Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra

Generation of Invariant Conjunctions of Polynomial Inequalities Using Convex Polyhedra

R. Bagnara 1, E. Rodríguez-Carbonell 2, E. Zaffanella 1

¹ University of Parma, Italy

 $^{\rm 2}$ Technical University of Catalonia, Spain

Why Care about Polynomial Invariants?

Linear invariants used to verify many classes of systems:

- Imperative programs
- Logic programs
- Synchronous systems
- Hybrid systems

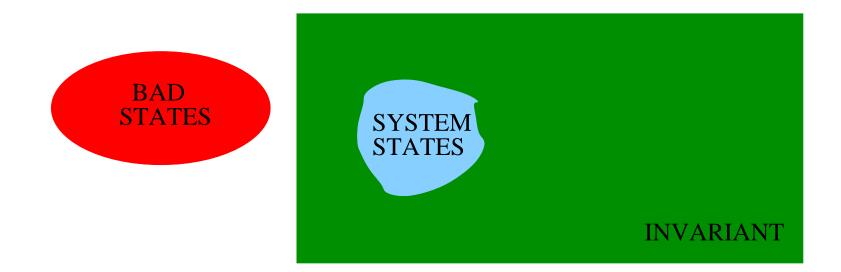
Why Care about Polynomial Invariants?

Linear invariants used to verify many classes of systems:

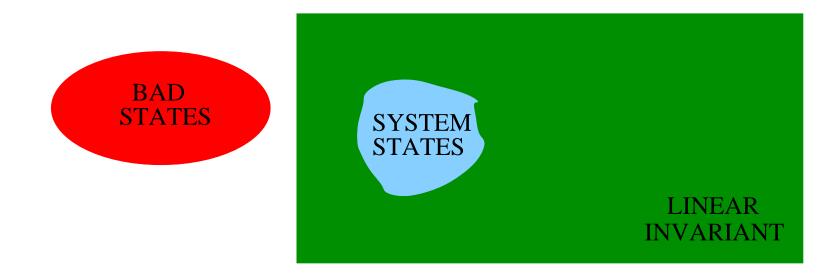
- Imperative programs
- Logic programs
- Synchronous systems
- Hybrid systems
- But some applications require polynomial invariants:

ASTRÉE employs the ellipsoid abstract domain to verify absence of run-time errors in flight control software

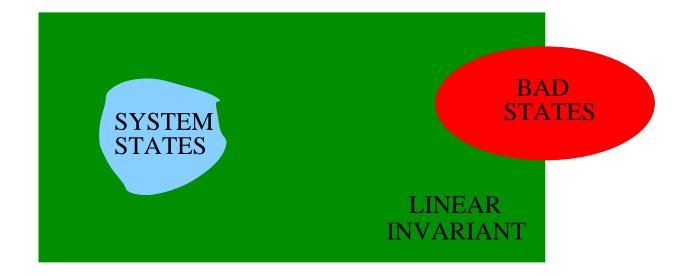
CORRECTNESS OF THE SYSTEM: SYSTEM STATES \cap BAD STATES = \emptyset



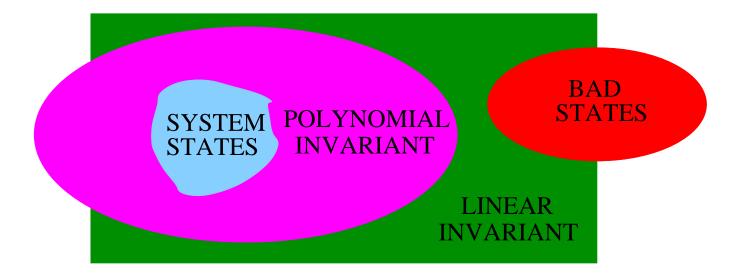
CORRECTNESS OF THE SYSTEM:
SYSTEM STATES \cap BAD STATES = \varnothing SUFFICIENT CONDITION:
INVARIANT \cap BAD STATES = \varnothing



