighted clause (Ci,wi) defines a
function over total assignments,

φi(M) =

{
wi : M falsifies Ci

1 : otherwise

The formula F defines an evaluation function as

φA ,F(M) =
e⊗

i=1

φi(M) ,

where M is a total assignment and φi is the function induced by (Ci,wi). A total assignment M such that
φA ,F(M)> 0 is called a model of F.

Definition 4. The pair (A ,F) defines the marginalization problem consisting in finding

mrg(A ,F) =
⊕

M∈M
φA ,F(M)

As we will see, mrg is a very general computational problem. Note that, since ∀a∈A 0⊕a = a, only
models of F contribute to mrg.

The following two definitions present two important relations among formulas. The effect of the α

value on the definitions will be clear in Section 5. For the moment, it is just fine to ignore it or, what is
equivalent, assume α = 0.

Definition 5. Let F and F ′ be two formulas over a common set of propositional symbols, and α a
semiring value. We say that F A -implies F ′ subject to threshold α , noted F |=A

α F ′, if for all total
assignment M, α⊕φA ,F(M)≤ α⊕φA ,F ′(M).

2For the sake of simplicity, we will restrict ourselves to clausal form formulas. The extension to the general case is direct:
just let each Ci be an arbitrary boolean expression.

4

Semiring-Induced Propositional Logic Larrosa, Oliveras and Rodrı́guez-Carbonell

Definition 6. When F |=A
α F ′ and F ′ |=A

α F we say that F and F ′ are A -equivalent subject to threshold
α and we note it F ≡A

α F ′.

If F |=A
α {(2,0)} we say that F is an α-contradiction. In Section 5 we will take advantage of the

following property.

Property 1. If F |=A
α {(2,0)} and M is a total assignment, then α⊕φA ,F(M) = α .

Zero-weighted clauses (i.e, of the form (C,0)) are called hard clauses. Note that, since ∀a∈A 0⊗a= 0,
if M is a total assignment that falsifies a hard clause, then M is not a model. If we restrict ourselves to hard
clauses and assume α = 0, implication and equivalence correspond to the usual definitions in classical
propositional logic.

For simplicity we will drop the semiring superscript when there is no ambiguity.

4 Applications

This section is devoted to illustrate the richness of semiring-induced propositional logic. It can be con-
sidered semi-tutorial because similar applications have been already identified in different contexts (e.g.
[29, 27, 5, 19, 6]). Consider a formula F = {(C1,w1), . . . , (Ce,we)} defined over the symbols P where
weights belong to a semiring A .

4.1 Decision Problems (Abool)

If we consider semiring Abool, the weight of all clauses must be zero as A = {0,1} and, by definition,
weights are smaller than 1. The corresponding evaluation function is φF(M) = φ1(M)∧ . . .∧φe(M). It
is easy to see that φF(M) = 1 iff M satisfies every clause in F . Moreover, the marginalization prob-
lem mrg(F) = ∨M∈M φF(M) is 1 iff F is satisfiable. In other words, mrg(Abool,F) is equivalent to
the boolean satisfiability problem (SAT) [24]. As logical consequence and logical equivalence can be
reduced to SAT testing, the logic induced by semiring Abool can also be used to model such problems.

Example 2. Consider a set of three boolean variables P = {x1,x2,x3}, and the problem of assigning
them in such a way that x1 = x2 and x2 6= x3. If we want to know if the problem has any solution (i.e. it is
satisfiable) we can use semiring Abool. This problem is encoded in the formula F = {(x1∨¬x2,0),(¬x1∨
x2,0),(x2∨x3,0),(¬x2∨¬x3,0)}. The first column in Figure 2 shows the set of total assignments M . The
second column shows, for each assignment M, the value φF(M) of the evaluation function. For instance
φF(x1,¬x2,x3) = 0 since this assignment does not satisfy clause ¬x1 ∨ x2. The bottom row shows the
result of the marginalization problem mrg(F). In this case it is the logical OR of all φF(M) values. It is
1 as there are assignments for which the evaluation function is 1.

4.2 Summation Problems (Acount)

If we consider semiring Acount, the corresponding evaluation function and the marginalization problem
are φF(M) = ∏

e
i=1 φi(M) and mrg(F) = ∑M∈M φF(M), respectively. If the weight of all clauses is wi =

0 ∈ R+, then φF(M) = 1 iff M satisfies all clauses. So computing mrg(F) is equivalent to the model
counting problem, #SAT [4].

