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1. Results

We introduce themax-atom problem(MAP): solving (inZ)
systems of inequations of the form max(x, y)+ k ≥ z, where
x, y, z are variables andk ∈ Z. Our initial motivation for MAP
was reasoning on delays in circuits using SAT Modulo Theories
[10], viewing MAP as a natural extension of Difference Logic,
i.e., inequations of the formx+k ≥ y.

Here we show that MAP is PTIME-equivalent to several
rather different well-known problems for which no PTIME al-
gorithm has been found so far, in spite of decades of indepen-
dent efforts. One is on solvingtwo-sided linear max-plus sys-
tems(Section 3 of this paper) that arise in Control Theory when
modeling Discrete Event Systems, and another one on shortest
paths in directed weighted hypergraphs (Section 4).

Interestingly, (see Section 2) there is also a simple PTIME
equivalence between MAP and a scheduling problem consid-
ered in [9], namely computing earliest job start times for sys-
tems of AND/OR precedence constraints, which is proved in [9]
to be in turn PTIME-equivalent to Mean PayoffGames (MPG),
a well-known hard problem in NP∩ Co-NP.

Therefore, it is not so surprising any more that no PTIME
algorithms had been found for the aforementioned problems on
hypergraphs and Discrete Event Systems.

Note that solving MAP in PTIME would imply the same for
Parity Games (via MPG [5]) and hence for model checking in
the propositionalµ-calculus [6], which is very important in veri-
fication. As an example of interesting new insights from MAP1,
in Section 5 we show that a PTIME algorithm for MAP overZ

also gives a PTIME algorithm overQ, but that a weakly poly-
nomial algorithm we give forZ doesnot carry over toQ, so,
unlike what happens in Linear Programming, in this sense MAP
might be harder overQ than overZ.
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1Note for the reviewers: a preliminary version of this paper is [3], in which
we were not aware yet of [9] and the PTIME-equivalences with MPGs. In [3]
we also gave independent simple proofs of membership in NP∩ Co-NP.

2. Simple equivalences with MAP

MAP is quite expressive. Difference logic literalsx+k ≥ y
can of course be expressed as max(x, x)+ k ≥ y. Equalities
max(x, y)+k = zcan be written as max(x, y)+k ≥ z ∧ z−k ≥ x ∧
z−k ≥ y. Strict inequalities max(x, y)+k > z can be expressed
as max(x, y)+k− 1 ≥ z. One can express max on both sides, as
in max(x, y)+k = max(x′, y′)+k′ by introducing a fresh variable
zand writing max(x, y)+k = z ∧ max(x′, y′)+k′ = z. One can
also express different offsets on different arguments of max; for
instance max(x+5, y−3)≥ zcan be written as max(x, y′)+5 ≥ z
∧ y′+8 = y, wherey′ is fresh. Furthermore, since max(e1, e2, e3)
is equivalent to max(e1,max(e2, e3)), one can express nested or
larger-arity max-atoms such as max(e1, e2, e3) ≥ z by writing
max(e1, x) ≥ z ∧ max(e2, e3) = x, wherex is fresh.

Another less trivial equivalence of MAP is with the problem
of deciding the existence of super fixpoints of min-max func-
tions [8]. A min-maxfunction is a functionf : Zn → Zn whose
coordinates are min-max expressions, i.e., terms in the grammar
Y → min(Y,Y),max(Y,Y),Y + k, x1, ..., xn, whereY is a non-
terminal symbol,k ∈ Z andx1, ..., xn are variables. Asuper fix-
point of a min-max functionf is v ∈ Zn such thatf (v) ≥ v. An
instance of MAP can be easily rewritten into the formf (v) ≥ v:
one just needs to take for thei-th coordinate off the minimum
of the left-hand sides of the max-atoms in which the variablexi

appears on the right hand side. Conversely, the problem of de-
termining if a min-max functionf admits a super fixpoint can
be reduced linearly to MAP, by rewriting min(X,Y) ≥ z into
X ≥ z,Y ≥ z, whereX, Y are min-max expressions andz is a
variable; and max(X,Y) ≥ z into max(x, y) ≥ z,X ≥ x,Y ≥ y,
wherex andy are fresh variables.

A more significant relationship is with the problem of com-
puting earliest job start times for the systems of AND/OR
precedence constraints of [9]. To show PTIME-equivalence
with MAP, simple syntactic transformations suffice, like inter-
changingmin with maxand≤ witk ≥. As a consequence, these
problems are both in NP∩ Co-NP (see [9] for details).

