Generation of Basic
Semi-algebraic Invariants
Using Convex Polyhedra

Generation of | nvariant Conjunctions of Polynomial
| nequalities Using Convex Polyhedra

R. Bagnara LE. Rodriguez-Carbonell 2 E. Zaffanella !

! University of Parma, Italy

2 Technical University of Catalonia, Spain

» Linear invariants used to verify many classes of systems:

s Imperative programs
s Logic programs

s Synchronous systems
s Hybrid systems

s Linear invariants used to verify many classes of systems:
s Imperative programs
s Logic programs
s Synchronous systems
s Hybrid systems

» But some applications require polynomial invariants:

ASTREE employs the ellipsoid abstract domain to verify
absence of run-time errors in flight control software

CORRECTNESS OF THE SYSTEM:
SYSTEM STATES N BAD STATES = &

Applying Invariants to Verification

@)

CORRECTNESS OF THE SYSTEM:
SYSTEM STATES N BAD STATES = &

SUFFICIENT CONDITION:
INVARIANT N BAD STATES = ©

Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra SAS’05 London — p.3/21

Applying Invariants to Verification

@)

In this case the linear invariant suffices

Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra SAS’05 London — p.3/21

Applying Invariants to Verification

&

In this case the linear invariant does not suffice

Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra SAS’05 London — p.3/21

But a polynomial invariant suffices to prove correctness!

linear equalities
c=2a+1
[Karr'76]

linear equalities

linear inequalities

a>0ANb>0
[Cousot & Halbwachs’78]

linear equalities

linear inequalities polynomial equalities

b=a’ANc=2a+1
[Colon’04, Muller-Olm & Seidl'04,
Rodriguez-Carbonell & Kapur’'04,

Sankaranarayanan et al.04]

linear equalities

N

linear inequalities polynomial equalities

N

polynomial inequalities
a’ < b
[Bensalem et al’00, Blanchet et al.’03, Kapur'04]

» Overview of the Method

» Abstract Domain & Semantics: Polynomial Cones
» EXxperimental Evaluation

» Future Work & Conclusions

» Overview of the Method

» Abstract Domain & Semantics: Polynomial Cones
» EXxperimental Evaluation

» Future Work & Conclusions

Linear equalities
[Karr'76]

|

Polynomial equalities
[Colon’04]

Linear equalities Linear inequalities
[Karr'76] [Cousot & Halbwachs'78]
Polynomial equalities Polynomial inequalities
[Colon’04] [This paper]

a 0
b:=0:;
C 1

while 7 do

a:=a-+1;
b:=0+c;
c:=c+2;

end while

0 ;
0 ;
1

O S Q

{a=0ANb=0Nc=1}
while 7 do

a:=a-+1;
b:=0+c;
c:=c+2;

end while

0 ;
0 ;
1

O S Q

{a=bAc=2a+1}
while 7 do

a:=a-+1;
b:=0+c;
c:=c+2;

end while

a:=0:;

b:=0;

c:=1;

{c=2a+1}

while 7 do Loop invariant

{c=2a+1}

a:=a+1;
b:=0+c;
c:=c+2;

end while

a:=0:;
h—(- Introduce new variable s
ci=1: standing for a?
while 7 do

a:=a-+1;

b:=0+c;

c:=c+2;
end while

a:=0; Introduce new variable s
b:=0; standing for a?
c:=1;
§: =07 e Extend program with new
variable s
while 7 do
a:=a+1;
bi=b+tc a:=0 — s:=0
c:=c+ 2; a=a+1 — s:=s4+2a+1
sS:=85+20+1;
end while

a:=0:;

b:=0;

c:=1;

s:=0;

{a=0ANb=0Ac=1As=0}

while 7 do
a:=a+1;
b:=b+c;
c:=c+2;
s =s4+2a+1;

end while

a:=0;

b:=0:;

c:=1;

s:=0;

{a=bAb=sANc=2a+1}

while 7 do
a:=a+1;
b:=b+c;
c:=c+2;
s:=s+2a+1;

end while

a:=0:;

b:=0;

c:=1;

s:=0:;