Example 3. Consider the same problem as in the previous example. If we want to know the number of
solutions we should use semiring Acount. The encoding of the problem is the same as before. The third
column in Figure 2 shows the values of the evaluation function φF(M). As ∧ and × are equivalent when
restricted to {0,1}, the evaluations do not change from the previous example. The last cell of the column
shows the result of computing mrg(F). It is 2 as there are two assignments whose evaluation is 1.

5

Semiring-Induced Propositional Logic Larrosa, Oliveras and Rodrı́guez-Carbonell

Alternatively, if we allow different clauses to have different weights, mrg can model important prob-
lems such as the computation of marginals in Bayesian networks [26].

4.3 Optimization Problems (Amin+, Amax×)

If we consider semiring Amin+, the corresponding evaluation function and marginalization problem are
φF(M) = ∑

e
i=1 φi(M) and mrg(F) = minM∈M {φF(M)}, respectively. If the weight of all clauses is wi =

1 ∈ R+, then φF(M) = “number of clauses falsified by M”. Therefore computing mrg(F) is equivalent
to the problem of maximizing the number of satisfied clauses (Max-SAT) [24].

If we allow different clauses to have different weights, mrg is equivalent to the partial weighted
Max-SAT problem [24, 20], which models a variety of interesting additive optimization problems with
applications in bioinformatics, circuit design, electronic markets, resource allocation, etc. [16].

Example 4. Consider the same problem as in the previous examples. Let P be the set of models of
the formula F. Suppose we want to find the model with the least number of variables set to true,
minM∈P ∑1≤i≤3 xi. We can express this problem with semiring Amin+. The clauses already existing
in the previous example should be made hard and for each symbol xi a unit clause (¬xi,1) should be
added. The fourth column in Figure 2 shows the values of the resulting evaluation function φF(M).
For instance, φF({x1,x2,¬x3}) = 2 as {x1,x2,¬x3} falsifies clauses (¬x1,1) and (¬x2,1). The bottom
cell of the column shows mrg(F). In this case mrg(F) = 1, the minimum over all evaluations of total
assignments.

Semirings Amax× and Amin+ are isomorphic since we can transform the former into the latter via
a logarithmic mapping [25]. Therefore, they have the same expressive power. Nevertheless, semiring
Amax× seems to be a more natural choice for modeling probabilistic problems such as the most probable
explanation problem (MPE) in Bayesian networks [26] or the MAP inference problem in Markov random
fields [18] with applications in diagnosis, vision, signal encoding, etc.

4.4 Multi-criteria Optimization Problems (A n, A f)

Consider the multidimensional extension A n of a semiring A = (A,⊕,⊗,0,1). Weights are now n-
dimension vectors, wi = (w1

i , . . . ,w
n
i). It is easy to see that the resulting evaluation function satisfies

φA n,F(M) = (φA ,F1(M), . . . ,φA ,Fn(M)), where F j = {(C1,w
j
1), . . . ,(Ce,w

j
e)} is the projection of F onto

the j-th vector dimension. In words, the evaluation function treats each dimension independently from
the others. Further, the marginalization satisfies mrg(A n,F) = (mrg(A ,F1), . . . ,mrg(A ,Fn)), which
corresponds to the independent marginalization problem of each dimension. Therefore, one can use A n

to model (and, as we will see in Section 5, solve) in one shot n independent problems over the same set
of symbols.

Example 5. Consider again our running example, now with two objectives. The first one, as in the
previous example, is to minimize the variables set to true. The second one is to minimize the number of
variable pairs simultaneously set to false. Formally,

min
M∈P

(∑
1≤i≤3

xi, ∑
1≤i< j≤3

(1− xi)(1− x j)) .

We can model it using semiring A 2
min+. Note that its zero and unit elements are (∞,∞) and (0,0),

respectively. Hard clauses must have the new zero element,

{(x1∨¬x2,(∞,∞)),(¬x1∨ x2,(∞,∞)),(x2∨ x3,(∞,∞)),(¬x2∨¬x3,(∞,∞))} .