3. Equivalence with Two-sided Linear Max-plus Systems

Definition 1. Two-sided linear max-plus systemsare sets of
equations of the form
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max( x1+k1, . . . , xn+kn ) = max( x1+k′1, . . . , xn+k′n )
whereall n variables of the system occur on both sides of every
equation.

Finding a polynomial algorithm for solving such systems
overZ has been open for more than 30 years in the area of max-
plus algebras [4]. An elegant algorithm was given and claimed
to be polynomial in [4], but unfortunately in [2] we gave a fam-
ily of examples on which it behaves exponentially.

Definition 2. Given a set of variablesV, the size of an as-
signmentα : V → Z is the difference between the largest
and the smallest value assigned to the variables, i.e., size(α) =
maxx,y∈V(α(x) − α(y)).

Lemma 1 (Small Model Property). If a set of max-atoms S
is satisfiable, then it has a model of size at most the sum of the
absolute values of the offsets, i.e., at most

KS =
∑

max(x,y)+k≥z ∈ S

|k|.

P. We may assume that all constraints are equations: re-
place each max(x, y) + k ≥ z by max(x, y) + k = z′ and
max(z, z′) = z′. The class of models does not change essentially,
and the sum of the absolute values of the offsets is the same. So
we assume thatS is a set of equations max(x, y) + k = z.

Let α be a model ofS. Based onα we define a weighted
graph whose vertices are the variables. For every constraint
max(x, y) + k = z, if α(x) ≥ α(y) then we add a red edge (x, z)
with weightk and a green edge (y, x) without a weight; and oth-
erwise, ifα(y) > α(x) then we add a red edge (y, z) with weight
k and a green edge (x, y) without a weight. While changing the
model, the graph will remain all the time the same.

A red (weakly) connected component is a subgraph such that
there are red paths between any two variables in the subgraph,
where the red edges may be used in any direction. Thesegment
of a red connected component is the range of integers from the
lowest value to the highest one assigned to the variables in the
component. The size of such a segment is at most the sum of the
absolute values of the weights of the edges in the component.

Red connected components partition variables. If their seg-
ments overlap, then size(α) ≤ KS. If there is a gap, say of size
p, then it is closed by a suitable translation, e.g., by decreas-
ing by p all values assigned to variables above the gap. This
respects all red edges and their weights since the gap is be-
tween segments of red connected components and components
are translated as a whole. Green edges are also respected since
we only close gaps and never a variablex with initially a higher
value than another variabley ends up with a value strictly lower
thany. Since all edges are respected we keep a model, all the
time closing gaps until there are no gaps left. We end up with a
modelα′ without gaps and hence size(α′) ≤ KS. 2

Notice that the previous lemma gives a proof of membership
of MAP in NP: it suffices to guess a “small” assignment; check-
ing that it is indeed a model is trivially in P.

Theorem 1. MAP and the problem of satisfiability of a two-
sided linear max-plus system are polynomially reducible to
each other.

P. Reducing this kind of max-equations to max-atoms can
be done as explained in the introduction. For the reverse reduc-
tion, by the Small Model Property (Lemma 1), ifS is satisfiable
then it has a modelα such that size(α) ≤ KS (notice thatKS can
be computed in polynomial time). LetV = {x1, . . . , xn} be the
set of variables over whichS is defined. Now, for each variable
xi , we consider the equation

max( x1−1, ..., xi−1−1, xi + KS, xi+1−1, ..., xn−1) =
max( x1, ..., xi−1, xi + KS, xi+1, ..., xn),

which is equivalent toxi + KS ≥ x j , i.e.,KS ≥ x j − xi for all j
in 1 . . .n, j , i. Let S′0 be the two-sided linear max-plus system
consisting of thesen equations. Now we add new equations to
S′0 to obtain a systemS′ which is equisatisfiable toS. This is
achieved by replacing every max-atom max(xi1, xi2)+ k ≥ xi3 in
S by the equation

max( xi1 + k, xi2 + k, xi3, x j−KS−|k|−1, ...) =
max( xi1 + k, xi2 + k, xi3−1, x j−KS−|k|−1, ...),

where j ranges over all variable indices different fromi1, i2, i3
(if any of the indicesi1, i2 or i3 coincide, an obvious simpli-
fication must be applied). The offset−KS − |k| − 1 has been
chosen so that variables with this offset do not play a role in
the maxima. If we leave them out, it is clear that the resulting
constraint max(xi1 + k, xi2 + k, xi3) = max(xi1 + k, xi2 + k, xi3 − 1)
is equivalent to the max-atom max(xi1, xi2) + k ≥ xi3. 2