In this case the linear invariant suffices



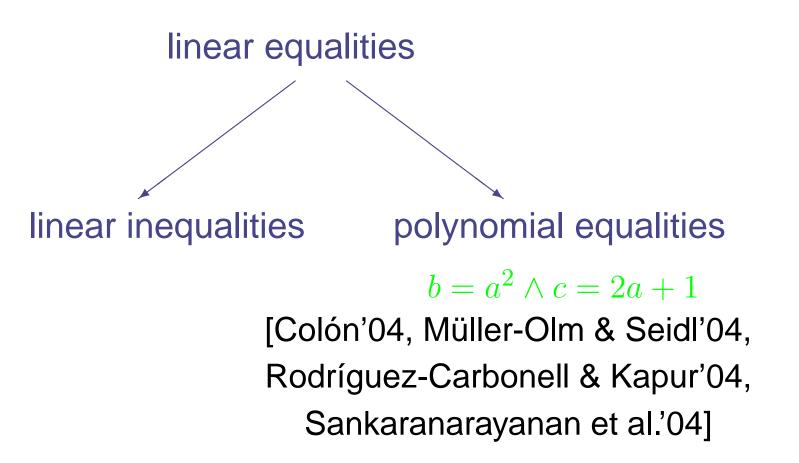
In this case the linear invariant does not suffice

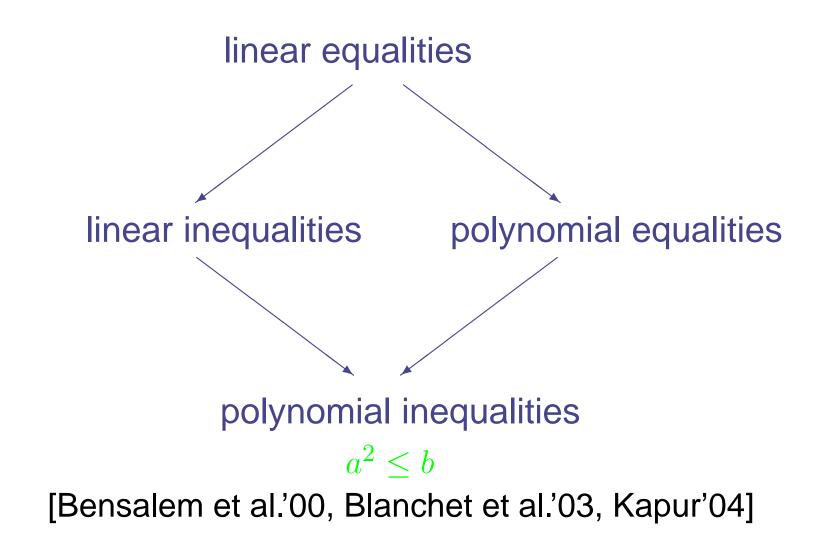


But a polynomial invariant suffices to prove correctness!

linear equalities c = 2a + 1[Karr'76]

linear equalities linear inequalities $a \ge 0 \land b \ge 0$ [Cousot & Halbwachs'78]





Overview of the Talk

- Overview of the Method
- Abstract Domain & Semantics: Polynomial Cones
- Experimental Evaluation
- Future Work & Conclusions

Overview of the Talk

- Overview of the Method
- Abstract Domain & Semantics: Polynomial Cones
- Experimental Evaluation
- Future Work & Conclusions

Drawing a Parallel from Equalities

Linear equalities [Karr'76]

[Colon'04]

Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra SAS'05 London – p.6/21

Drawing a Parallel from Equalities

Linear equalities [Karr'76]

Linear inequalities [Cousot & Halbwachs'78]

Polynomial equalities [Colon'04] Polynomial inequalities [This paper]

a := 0;b := 0;c := 1;

while ? do

$$a := a + 1;$$

 $b := b + c;$
 $c := c + 2;$

a := 0;b := 0;c := 1;

$$\{ a = 0 \land b = 0 \land c = 1 \}$$

while ? do

$$a := a + 1;$$

 $b := b + c;$
 $c := c + 2;$

a := 0;b := 0;c := 1;

$$\{ a = b \land c = 2a + 1 \}$$

while ? do

$$a := a + 1;$$

 $b := b + c;$
 $c := c + 2;$

a := 0;b := 0;c := 1;

 $\left\{ \begin{array}{l} c=2a+1 \end{array} \right\}$ while $\ ? \ \ {\rm do}$

Loop invariant $\{ c = 2a + 1 \}$

a := a + 1;b := b + c;c := c + 2;

a := 0;b := 0;c := 1;

Introduce new variable s standing for a^2

while ? do

$$a := a + 1;$$

 $b := b + c;$
 $c := c + 2;$

a := 0 ; b := 0 ; c := 1 ;s := 0 ;