6

Semiring-Induced Propositional Logic Larrosa, Oliveras and Rodrı́guez-Carbonell

M Abool Acount Amin+ A 2
min+ (A 2

min+)
f

{x1,x2,x3} 0 0 ∞ (∞,∞) {(∞,∞)}
{x1,x2,¬x3} 1 1 2 (2,0) {(2,0)}
{x1,¬x2,x3} 0 0 ∞ (∞,∞) {(∞,∞)}
{x1,¬x2,¬x3} 0 0 ∞ (∞,∞) {(∞,∞)}
{¬x1,x2,x3} 0 0 ∞ (∞,∞) {(∞,∞)}
{¬x1,x2,¬x3} 0 0 ∞ (∞,∞) {(∞,∞)}
{¬x1,¬x2,x3} 1 1 1 (1,1) {(1,1)}
{¬x1,¬x2,¬x3} 0 0 ∞ (∞,∞) {(∞,∞)}

mrg(A ,F) 1 2 1 (1,0) {(2,0),(1,1)}

Figure 2: Evaluation functions and marginalization problems induced by different semirings. The set of
symbols is P = {x1,x2,x3}. The set of clauses changes from one case to another.

The first objective can be encoded with the following set of clauses,

{(¬x1,(1,0)),(¬x2,(1,0)),(¬x3,(1,0))} .

The second objective can be encoded with the following set of clauses,

{(x1∨ x2,(0,1)),(x1∨ x3,(0,1)),(x2∨ x3,(0,1))} .

The fifth column in Figure 2 shows the values of the corresponding evaluation function. For instance,
φF({¬x1,¬x2,x3}) = (1,1) as it falsifies clauses (¬x3,(1,0)) and (x1∨ x2,(0,1)), and (1,0)+2 (0,1) =
(1,1). The last cell of the column shows the result of the marginalization problem. In this case it is the
point-wise minimum over all the column entries.

Given a formula F = {(C1,w1), . . . ,(Ce,we)} its frontier extension is F ′ = {(C1,w′1), . . . ,(Ce,w′e)},
where w′j = {w j}. It can be proved [6] that φA f ,F ′(M) = {φA ,F(M)} and

mrg(A f,F ′)={φA ,F(M)| ∀N∈M ,φA ,F(M)≮φA ,F(N)},

which is the set of maximal evaluations of φA ,F(M).
An immediate application is to model a multi-objective problem with n objectives with semiring

(A n) f . Each objective is encoded in one dimension of A n. The marginalization problem corresponds
to the so-called efficient frontier of the problem, which is the most general notion of optimality in multi-
objective optimization.

Example 6. If we want to compute the efficient frontier of the previous bi-objective problem, we can use
the frontier extension of the previous semiring, (A 2

min+)
f , and replace vector weights by singleton vector

weights. The sixth column in Figure 2 shows the values of the corresponding evaluation function. The
last cell of the column shows the result of the corresponding marginalization problem. In this case it is
the union of all the values followed by the removal of the non optimal elements, which is the efficient
frontier of the original bi-objective optimization problem.

5 A DPLL Algorithm for Semiring-Induced Propositional Logic

In this section we show how DPLL for satisfiability testing and its most prominent enhancements can be
naturally generalized to compute the marginalization problem of a semiring-induced propositional logic
formula. Following [23], we describe the algorithm using a transition system.

7

Semiring-Induced Propositional Logic Larrosa, Oliveras and Rodrı́guez-Carbonell

5.1 Transition Systems

We will model our semiring-induced DPLL procedures by means of a set of states together with a binary
relation⇒ over these states, called the transition relation. If S⇒ S′ we say that there is a transition from
S to S′. We call any sequence of transitions of the form S0⇒ S1, S1⇒ S2, . . . a derivation, and denote
it by S0⇒ S1⇒ S2⇒ . . . We call any subsequence of a derivation a subderivation.

In what follows, transition relations will be defined by means of conditional transition rules. For a
given state S, a transition rule precisely defines whether there is a transition from S by this rule and, if
so, to which state S′. Such a transition is called an application step of the rule.

A transition system is a set of transition rules defined over some given set of states. Note that if more
than one transition is possible from S, any option is valid. If there is no transition from S, we will say
that S is final.

5.2 States in SDPLL Transition Systems

Semiring-induced DPLL (SDPLL) can be fully described by simply considering that a state of the proce-
dure is of the form (α,M,F), where F is a formula, M is a (partial) assignment and α ∈ A is a semiring
element. Additionally, we define states of the form (α,done,F) to represent final states.