4. Equivalence with Shortest Hyperpaths

In hypergraphs, an edge goes from a set of vertices to another
vertex. Hence a natural notion of a hyperpath (from a set of
vertices to a vertex) is a tree, and a natural notion of lengthof
the hyperpath is the maximal length (the sum of the weights)
of a path from a leaf to the root of this tree (see [1, 7]. This is
formalized as follows.

A (directed, weighted)hypergraphis a tupleH = (V,E,W)
whereV is the set ofvertices(here we considerV is finite), E
is the set ofhyperedgesandW : E→ Z is theweight function.
Each hyperedge is a pair (S, t) from a non-empty finite subset
of verticesS ⊆ V called thesource setto a vertext ∈ V called
thetarget vertex.

Given a hypergraphH = (V,E,W), a subset of verticesX ⊆
V, X , ∅ andy ∈ V, a hyperpath from X to yis a tree defined
recursively as follows: (i) ify ∈ X, then the empty tree∅ is a
hyperpath fromX to y; (ii) if there is a hyperedge (Z, y) ∈ E and
hyperpathstX,zi from X to zi for eachzi ∈ Z, then the treetX,y
with root (Z, y) and children the treestX,zi for each vertexzi ∈ Z,
is a hyperpath fromX to y.

Theweightω(p) of a hyperpathp is defined as: (i) ifp is ∅,
thenω(p) = 0; (ii) if p is a tree with root the hyperedgee and
childrenp1, ..., pm, thenω(p) =W(e)+max

(

ω(p1), . . . , ω(pm)
)

.
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Figure 1: Example of hypergraph.

Given a nonempty subset of verticesX ⊆ V, X , ∅, the
distancefunction δX : V → Z ∪ {±∞} is defined asδX(y) =
inf {ω(pX,y) | pX,y is a hyperpath fromX to y}. The distance
function δX is said to bewell-definedif δX(y) > −∞ for all
verticesy ∈ V.

Intuitively, here+∞means “no hyperpath” and−∞ is related
to negative cycles, for instance in the presence of an hyperedge
such asW({x}, x) = −1. We now show that MAP is PTIME-
equivalent to the problem of, given a hypergraphH = (V,E,W),
deciding whetherδX is well-defined for all non-emptyX ⊆ V.

Example 1. Fig. 1 (a) shows an example of a hypergraph. E.g.,
the hyperedge({u}, x) has weight−10, while the weight of the
hyperedge({u, x}, z) is 25 . The empty tree is a hyperpath from
{u, y} to y with rank0; Fig. 1 (b) shows another hyperpath from
{u, y} to y, with rank24.

Lemma 2. Let H = (V,E,W) be a hypergraph and X⊆ V,
X , ∅ be a set of vertices such that−∞ < δX(y) < +∞ for all
y ∈ V. If (Z, y) ∈ E, thenδX(y) ≤W(Z, y) +maxz∈Z(δX(z)).

P. By hypothesis for ally ∈ V we have−∞ < δX(y) < +∞.
Thus, in particular, for allz ∈ Z there exists a hyperpathtz
from X to z such thatω(tz) = δX(z). Now the treet with root
(Z, y) and children the treestz for eachz ∈ Z is a hyperpath
from X to y. So δX(y) ≤ ω(t) = W(Z, y) + maxz∈Z(ω(tz)) =
W(Z, y) +maxz∈Z(δX(z)). 2

Lemma 3. Let H = (V,E,W) be a hypergraph andα : V → Z

be such thatα(y) ≤ maxz∈Z(α(z)) +W(Z, y) for all hyperedges
(Z, y) ∈ E. If t is a hyperpath from a non-empty X⊆ V to y∈ V,
thenα(y) ≤ maxx∈X(α(x)) + ω(t).