{b_: sAc=2a+1} Loop invariant

while 7 do (b=a?Ac=2a+1}
Gi—a+tl: IS more precise
b:=b+c;
c:=c+2;
s:=s+2a+1;

end while

{Pre: b>0}

a:=0;

while (a + 1)* < b do
a:=a+1;
end while

{Post: (a+1)2>bAb>a’}

{Pre: b>0}

a:=0;

Linear analysis cannot deal with

while (a + 1)* < b do _ .
the quadratic condition

a:=a+1; (a+1)2<b
end while

{Post: (a+1)*>bAb>a’}

{Pre: b>0}
a:=0;

{a>0Ab>0}

: 2
while (a + 1)° < b do Loop invariant { « > 0A Db >0}

not precise enough
a:=a+1;

end while

{Post: (a+1)*>bAb>a?}

{Pre: b>0}
Introduce new variable s
a:=0; standing for a?

Extend program with new
while (a + 1)* < b do

variable s
a:=a+1;
S:=8+2a+1;
end while a:=0 — s:=0

a=a+1 — s:=s+2a-+1
{Post: (a+1)*>bAb>a’}

{Pre: b>0}

a:=0:;

s:=0;

{bzsn-} Loop invariant

while (o +1)° < b do {b>a*N---}
G=a-+1: enough to prove partial
s:=s5+2+1: correctness

end while

{Post: (a+1)*>bAb>a’}

» Overview of the Method

» Abstract Domain & Semantics: Polynomial Cones
» EXxperimental Evaluation

» Future Work & Conclusions

» Abstract values = sets of constraints

» Given a degree bound d, all terms z® with deg(z®) < d
are considered as different and independent variables

» Abstract values = sets of constraints

» Given a degree bound d, all terms z® with deg(z®) < d
are considered as different and independent variables

polynomial = 0

VYV polynomial p, p ~p =0

» \ector space =
set of polynomials V' s.t.

s 0V

s Vp,ge Vand A\, u € R,
Ap+pugeVv

0=0
p=0 g=0 MNpek

Ap+ g =0
. Generationof Basic Semi-algebraic Invarianis Using Convex Polyhedra SAS(5 London ~p.11/21

polynomial = 0 polynomial > 0
o VYV polynomialp,p~p=20 # VYV polynomialp,p~p >0
» \ector space = » Polynomial cone =
set of polynomials V' s.t. set of polynomials C' s.t.
s 0V s 1C
s Vp,ge Vand A\, u € R, s Vp,ge Cand A\, u € Ry,
Ap+puq eV Ap+pq e C
0=0 120
p=0 g=0 MNpek p>0 ¢g>0 ApuelRy
Ap + g =0 Ap + g 2 0

polynomial = 0
p=0 deg(pg) <d
pqg =10

Closure of a vector space V'

» Vp €V, q any polynomial
such that deg(pq) < d, then
pgeV

polynomial = 0 polynomial > 0
p=0 deg(pg) <d p>0 p<0 deg(pg) <d
pq =0 pq =0
p>0 ¢=>0 deg(pg) <d
pq > 0
Closure of a vector space V: Closure of a polynomial cone C"
» Vp € V,q any polynomial » Vp € C,q any polynomial
such that deg(pq) < d, then such that —p € ¢ and
pgeV deg(pq) < d, thenpg € C
Vp,q € C such that
deg(pq) < d, then pq € C

» (Multiple) assignments =z := f(x)
V x; variable, f;(x) = 7 oris a polynomial
Term x® Is updated according to the following cases:

» (Multiple) assignments =z := f(x)
V x; variable, f;(x) = 7 oris a polynomial
Term x® Is updated according to the following cases:

s dJa;wWitho; #0and x; = 7 — 2% = 7

» (Multiple) assignments =z := f(x)
V x; variable, f;(x) = 7 oris a polynomial
Term x® Is updated according to the following cases:

s dJa;wWitho; #0and x; = 7 — 2% = 7

o deg(Ilfi"(x)) >d — % =7

d=2, a = a*> — a°® =7

» (Multiple) assignments =z := f(x)
V x; variable, f;(x) = 7 oris a polynomial
Term x® Is updated according to the following cases:
s dJa;wWitho; #0and x; = 7 — 2% = 7
o deg(Ilfi"(x)) >d — % =7
» otherwise — linearization of I1f" ()

d=2, a = a+1 — a® := a’*+2a+1

» (Multiple) assignments =z := f(x)
V x; variable, f;(x) = 7 oris a polynomial
Term x® Is updated according to the following cases:
s da;witha; #0and x; = 7 — 2% = 7
s deg(Ilff"(x)) >d — z® =7
» otherwise — linearization of I1f" ()

» Intersection: closure (by bounded-degree product)

(Multiple) assignments =z := f(x)
V x; variable, f;(x) = 7 oris a polynomial
Term x® Is updated according to the following cases:

s da;witha; #0and x; = 7 — 2% = 7

s deg(Ilff"(x)) >d — z® =7

» otherwise — linearization of I1f" ()
» Intersection: closure (by bounded-degree product)
Union: same as convex polyhedra
Test for inclusion: same as convex polyhedra

Widening: same as convex polyhedra

» Bounded-degree product closure not finitely computable:
might yield not finitely generated polynomial cones

» Bounded-degree product closure not finitely computable:
might yield not finitely generated polynomial cones

» Conservatively approximated: given a formula

fi=0A - A fp=0Ag20ANA" AN gn=>0

we add the constraints:

s %f; = 0 where deg(z®f;)

<
» Ilg;, > 0 where deg(Ilyg;,) <

d
d

» Overview of the Method

» Abstract Domain & Semantics: Polynomial Cones
» EXxperimental Evaluation

» Future Work & Conclusions

» Prototype implemented in C/C++ for d = 2

» Based on the Parma Polyhedra Library (PPL)
[Bagnara, Ricci, Hill & Zaffanella’02]

s Efficient and robust implementation of polyhedra
s Support for time-bounded computations

» Prototype implemented in C/C++ for d = 2

» Based on the Parma Polyhedra Library (PPL)
[Bagnara, Ricci, Hill & Zaffanella’02]

» Analysis performed in two steps:

1. Linear analysis
2. Quadratic analysis exploiting linear invariants

» Widening strategies

s Standard widening [Cousot & Halbwachs'78]
s Widening “up to” [Halbwachs'93]
s Refined widenings [Bagnara, Hill, Ricci & Zaffanella’03’05]

s Benchmark suite consisting of:

» FAST suite [Bardin et al 03]
» StING suite [Sankaranarayanan et al.’04]
s Programs from the literature

» Results:

s For 80 % of programs:
our linear invariants are as strong as StInG’s

s For 33 % of programs:
our linear invariants are better than StInG’s

s For 50 % of programs:
guadratic invariants improve on linear invariants

» Overview of the Method

» Abstract Domain & Semantics: Polynomial Cones
» EXxperimental Evaluation

» Future Work & Conclusions

» Extend admissible assignments to nondeterministic
assignments of the form

flz) <2l < g(x)
» Introduce other inference rules to improve precision

p IS a sum of squares
p=>0

» Adapt widenings to nonlinear invariant generation
» Improve the current implementation

» Abstract domain for generating invariant conjunctions of
polynomial inequalities

» Built upon the abstract domain of convex polyhedra

» Implemented in C/C++ with encouraging experimental
results

Thank you!

	Why Care about Polynomial Invariants?
	Applying Invariants to Verification
	Linear vs. Polynomial Invariants
	Overview of the Talk
	Drawing a Parallel from Equalities
	From Linear to Polynomial Equalities
	From Linear to Polynomial Inequalities
	
	Linearization of Polynomial Constraints
	Vector Spaces $leftrightarrow $ Polynomial Cones
	Explicitly Adding Other Inference Rules
	Abstract Semantics
	Approximating closure
	
	Implementation
	Evaluation on Benchmark Suite
	
	Future Work
	Conclusions
	