More precisely, M is a sequence of literals, never containing both a literal and its negation. Each
literal has an annotation, a bit that marks it as a decision literal or not. Essentially, a decision literal is a
literal that is added in the context of a split case and, at some point, its negation needs to be considered.
The concatenation of two such sequences will be denoted by simple juxtaposition. When we want to
emphasize that a literal l is a decision literal we will write it as ld. We will denote the empty sequence of
literals (or the empty assignment) by /0.

Adding a literal l to M means that we are conditioning the formula F with l. This is equivalent to
adding a unit hard clause (l,0) to F . Accordingly, we will frequently consider M as a set of unit hard
clauses, ignoring the annotations, the order between its elements and assuming an implicit zero weight.
Therefore, M∪F with M = l1 . . . ln will be a shorthand for {(l1,0), . . .(ln,0)}∪F .

5.3 The Basic SDPLL Procedure

A basic backtracking-based algorithm that enumerates all total assignments can be defined with the
following three rules. Since none of them changes the input formula F , we do not include it in the state
descriptions.

Definition 7. Backtracking-based enumeration rules.

Decide : (α,M) ⇒ (α,Mld) if
{

l is undefined in M

BacktrackSuccess : (α,MldN) ⇒ (α ′,M¬l) if

α ′ = α⊕φF(M ld N)
M ld N is total
N has no decision literals

DoneSuccess : (α,M) ⇒ (α ′,done) if

α ′ = α⊕φF(M)
M is total
M has no decision literals

One can use the previous system for solving a semiring-induced marginalization problem mrg(F) by
simply generating an arbitrary derivation (0, /0)⇒ . . . ⇒ (α,done). The α value of the final state is the

8

Semiring-Induced Propositional Logic Larrosa, Oliveras and Rodrı́guez-Carbonell

solution of the marginalization problem. The algorithm generates all total assignments M and adds their
φF(M) contribution to the semiring value.

Consider an arbitrary state (α,M). If M is a partial assignment, rule Decide models the split case.
The assignment M is extended with a so far undefined literal l. The literal is annotated as a decision
literal to denote that once all the extensions of Ml have been taken into account, the extensions of M¬l
must still be considered. If M is a total assignment, then the contribution of φF(M) must be added to α

(i.e, α ′ = α ⊕ φF(M)). If M does not contain any decision literals, it means that all total assignments
have already been considered, so the value of α is the final result and we can end the application of rules.
This is the situation considered by the DoneSuccess rule. Alternatively, if M contains decision literals
the algorithm backtracks by replacing the most recent decision literal by its negation and removing all
subsequent literals in M. This is the situation considered by the BacktrackSuccess rule. Clearly,
the algorithm terminates in a finite number of steps and, in a final state, α contains the result of the
marginalization problem. Note that the α value increases monotonically during the execution.

Example 7. Consider an arbitrary intermediate state (α,M). If the semiring is Abool , then α = 1 iff
“some total assignment in a previous state was a model”. If the semiring is Acount , then α =”number
of models found so far”. If the semiring is Amin+, then α =”evaluation of the best (i.e, minimum cost)
model so far”. Finally, if the semiring is A n f

min+, then α =”set of evaluations of pareto-optimal models
with respect to already inspected total assignments”.

Obviously, the previous algorithm is extremely inefficient. It can be improved with the addition of
pruning. We say that state (α,M) is in a conflict if M∪F is an α-contradiction (i.e, M∪F |=α {(2,0)}).
Property 1 indicates that the algorithm can discard (i.e. prune) all the extensions of the assignment M
since they will not contribute to the solution. Pruning is specified with the following rules.

Definition 8. The basic SDPLL algorithm is the system defined by the previous three and the following
three pruning rules.

