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1. Results 2. Simple equivalences with MAP

We introduce themax-atom problenfMAP): solving (inZ) MAP is quite expressive. Eerence logic literalx+k >y
systems of inequations of the form max{) +k > z where can of course be expressed as max(+k > y. Equalities
X, Yy, zare variables anll € Z. Our initial motivation for MAP  max(x, y)+k = zcan be written as max(y+k>z A 2k > X A
was reasoning on delays in circuits using SAT Modulo Theorie z—k > y. Strict inequalities max( y)+k > z can be expressed
[10], viewing MAP as a natural extension offBrence Logic, as maxg,y)+k—-1>z One can express max on both sides, as
i.e., inequations of the form+k > y. in max(x, y)+k = max(x’, y")+k’ by introducing a fresh variable

Here we show that MAP is PTIME-equivalent to severalzand writing maxg,y)+k =2z A max’,y)+k’ = z One can
rather diterent well-known problems for which no PTIME al- also express tlierent dfsets on dferent arguments of max; for
gorithm has been found so far, in spite of decades of indeperirstance max(+5, y—3) > zcan be written as max(y’)+5 > z
dent dforts. One is on solvingwvo-sided linear max-plus sys- A y+8 =Yy, wherey’ is fresh. Furthermore, since max(e,, 3)
tems(Section 3 of this paper) that arise in Control Theory whenis equivalent to maxg, max(e, €3)), one can express nested or
modeling Discrete Event Systems, and another one on shortdarger-arity max-atoms such as mex, es) > z by writing
paths in directed weighted hypergraphs (Section 4). maxEr, X) =z A max(e, e3) = X, wherex s fresh.

Interestingly, (see Section 2) there is also a simple PTIME Another less trivial equivalence of MAP is with the problem
equivalence between MAP and a scheduling problem considsf deciding the existence of super fixpoints of min-max func-
ered in [9], namely computing earliest job start times fog-sy tions [8]. Amin-maxfunction is a functionf : Z" — Z" whose
tems of ANDOR precedence constraints, which is proved in [9]coordinates are min-max expressions, i.e., terms in thamer
to be in turn PTIME-equivalent to Mean PayGames (MPG), Y — min(Y,Y), max(Y,Y),Y + k, X4, ..., Xo, whereY is a non-

a well-known hard problem in NA Co-NP. terminal symbolk € Z andx, ..., X, are variables. Auper fix-

Therefore, it is not so surprising any more that no PTIMEpointof a min-max functiorf is v € Z" such thatf(v) > v. An
algorithms had been found for the aforementioned problems cinstance of MAP can be easily rewritten into the fof(w) > v:
hypergraphs and Discrete Event Systems. one just needs to take for tiveh coordinate off the minimum

Note that solving MAP in PTIME would imply the same for of the left-hand sides of the max-atoms in which the variable
Parity Games (via MPG [5]) and hence for model checking inappears on the right hand side. Conversely, the problem-of de
the propositiongk-calculus [6], which is very importantin veri- termining if a min-max functiorf admits a super fixpoint can
fication. As an example of interesting new insights from MAP be reduced linearly to MAP, by rewriting miX(Y) > zinto
in Section 5 we show that a PTIME algorithm for MAP oer X > z Y > z, whereX, Y are min-max expressions aads a
also gives a PTIME algorithm ové, but that a weakly poly- variable; and max{, Y) > zinto maxk.y) > zX > x, Y >y,
nomial algorithm we give foZ doesnot carry over toQ, so,  wherex andy are fresh variables.
unlike what happens in Linear Programming, in this sense MAP A more significant relationship is with the problem of com-
might be harder ove than overZ. puting earliest job start times for the systems of ARR
precedence constraints of [9]. To show PTIME-equivalence
with MAP, simple syntactic transformationsfiae, like inter-
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we also gave independent simple proofs of membership imXB-NP. equations of the form

3. Equivalence with Two-sided Linear Max-plus Systems
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max(xy+ki, ..., Xo+kn) = max(xg+kj, ..., X3+k) Theorem 1. MAP and the problem of satisfiability of a two-
whereall n variables of the system occur on both sides of everysided linear max-plus system are polynomially reducible to
equation. each other.