P. Let us prove it by induction over the depth oft. In the
base caset = ∅, and thereforey ∈ X. Sinceω(∅) = 0, trivially
α(y) ≤ maxx∈X(α(x)) = maxx∈X(α(x)) + ω(∅). Now, if t has
positive depth, its root is a hyperedge (Z, y) ∈ E, and its children
are treest1, ..., tm connectingX to z1, ...,zm respectively, where
Z = {z1, ..., zm}. By induction hypothesis, for eachi in 1 . . .m
we haveα(zi) ≤ maxx∈X(α(x)) + ω(ti). Now:

α(y) ≤ max
1≤i≤n

(α(zi)) +W(Z, y) ≤

≤ max
1≤i≤n

(max
x∈X

(α(x)) + ω(ti)) +W(Z, y) =

= max
x∈X

(α(x))+max
1≤i≤n

(ω(ti))+W(Z, y) = max
x∈X

(α(x))+ω(t).

2

Finally we are in condition to prove the equivalence of the
two problems. For convenience, in what remains of this section
we assume max-atoms to be of the form max1≤i≤n(xi) + k ≥ z.

Theorem 2. MAP and the problem of well-definedness of the
distance functions of all subsets of vertices of a hypergraph are
polynomially reducible to each other.

P. First we prove that, given a setS of max-atoms, one can
compute in polynomial time a hypergraphH(S) whose distance
functions are well-defined if and only ifS is satisfiable.

Let S be a set of max-atoms over the variablesV. We can
assume w.l.o.g. that there exists a variablex ∈ V such that
there are max-atomsx ≥ y ∈ S for every y ∈ V (adding
a fresh variable with these properties preserves satisfiability).
The hypergraphH(S) is defined as follows: its set of ver-
tices isV; and for each max-atom maxz∈Z(z) + k ≥ y, we de-
fine a hyperedgee = (Z, y) with weight W(e) = k. For ex-
ample, the hypergraph corresponding to the set of max-atoms
S = {u− 10≥ x, z≥ y,max(x, y) − 1 ≥ z,max(x, u) + 25≥ z} is
that shown in Figure 1 (a).

Let us see that the distance functionδx in H(S) is well-
defined if and only ifS is satisfiable (we writeδx instead of
δ{x} for the sake of clarity). Let us prove that ifδx is well-
defined thenS is satisfiable. By construction, for each max-
atom maxz∈Z(z) + k ≥ y ∈ S there exists a hyperedgee= (Z, y)
in H(S) with weightW(e) = k. Now, sinceδx is well-defined
and all vertices are hyperconnected to{x}, by Lemma 2 we
have maxz∈Z(δx(z)) +W(Z, y) ≥ δx(y), and soδx |= S. Let us
prove the converse, i.e., that ifS is satisfiable thenδx is well-
defined, by contradiction. Let us assume thatδx is not well-
defined and letα be a model ofS. Then there isy ∈ V such
that δx(y) = −∞. This implies that for allw ∈ Z there exists
a hyperpathtw from {x} to y such thatω(tw) < w; in particular,
this holds forw = α(y) − α(x). As α |= S, by Lemma 3 we
haveα(x) + ω(tw) ≥ α(y), i.e.,ω(tw) ≥ α(y) − α(x), which is a
contradiction.

Finally, as inH(S) all vertices are hyperconnected to{x} by
a hyperedge, it is clear thatδx is well-defined if and only if so
is δX for all X ⊆ V, X , ∅.

Secondly, let us prove that given a hypergraphH, one can
compute in polynomial time a setS(H) of max-atoms such that
H has a well-defined distance functionδX for all X ⊆ V, X , ∅
if and only if S(H) is satisfiable. GivenH = (V,E,W), the vari-
ables ofS(H) areV, the vertices ofH; and for each hyperedge
(Z, y) ∈ E, we consider the max-atom maxz∈Z(z) +W(Z, y) ≥ y.
The proof concludes by observing thatH has a well-defined dis-
tance functionδX for all X ⊆ V, X , ∅ if and only if the same
property holds forH(S(H)), if and only if S(H) is satisfiable.
2
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5. From Z to Q

If the domain of variables and offsets isQ, one can nat-
urally transform the original problem into an equivalent one
in Z as follows. Given a conjunction ofn atoms with ratio-
nal offsets max(xi , yi) + pi/qi ≥ zi , for i in 1 . . .n, if lcm is
the least common multiple of theq′i s, one can express each
atom as max(xi , yi)+ r i/lcm ≥ zi for certainr i ’s and solve the
equisatisfiable conjunction of atoms max(xi , yi)+r i ≥ zi overZ.