Propagate : (α,M) ⇒ (α,Ml) if
{

(M¬l)∪F |=α {(2,0)}
l is undefined in M

BacktrackFail : (α,MldN) ⇒ (α,M¬l) if
{

(MldN)∪F |=α {(2,0)}
N has no decision literals

DoneFail : (α,M) ⇒ (α,done) if
{

M∪F |=α {(2,0)}
M has no decision literals

Rule DoneFail considers the case in which the current assignment M is in a conflict and does not
contain any decision literal. In that case we can end the execution. Rule BacktrackFail considers the
case in which M is in a conflict and contains decision literals. In that case the algorithm backtracks by
replacing the most recent decision literal by its negation and removing all subsequent literals of M. Rule
Propagate considers the case when M is not in a conflict, but M¬l is. In that case, the algorithm extends
M with l. Note that l is not marked as a decision, as its negation needs not to be considered.

Unlike the three earlier rules, the applicability of the pruning rules is not easy to check since detecting
conflicts is in general NP-hard. Therefore, practical algorithms rely on sufficient conditions that can be
efficiently computed. The following property presents a very naive, but still widely used one.

Property 2. Consider a transition state (α,M). Let V ⊆ F be the set of clauses falsified by M, and
β =

⊗
(C,w)∈V w the product of costs of violated clauses. Then, α ⊕β = α is a sufficient condition for

M∪F |=α {(2,0)}.

9

Semiring-Induced Propositional Logic Larrosa, Oliveras and Rodrı́guez-Carbonell

Example 8. Consider the simplest semiring Abool . The previous pruning condition becomes α = 1∨V 6=
∅. It occurs when either a model has already been found or the current assignment M falsifies some
clause. With semiring Amin+, the previous pruning condition becomes min{α,β} = α . It will occur
if either α = 0 (a solution that cannot be improved has already been found) or α ≤ β (the current
assignment M is already worse than the best solution found so far). Consider the more complex semiring
(A 2

min+)
f (i.e, the frontier extension of a two-dimensional optimization semiring). In this case, α is the

set of optimal evaluations found so far and β = {(w1,w2)} is a singleton that adds up the violations of
M. The pruning condition is ||α ∪{(w1,w2)}|| = α , which occurs when (w1,w2) is dominated by some
element of α .

Observe that when Propagate can be applied, so is Decide. For efficiency reasons, it is desirable to
always chose Propagate.

The SDPLL algorithm using the previous pruning condition is a faithful generalization of several
algorithms: If the semiring is Abool it becomes DPLL [10] for satisfiability testing. If the semiring is
Acount it becomes the algorithm in [4] for model counting. If the semiring is Amin+ it becomes the
algorithm in [7] for Max-SAT. Finally, if the semiring is (A n

min+)
f it becomes essentially equivalent to

the algorithm described in [14] for multi-objective optimization.

6 Extending SAT Techniques

In the previous section we showed how our formalism allows one to unify several basic enumeration
algorithms by abstracting away algorithmic details. Here we show its convenience for generalizing more
sophisticated techniques. We consider three features common to all modern DPLL-based SAT solvers:
backjumping, learning and restarts.

6.1 Backjumping, Learning and Restarts

The purpose of backjumping is to undo several decisions at once, going back to a lower decision level
than the previous level and adding some new literal to that lower level. The Backjump rule below models
this idea.

Backjump : (α,MldN)⇒ (α ′,Ml′) if

there is a previous state
(α ′,M) such that:
(M¬l′)∪F |=α ′ {(2,0)}
l′ is undefined in M

It can be seen as a delayed propagation. In words, the rule is triggered if the algorithm detects that a
propagation instead of a decision could have been done at an earlier state (α ′,M). This occurs when the
condition for propagation, i.e. (M¬l′)∪F |=α ′ {(2,0)}, was not detected at the earlier state (recall that
simple sufficient conditions are usually used) but can be detected now (possibly, from an analysis of the
current state). Note that α ′ ≤ α as α ′ is taken from a previous state. Therefore with the Backjump rule
the semiring value does not grow monotonically anymore during the execution of the algorithm.

The purpose of learning is to make explicit in the original formula implicit clauses, because they
may help in the future identification of conflicts. Similarly, when a clause seems not to be useful for that
purpose according to some measure, it can be removed. The Learn and Forget rules below generalize
this idea. Since these rules modify the formula F , we add it to the state description.