Introduce new variable sstanding for a^2

Extend program with new variable *s*

while ? do

a := a + 1 ; b := b + c ; c := c + 2 ;s := s + 2a + 1 ;

end while

 $a := 0 \rightarrow s := 0$ $a := a + 1 \rightarrow s := s + 2a + 1$

a := 0; b := 0; c := 1; s := 0;{ $a = 0 \land b = 0 \land c = 1 \land s = 0$ } while ? do

$$a := a + 1;$$

 $b := b + c;$
 $c := c + 2;$
 $s := s + 2a + 1;$

a := 0 ; b := 0 ; c := 1 ; s := 0 ;{ $a = b \land b = s \land c = 2a + 1$ } while ? do

$$a := a + 1;$$

 $b := b + c;$
 $c := c + 2;$
 $s := s + 2a + 1;$

a := 0; b := 0; c := 1; s := 0;{ $b = s \land c = 2a + 1$ } while ? do

> a := a + 1 ; b := b + c ; c := c + 2 ;s := s + 2a + 1 ;

end while

Loop invariant { $b = a^2 \wedge c = 2a + 1$ } is more precise

 $\{ \text{ Pre}: b \ge 0 \}$

a := 0;

while $(a+1)^2 \leq b$ do

a := a + 1;

{ Post :
$$(a+1)^2 > b \land b \ge a^2$$
 }

 $\{ \text{Pre}: b \ge 0 \}$

a := 0 ;

while $(a+1)^2 \leq b$ do

a := a + 1;

Linear analysis cannot deal with the quadratic condition

 $(a+1)^2 \le b$

end while

{ Post : $(a+1)^2 > b \land b \ge a^2$ }

 $\{ \operatorname{Pre}: b \ge 0 \}$

a := 0 ;

 $\left\{ \begin{array}{l} a \geq 0 \wedge b \geq 0 \end{array} \right\}$ while $(a+1)^2 \leq b$ do

a := a + 1;

Loop invariant { $a \ge 0 \land b \ge 0$ } not precise enough

end while

{ Post : $(a+1)^2 > b \land b \ge a^2$ }

{ Pre : $b \ge 0$ } a := 0 ; $s := 0 ; \longleftarrow$

while $(a+1)^2 \leq b$ do

a := a + 1 ; $s := s + 2a + 1 ; \longleftarrow$

end while

{ Post :
$$(a+1)^2 > b \land b \ge a^2$$
 }

Introduce new variable *s* standing for a^2

Extend program with new variable *s*

$$a := 0 \rightarrow s := 0$$

 $a := a + 1 \rightarrow s := s + 2a + 1$

{ Pre : $b \ge 0$ } a := 0 ; s := 0 ; { $b \ge s \land \cdots$ } while $(a + 1)^2 \le b$ do

$$a := a + 1 ;$$

 $s := s + 2a + 1 ;$

end while

{ Post : $(a+1)^2 > b \land b \ge a^2$ }

Loop invariant $\{b \ge a^2 \land \cdots \}$ enough to prove partial correctness

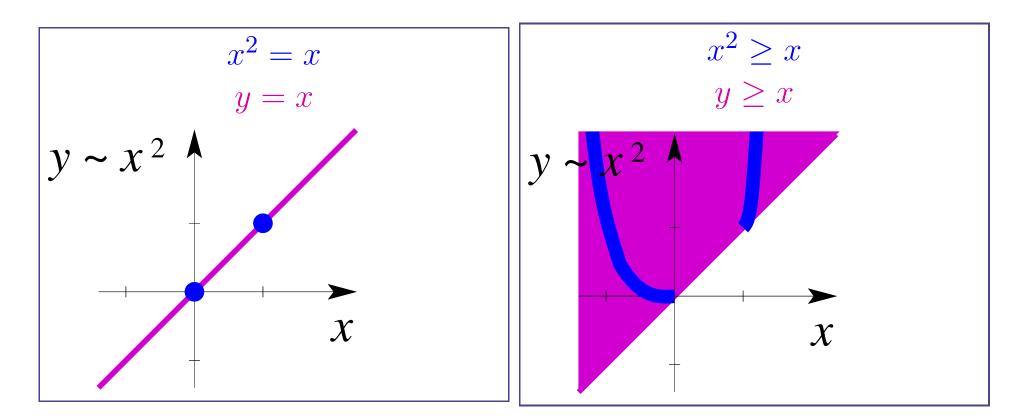
- Overview of the Method
- Abstract Domain & Semantics: Polynomial Cones
- Experimental Evaluation
- Future Work & Conclusions