This shows that any PTIME algorithm for MAP overZ
would also give us a PTIME algorithm overQ. But this is
not the case for the followingweaklypolynomial algorithm for
MAP over Z. W.l.o.g. in what follows max-atoms are of the
form max(x, y) + k ≥ z with x , z, y , z. This can be assumed
by removing trivial contradictions max(x, x) + k ≥ x (k < 0),
trivial tautologies max(x, y) + k ≥ x (k ≥ 0), and by replacing
max(x, y) + k ≥ x by max(y, y) + k ≥ x if k < 0 andx , y.

Definition 3. Given a set of max-atomsS defined over the vari-
ablesV and two assignmentsα, α′, we writeα →S α

′ (or sim-
ply α → α′, if S is understood from the context) if there is a
max-atom max(x, y) + k ≥ z ∈ S such that:

1. α′(z) = max(α(x), α(y)) + k
2. α′(z) < α(z) (hence we say thatz decreasesin this step)
3. α′(u) = α(u) for all u ∈ V, u , z.

Any sequence of stepsα0 → α1 → · · · is called amax-
derivationfor S.

Lemma 4. Let S be a set of max-atoms defined over the vari-
ables V. An assignmentα : V → Z is a model for S if and only
if α is final, i.e., there is noα′ such thatα→ α′.

The following lemma expresses that max-derivations, while
decreasing variables, never “break through” any model:

Lemma 5. Let S be a set of max-atoms and letα be a model of
S . Ifα0 → · · · → αm andα0 ≥ α, thenαm ≥ α.

P. By induction overm, the length of the derivation. For
m= 0 there is nothing to prove. Now, ifm> 0 the stepα0→ α1

is by an atom max(x, y) + k ≥ z. Let us prove thatα1 ≥ α. We
only need to show that the inequality holds for the variable that
changes, which isz; and indeedα1(z) = max(α0(x), α0(y)) +
k ≥ max(α(x), α(y)) + k ≥ α(z). Now, by induction hypothesis
αm ≥ α. 2

The next lemma ensures that models of a set of max-atoms
are invariant under “uniform” translations:

Lemma 6. Given a set of max-atoms S defined over the vari-
ables V and an assignmentα : V → Z which is a model of S ,
for any d∈ Z the assignmentα′ defined byα′(x) = α(x) + d is
a model of S .

The previous lemmas, together with the Small Model Prop-
erty, provide us with a weakly polynomial algorithm (i.e., run-
time is polynomial if numbers are encoded in unary). This
weakly polynomial algorithm can be seen as an extension of
the Bellman-Ford algorithm for shortest paths (this also applies
to the one of [9]):

Theorem 3. MAP overZ is weakly polynomial.

P. Let S be a conjunction of max-atoms, with variables
V, where|V| = n. For deciding the satisfiability ofS one can
construct an arbitrary max-derivation, starting, e.g., from the
assignmentα0 with α0(x) = 0 for all x in V. At each step,
one variable decreases by at least one. IfS is satisfiable, by
the Small Model Property and by Lemma 6, there is a model
α such that−KS ≤ α(x) ≤ 0 for all x in V. Moreover, by the
previous lemma, no variablex will ever get lower thanα(x) in
the derivation. Altogether this means that, if no model is found
aftern · KS steps, thenS is unsatisfiable. 2

As a corollary of the proof of the previous theorem, we ob-
tain a PTIME decision procedure for sets of atoms of the forms
max(x, y) ≥ z or max(x, y) > z. More generally, this also ap-
plies toK-bounded sets, where inS the absolute values of all
offsets are bounded by a given constantK.

Example 2. Let S be the set of max-atoms{u − 10 ≥ x, z ≥
y,max(x, y) − 1 ≥ z,max(x, u) + 25 ≥ z}, and letα0 be the as-
signment withα0(x) = α0(y) = α0(z) = α0(u) = 0. This initial
assignmentα0 violates u− 10≥ x, which allows us to decrease
x and assign it the value−10: in terms of max-derivations
α0 → α1, whereα1 is the assignment withα1(x) = −10,
α1(y) = α1(z) = α1(u) = 0.

Now the assignmentα1 only violatesmax(x, y)−1 ≥ z, which
forces z to take the value−1: in terms of max-derivations,α1→

α2, whereα2 is the assignment withα2(x) = −10, α2(y) = 0,
α2(z) = −1, α2(u) = 0. Thenα2 only violates z≥ y, which
forces y to take the value−1 too: α2 → α3, whereα3 is the
assignment withα3(x) = −10, α3(y) = α3(z) = −1, α3(u) = 0.