Learn : (α,M,F) ⇒ (α,M,F ∪{(C,w)}) if
{

F |=0 F ∪{(C,w)}

Forget : (α,M,F ∪{(C,w)}) ⇒ (α,M,F) if
{

F |=0 F ∪{(C,w)}

10

Semiring-Induced Propositional Logic Larrosa, Oliveras and Rodrı́guez-Carbonell

Observe that the Learn and Forget rules allow one to add and remove from the current formula F
an arbitrary clause C as long as it is 0-entailed by F . The addition and removal is safe, even in combi-
nation with Backjump and Restart (to be seen later) which decrease the α value, precisely because the
entailment is required with respect to the lowest possible α value.

Finally, it may be useful to restart the DPLL procedure whenever the search is not making enough
progress according to some measure. The rationale behind this idea is that upon each restart, the addi-
tional knowledge of the search space compiled into the newly learned clauses will lead the heuristics for
Decide to behave differently, and possibly in a wiser way. The following rule models this idea.

Restart : (α,M,F) ⇒ (0, /0,F)

If Learn and Forget are applied, termination of the procedure can be achieved by avoiding infinite
subderivations with only Learn and Forget steps. On the other hand, if the Restart rule is also applied,
in order to get termination in practice one periodically increases the minimum number of applications of
the other rules between each pair of restart steps. This is formalized below.

Definition 9. Let us consider a derivation by the basic SDPLL rules together with the Backjump, Learn,
Forget and Restart rules. We say that Restart has increasing periodicity in the derivation if, for each
subderivation Si⇒ . . .⇒ S j ⇒ . . .⇒ Sk where the steps producing Si, S j, and Sk are the only Restart
steps, the number of steps of the other rules in Si⇒ . . .⇒ S j is strictly smaller than in S j⇒ . . .⇒ Sk.

Finally, the following theorem shows how the SDPLL algorithm can be used to effectively compute
the marginalization of a given formula.

Theorem 1. Let us consider the basic SDPLL rules together with the Backjump, Learn, Forget and
Restart rules. If infinite subderivations consisting of only Learn and Forget steps are not allowed and
Restart has increasing periodicity, any derivation (0, /0,F)⇒ . . .⇒ S is finite. Moreover, if S is final
then it is of the form (mrg(F),done,G).

6.2 Conflict-Driven Backjumping and Learning

The previous four rules have been presented in their most general form. In principle, they can be applied
independently. Still, the experience from modern SAT solvers is that it is their combination what pro-
duces the best results. Besides, their application should be driven by conflicting states. In our framework
the description of this idea requires the specialization of the Backjump rule as follows.

ConflictDrivenBackjump :

(α,MldN) ⇒ (α ′,Ml′) if

MldN∪F |=α {(2,0)}
there exists a previous state(α ′,M) and
some clause l1∨·· ·∨ ln∨ l′ such that:

F |=α ′ {(l1∨·· ·∨ ln∨ l′,0)}
∀1≤i≤n, M∪F |=α ′ {(¬li,0)}
l′ is undefined in M

We call the clause l1 ∨ . . . ∨ ln ∨ l′ in ConflictDrivenBackjump a backjump clause. This rule is more
specific than the previous Backjump because it can be only applied when the current state is a conflict.
Furthermore, the analysis of the conflict has to reveal the existence of a backjump clause. It can be easily
proved that the two conditions for a backjump clause imply the condition (M¬l′)∪F |=α ′ {(2,0)} of
the more general Backjump rule. Conflict-driven-learning restricts the Learn and Forget rules to add
and remove only backjump clauses, which in turn restricts the new knowledge after each restart.

11

Semiring-Induced Propositional Logic Larrosa, Oliveras and Rodrı́guez-Carbonell

Conflict analysis [31] is the efficient detection of useful backjump clauses. It is only well-studied
in the SAT case. However, the following example shows that our abstract description provides direct
generalizations to other problems.

Example 9. Consider semiring Amin+ and a formula with, among others, the following clauses, {(¬x1∨
x2,∞),(¬x2∨x3,8),(¬x4∨x5,7),(¬x7∨x8,∞),(¬x7∨¬x8,7),(¬x2,1),(¬x3,1),(¬x5,1)}. Suppose that
an execution of SDPLL that uses the pruning condition of Prop. 2 has generated state (9,M) such that
M does not violate any clause and x1, . . . ,x8 are undefined in M. A possible subderivation is