Linearization of Polynomial Constraints

- Abstract values = sets of constraints
- Given a degree bound d, all terms x^{α} with $deg(x^{\alpha}) \leq d$ are considered as different and independent variables

Linearization of Polynomial Constraints

- Abstract values = sets of constraints
- Given a degree bound *d*, all terms x^{α} with $deg(x^{\alpha}) \leq d$ are considered as different and independent variables



Vector Spaces \leftrightarrow **Polynomial Cones**

polynomial = 0

- \forall polynomial $p, p \sim p = 0$
- Vector space =
 set of polynomials V s.t.
 - $0 \in V$
 - $\forall p,q \in V \text{ and } \lambda,\mu \in \mathbb{R},$ $\lambda p + \mu q \in V$

$$\overline{0 = 0}$$

$$\underline{p = 0 \quad q = 0 \quad \lambda, \mu \in \mathbb{R}}$$

$$\lambda p + \mu q = 0$$

Vector Spaces \leftrightarrow **Polynomial Cones**

polynomial = 0

- \forall polynomial p, $p \sim p = 0$
- Vector space =
 set of polynomials V s.t.
 - $0 \in V$
 - $\forall p,q \in V \text{ and } \lambda,\mu \in \mathbb{R},$ $\lambda p + \mu q \in V$

$$\overline{0} = 0$$

$$p = 0 \quad q = 0 \quad \lambda, \mu \in \mathbb{R}$$

$$\lambda p + \mu q = 0$$

 $\mathsf{polynomial} \ge 0$

- \forall polynomial $p, p \sim p \geq 0$
- Polynomial cone =
 set of polynomials *C* s.t.
 - $1 \in C$
 - $\forall p,q \in C \text{ and } \lambda,\mu \in \mathbb{R}_+$, $\lambda p + \mu q \in C$

Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra SAS'05 London - p.11/21

1 > 0

 $p \ge 0 \quad q \ge 0 \quad \lambda, \mu \in \mathbb{R}_+$

 $\lambda p + \mu q \ge 0$

Explicitly Adding Other Inference Rules

polynomial = 0 $p = 0 \quad \deg(pq) \le d$ pq = 0

Closure of a vector space V:

• $\forall p \in V, q \text{ any polynomial}$ such that $\deg(pq) \leq d$, then $pq \in V$

Explicitly Adding Other Inference Rules

polynomial = 0

 $p = 0 \quad \deg(pq) \le d$

$$pq = 0$$

Closure of a vector space V:

• $\forall p \in V, q$ any polynomial such that $\deg(pq) \leq d$, then $pq \in V$

polynomial ≥ 0 $p \ge 0$ $p \le 0$ $\deg(pq) \le d$ $pq \ge 0$ $p \ge 0 \quad q \ge 0 \quad \deg(pq) \le d$ pq > 0Closure of a polynomial cone C: • $\forall p \in C, q$ any polynomial such that $-p \in C$ and $\deg(pq) \leq d$, then $pq \in C$ • $\forall p, q \in C$ such that $\deg(pq) \leq d$, then $pq \in C$

- (Multiple) assignments x := f(x)
 - $\forall x_i \text{ variable, } f_i(x) \equiv ? \text{ or is a polynomial}$
 - Term x^{α} is updated according to the following cases:

• (Multiple) assignments x := f(x)

 $\forall x_i \text{ variable, } f_i(x) \equiv ? \text{ or is a polynomial}$ Term x^{α} is updated according to the following cases:

• $\exists x_i \text{ with } \alpha_i \neq 0 \text{ and } x_i := ? \rightarrow x^{\alpha} := ?$

$$a := ? \longrightarrow a^2 := ?$$

• (Multiple) assignments x := f(x) $\forall x_i$ variable, $f_i(x) \equiv ?$ or is a polynomial

Term x^{α} is updated according to the following cases:

• $\exists x_i \text{ with } \alpha_i \neq 0 \text{ and } x_i := ? \rightarrow x^{\alpha} := ?$

•
$$\deg(\Pi f_i^{\alpha_i}(x)) > d \to x^{\alpha} := ?$$

$$d=2, a := a^2 \longrightarrow a^2 := ?$$

• (Multiple) assignments x := f(x)