It is easy to see that11 iterations of each of the last two steps
will be needed to find a model: finally we will have a derivation
α0 →

∗ α with α(x) = −10, α(y) = α(z) = −11, α(u) = 0; since
there is noα′ such thatα → α′, α is a model of S , hence S is
satisfiable.

Notice that, if we replace10 in S by larger powers of10,
we get a family of inputs whose sizes increase linearly, but for
which the number of steps of the max-derivations reaching toa
model grows exponentially. Since the number of steps is polyno-
mial in thevalueof the offsets, and not in thesizesof the offsets,
the algorithm based is weakly polynomial (but not polynomial).

Now, if we consider the set of max-atoms S′ = S ∪
{max(x, y) + 9 ≥ u}, we note thatα above does not satisfy the
new constraint. So we can decrease u and assign it the value
−1, which makes u− 10≥ x false and forces x to take the value
−11. Thenmax(x, y) − 1 ≥ z is violated, and z is decreased to
−12. Finally z ≥ y becomes false, so y is assigned−12. The
loop of these four steps can be repeated over and over, making
all variables decrease indefinitely. Thus, S′ is unsatisfiable as
no model is found within the bound of n· KS steps given in the
previous theorem.

The above transformation for MAP overZ into MAP overQ
may produce an exponential blow-up in thevalueof the offsets.
Thus, one cannot directly conclude that MAP overQ is weakly
polynomial given that MAP overZ is so. Indeed, we have the
following.
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Theorem 4. The algorithm given in the proof of Theorem 3 is
not weakly polynomial for MAP overQ.

P. Let us fixn ≥ 1 andk ≥ 0. Then we definec j =
(

k
2 j

)

1
n+2 j

for 0 ≤ j ≤ ⌊k/2⌋; and c⌊k/2⌋+ j =
(

k
2 j−1

)

−1
n+2 j−1 for 0 < j ≤

⌈k/2⌉. Note that, by a simple induction onk, we have
∑k

j=0 c j =
∑k

i=0

(

k
i

)

(−1)i

n+i =
k!(n−1)!
(n+k)! .

Now let us assume that the algorithm is weakly polynomial
overQ and we will get a contradiction. Letd be such that, given
S a satisfiable instance of MAP overQ, anymax-derivation for
S has length at mostO(size(S)d), where numbers are repre-
sented in unary. Let us fixk such thatk > d. Consider the
following family of instances, parameterized byn:

Sn = { max(y− 1− c0, x0 − c0) ≥ x1

x1 − c1 ≥ x2

. . .

xi − ci ≥ xi+1

. . .

xk−1 − ck−1 ≥ xk

xk − ck ≥ x0 }

EachSn is satisfiable, as e.g. the assignmentα(y) = 1 +
∑k

j=0 c j , α(x0) = 0,α(xi) =
∑k

j=i c j for 1 ≤ i ≤ k is a model.
Let us apply the algorithm starting from the assignment that

maps all variables to 0. As max(y− 1− c0, x0 − c0) ≥ x1 is not
satisfied, one can apply a derivation step and update the value
of x1 to −c0. Next, asc0 + c1 > 0, the atomx1 − c1 ≥ x2 is
not satisfied, and one can update the value ofx2 to −(c0 + c1).
In general, as positivec j come first,

∑i
j=0 c j > 0 for 0 ≤ i ≤ k;

hence all variablesx3, ..., xk, x0 can be updated, in this order.
The new value ofx0 is −

∑k
j=0 c j = −

k!(n−1)!
(n+k)! .

Now the loop of updating variablesx1, ..., xk, x0 can be re-
peated untilx0 gets the value−1 (after one more round the
model is found). Asx0 is decreased by− k!(n−1)!

(n+k)! after each loop,

this will happen after (n+k)!
k!(n−1)! loops. But asn increases, this

number grows as a polynomial of degreek > d, while size(Sn)
grows linearly. This yields a contradiction.

Note that, in fact, the DL-atoms with positive offsets can only
be used in the order in which they are enumerated inSn. Since
the absolute value of everyc j is larger thank!(n−1)!

(n+k)! (for big
enoughn), one has to use all DL-atoms with negative offsets
to achieve a decrease ofx0. Henceany other max-derivation
takes at least as many steps as the one described above.2
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