. . .⇒ (9,M)⇒ (9,Mxd
1)⇒ (9,Mxd

1x2)⇒ (9,Mxd
1x2x3)⇒ (9,Mxd

1x2x3xd
4)⇒

⇒ (9,Mxd
1x2x3xd

4x5)⇒ (9,Mxd
1x2x3xd

4x5xd
6)⇒⇒ (9,Mxd

1x2x3xd
4x5xd

6xd
7)⇒

⇒ (9,Mxd
1x2x3xd

4x5xd
6xd

7x8)

The current state is in a conflict since it satisfies the pruning condition (the sum of weights of clauses
falsified by the current assignment is 10 and min{9,10} = 9). If we analyze the conflict, we observe
that decisions xd

4 and xd
6 are irrelevant for the pruning condition (if we remove their contribution and the

contribution of their implications, the state is still in a conflict). From the analysis of the conflict, we can
obtain backjump clause ¬x2∨¬x7. The application of the rule ConflictDrivenBackjump produces the
following state (9,Mxd

1x2x3¬x7).
It is important to note that state-of-the-art Max-SAT solvers [16, 21] are very naive in terms of

backjumping (they only backjump when the conflict is exclusively caused by hard clauses). Thus, our
backjump rule does not only cover this basic case, but also opens a new perspective for new cases as the
one in this example.

6.3 Semirings with Idempotent ⊕

Semirings with idempotent ⊕ include all applications discussed in Section 4, except for counting prob-
lems (Acount). Although the purpose of this paper is to consider general definitions and techniques, the
⊕-idempotent case is still so general that we will mention some algorithmic improvements for it. They
are all based on the fact that during the execution of SDPLL, it is always possible to replace the semiring
value of a previous state by the higher semiring value of the current state and resume the execution from
that earlier state. Formally,

Property 3. Let F be a formula defined over a⊕-idempotent semiring. Consider an arbitrary derivation
of the basic SDPLL (without the enhancements of Section 6.1), (0,∅)⇒ (α1,M1)⇒ . . .⇒ (α j,M j). For
any 1≤ i≤ j, any derivation from the state (α j,Mi) to a final state (αn,done) satisfies that αn = mrg(F).

The first implication of this is that in the Backjump (and ConflictDrivenBackjump) rule the occur-
rences of α ′ can be replaced by α . Therefore, the rule models a return to an earlier state but preserving
the better semiring value of the current state. This allows one to take advantage of the work done so
far for, e.g., propagating unassigned literals or detecting new conflicts after backjumping. An interesting
feature of the resulting rule is that ConflictDrivenBackjump subsumes chronological backtracking, as
the negation of all decision literals of the current assignment M is a backjump clause.

The second implication of Property 3 is that the Restart rule can restart the search preserving the
semiring value of the current state. Finally, the Learn and Forget rules can add and remove α-implied
clauses where α is not 0 but the semiring value of the current state, which broadens the range of clauses
that can be used for learning.

12

Semiring-Induced Propositional Logic Larrosa, Oliveras and Rodrı́guez-Carbonell

7 Conclusions and Future Work

In this paper we introduce semiring-induced propositional logic, which extends propositional logic by
allowing clauses to be weighted with semiring values. We show that it provides a convenient formalism
for modeling a variety of important computational problems. Further, it serves as an elegant and well-
defined presentation of general solving techniques by focusing on the general idea and abstracting away
algorithmic details.

In our future work we want to incorporate to the SDPLL algorithm decomposition techniques, which
have proven fundamental in counting problems [17, 2].

This paper has focused on enumeration-based algorithmic techniques. We want to investigate which
inference-based algorithms can also be unified. In particular, we want to study under which conditions
the resolution rule for Max-SAT introduced in [20] can be generalized to arbitrary semirings, while
preserving completeness.

References
[1] S. Aji and R. McEliece. The generalized distributive law. IEEE Trans. on Information Theory, 46(2):325–

343, 2000.
[2] F. Bacchus, S. Dalmao, and T. Pitassi. Algorithms and complexity results for #SAT and Bayesian inference.

In FOCS, pp. 340–351, 2003.
[3] U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press, 1972.
[4] E. Birnbaum and E. Lozinskii. The good old Davis-Putnam procedure helps counting models. JAIR, 10:457–

477, 1999.
[5] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction and optimization. JACM,

44(2):201–236, March 1997.
[6] S. Bistarelli, M. Gadducci, J. Larrosa, and E. Rollon. A semiring-based approach to multi-objective opti-

mization. In Proc. of Intl. Workshop on Soft Constraints and Preferences, 2008.
[7] B. Borchers and J. Furman. A two-phase exact algorithm for MAX-SAT and weighted MAX-SAT problems.