 $\forall x_i \text{ variable, } f_i(x) \equiv ? \text{ or is a polynomial}$

Term x^{α} is updated according to the following cases:

- $\exists x_i \text{ with } \alpha_i \neq 0 \text{ and } x_i := ? \rightarrow x^{\alpha} := ?$
- $\deg(\Pi f_i^{\alpha_i}(x)) > d \to x^{\alpha} := ?$
- otherwise \rightarrow linearization of $\prod f_i^{\alpha_i}(x)$

$$d=2, a := a+1 \longrightarrow a^2 := a^2+2a+1$$

• (Multiple) assignments x := f(x)

 $\forall x_i \text{ variable, } f_i(x) \equiv ? \text{ or is a polynomial}$ Term x^{α} is updated according to the following cases:

- $\exists x_i \text{ with } \alpha_i \neq 0 \text{ and } x_i := ? \rightarrow x^{\alpha} := ?$
- $\deg(\Pi f_i^{\alpha_i}(x)) > d \to x^{\alpha} := ?$
- otherwise \rightarrow linearization of $\prod f_i^{\alpha_i}(x)$
- Intersection: closure (by bounded-degree product)

• (Multiple) assignments x := f(x)

 $\forall x_i \text{ variable, } f_i(x) \equiv ? \text{ or is a polynomial}$ Term x^{α} is updated according to the following cases:

- $\exists x_i \text{ with } \alpha_i \neq 0 \text{ and } x_i := ? \rightarrow x^{\alpha} := ?$
- $\deg(\Pi f_i^{\alpha_i}(x)) > d \to x^{\alpha} := ?$
- otherwise \rightarrow linearization of $\prod f_i^{\alpha_i}(x)$
- Intersection: closure (by bounded-degree product)
- Union: same as convex polyhedra
- Test for inclusion: same as convex polyhedra
- Widening: same as convex polyhedra

Approximating closure

 Bounded-degree product closure not finitely computable: might yield not finitely generated polynomial cones

Approximating closure

- Bounded-degree product closure not finitely computable: might yield not finitely generated polynomial cones
- Conservatively approximated: given a formula

$$f_1 = 0 \land \cdots \land f_n = 0 \land g_1 \ge 0 \land \cdots \land g_m \ge 0$$

we add the constraints:

- $x^{\alpha}f_i = 0$ where $\deg(x^{\alpha}f_i) \leq d$
- $\Pi g_{i_j} \ge 0$ where $\deg(\Pi g_{i_j}) \le d$

- Overview of the Method
- Abstract Domain & Semantics: Polynomial Cones
- Experimental Evaluation
- Future Work & Conclusions

Implementation

- Prototype implemented in C/C++ for d = 2
- Based on the Parma Polyhedra Library (PPL)
 [Bagnara, Ricci, Hill & Zaffanella'02]
 - Efficient and robust implementation of polyhedra
 - Support for time-bounded computations

Implementation

- Prototype implemented in C/C++ for d = 2
- Based on the Parma Polyhedra Library (PPL) [Bagnara, Ricci, Hill & Zaffanella'02]
- Analysis performed in two steps:
 - 1. Linear analysis
 - 2. Quadratic analysis exploiting linear invariants
- Widening strategies
 - Standard widening [Cousot & Halbwachs'78]
 - Widening "up to" [Halbwachs'93]
 - Refined widenings [Bagnara, Hill, Ricci & Zaffanella'03'05]

Evaluation on Benchmark Suite

- Benchmark suite consisting of:
 - FAST suite [Bardin et al.'03]
 - StInG suite [Sankaranarayanan et al.'04]
 - Programs from the literature
- Results:
 - For 80 % of programs: our linear invariants are as strong as StInG's
 - For 33 % of programs:
 our linear invariants are better than StInG's
 - For 50 % of programs: quadratic invariants improve on linear invariants

- Overview of the Method
- Abstract Domain & Semantics: Polynomial Cones
- Experimental Evaluation
- Future Work & Conclusions

 Extend admissible assignments to nondeterministic assignments of the form

$$f(x) \le x'_i \le g(x)$$

Introduce other inference rules to improve precision

 $\frac{p \text{ is a sum of squares}}{p \ge 0}$

- Adapt widenings to nonlinear invariant generation
- Improve the current implementation

- Abstract domain for generating invariant conjunctions of polynomial inequalities
- Built upon the abstract domain of convex polyhedra
- Implemented in C/C++ with encouraging experimental results

Thank you!