Journal of Combinatorial Optimization, 2:299–306, 1999.
[8] M. Cooper and T. Schiex. Arc consistency for soft constraints. Artif. Intell., 154(1-2):199–227, 2004.
[9] Y. Crama, P. Hansen, and B. Jaumard. The basic algorithm for pseudo-boolean programming revisited.

Discrete Applied Mathmatics, 29:171–185, 1990.
[10] M. Davis, G. Logemann, and G. Loveland. A machine program for theorem proving. Communications of the

ACM, 5:394–397, 1962.
[11] M. Davis and H. Putnam. A computing procedure for quantification theory. JACM, 3(1960).
[12] R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction problems. Artif. Intell., 34:1–38,

1988.
[13] Z. Fu and S. Malik. On solving the partial Max-SAT problem. In SAT, pp. 252–265, 2006.
[14] M. Gavanelli. An algorithm for multi-criteria optimization in CSPs. ECAI, pp. 136–140, 2002.
[15] J. Golan. Semirings and their applications. Kluwer Academic Publishers, 1999.
[16] F. Heras, J. Larrosa, and A. Oliveras. MiniMaxSAT: An efficient Weighted Max-SAT Solver. JAIR, 31:1–32,

2008.
[17] R. Bayardo and J. Pehoushek. Counting models using connected components. In AAAI/IAAI, pp. 157–162,

2000.
[18] R. Kindermann and L. Snell. Markov Random Fields and Their Applications. AMS, 1980.
[19] J. and N. Wilson. Semiring induced valuation algebras: Exact and approximate local computation algorithms.

Artif. Intell., 172(11):1360–1399, 2008.
[20] J. Larrosa, F. Heras, and S. de Givry. A logical approach to efficient Max-SAT solving. Artif. Intell., 172(2-

3):204–233, 2008.

13

Semiring-Induced Propositional Logic Larrosa, Oliveras and Rodrı́guez-Carbonell

[21] C. Li, F. Manyà, and J. Planes. New inference rules for Max-SAT. JAIR, 30:321–359, 2007.
[22] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an Efficient SAT

Solver. In DAC’01, pp. 530–535. ACM Press, 2001.
[23] R. Nieuwenhuis, A. Oliveras, C. Tinelli. Solving SAT and SAT modulo theories: From an abstract Davis-

Putnam-Logemann-Loveland procedure to DPLL. JACM, 53(6):937–977, 2006.
[24] C. Papadimitriou. Computational Complexity. Addison-Wesley, USA, 1994.
[25] J. Park. Using weighted Max-SAT engines to solve MPE. In AAAI-02, pp. 682–687.
[26] J. Pearl. Probabilistic Inference in Intelligent Systems. Networks of Plausible Inference. Morgan Kaufmann,

San Mateo, CA, 1988.
[27] T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction problems: hard and easy problems. In

IJCAI-95, pp. 631–637.
[28] G. R. Shafer and P.P. Shenoy. Probability propagation. Anals of Mathematics and Artificial Intelligence,

2:327–352, 1990.
[29] P. Shenoy and G. Shafer. Axioms for probability and belief-function propagation. In UAI-88.
[30] Z. Xing and W. Zhang. Maxsolver: An efficient exact algorithm for (weighted) maximum satisfiability. Artif.

Intell., 164(1-2):47–80, 2005.
[31] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient Conflict Driven Learning in a Boolean

Satisfiability Solver. In ICCAD’01, pp. 279–285, 2001.

14

	Introduction
	Semirings
	Semiring-Induced Propositional Logic
	Syntax
	Semantics

	Applications
	Decision Problems (Abool)
	Summation Problems (Acount)
	Optimization Problems (Amin+, Amax)
	Multi-criteria Optimization Problems (An, Af)

	A DPLL Algorithm for Semiring-Induced Propositional Logic
	Transition Systems
	States in SDPLL Transition Systems
	The Basic SDPLL Procedure

	Extending SAT Techniques
	Backjumping, Learning and Restarts
	Conflict-Driven Backjumping and Learning
	Semirings with Idempotent

	Conclusions and Future Work