Finding a polynomial algorithm for solving such systemsProor. Reducing this kind of max-equations to max-atoms can
overZ has been open for more than 30 years in the area of maje done as explained in the introduction. For the reversgcred
plus algebras [4]. An elegant algorithm was given and cldime tion, by the Small Model Property (Lemma 1) Sfis satisfiable
to be polynomial in [4], but unfortunately in [2] we gave a fam then it has a modet such that sizex) < Ks (notice thas can
ily of examples on which it behaves exponentially. be computed in polynomial time). L& = {x,..., X} be the

set of variables over whic8 is defined. Now, for each variable
Definition 2. Given a set of variable¥, the size of an as- X, we consider the equation
signmenta : V — Z is the diference between the largest
and the smallest value assigned to the variables, i.e(a3ize
Mayev (@(X) — a(y)).

max( -1, .., X-1—1, X +Ks, X:1—1, .., X—1)=
max( Xi, .., X-1, X +Ks, Xi1, .., Xn),

Lemma 1 (Small Model Property). If a set of max-atoms S which is equivalent 106 + Ks 2 X, i.e.,Ks 2 X; — x forall |
inl...n,j#i. LetSj be the two-sided linear max-plus system

is satisfiable, then it has a model of size at most the sum of the ™" " . : ;
: consisting of thesa equations. Now we add new equations to
absolute values of thefsets, i.e., at most

S}, to obtain a systen®’ which is equisatisfiable t8. This is
achieved by replacing every max-atom max(x,) + Kk > x;, in

Ks = Z K. S by the equation

maxxy)+k>z e S

max( X, +Kk X, +Kk X, Xj—Ks—lkl-1, ..)=

Proor. We may assume that all constraints are equations: re-
Y q max( x, +Kk X, +k x,—-1 Xj—Ks—|ki-1, ..,

place each max(y) + k > z by maxiy) + k = z and

maax(zr,] z)=z. fTEe CISSSIOme?eIS d?(elzgot c_har;}ge eS'Senga”XNherej ranges over all variable indicesfidirent fromiy, iy, i3
and the sum of the absolute values of tisets Is the same. S0 (if any of the indicedy, i, or iz coincide, an obvious simpli-

we assume tha is a set of equations max(y) + k = z fication must be applied). Theffiset—Ks — |kl — 1 has been

Leta be a mod_el ofS. Based O we define a weighted _chosen so that variables with thi§set do not play a role in
graph whose vertices are the variables. For every constraify o maxima. If we leave them out, it is clear that the resgltin

m.ax(x, y) +k=2zif a(X) = a(y) thenlwe add a red edgg, @) constraint max{, + k, x;, + k, %,) = max(x, + k, x, + k, x;, — 1)
wnh we|-ghtk and a green edgg,(x) without awelght; and_ oth- is equivalent to the max-atom ma( x,) + k > X,. O
erwise, ifa(y) > a(X) then we add a red edgg ¢ with weight
k and a green edge,(y) without a weight. While changing the
model, the graph will remain all the time the same. 4. Equivalence with Shortest Hyperpaths

A red (weakly) connected component is a subgraph such that
there are red paths between any two variables in the subgraph In hypergraphs, an edge goes from a set of vertices to another
where the red edges may be used in any direction.sEgenent  vertex. Hence a natural notion of a hyperpath (from a set of
of a red connected component is the range of integers from théertices to a vertex) is a tree, and a natural notion of leofith
lowest value to the highest one assigned to the variabléwin t the hyperpath is the maximal length (the sum of the weights)
component. The size of such a segment is at most the sum of tigé a path from a leaf to the root of this tree (see [1, 7]. This is
absolute values of the weights of the edges in the componentformalized as follows.

Red connected components partition variables. If their seg A (directed, weightedpypergraphis a tupleH = (V, E, W)
ments overlap, then sizé) < Ks. If there is a gap, say of size WhereV is the set olvertices(here we considey is finite), E
p, then it is closed by a suitable translation, e.g., by desrea is the set ohyperedgeandW : E — Z is theweight function
ing by p all values assigned to variables above the gap. Thi&ach hyperedge is a pai,t) from a non-empty finite subset
respects all red edges and their weights since the gap is bef verticesS C V called thesource seto a vertext € V called
tween segments of red connected components and componeti§target vertex
are translated as a whole. Green edges are also respeated sin Given a hypergraphl = (V, E, W), a subset of verticeX c
we only close gaps and never a variabigith initially a higher ~ V, X # 0 andy € V, ahyperpath from X to ys a tree defined
value than another variabyeends up with a value strictly lower recursively as follows: (i) ify € X, then the empty tre@ is a
thany. Since all edges are respected we keep a model, all tHeyperpath fronX toy; (ii) if there is a hyperedgeZ(y) € E and
time closing gaps until there are no gaps left. We end up with &yperpathsy; from X to z for eachz € Z, then the tredx,
modele’ without gaps and hence sizé] < Ks. O  withroot (Zy) and children the treds ,, for each vertex; € Z,

is a hyperpath fronX toy.

Notice that the previous lemma gives a proof of membership Theweightw(p) of a hyperpattp is defined as: (i) ifp is 0,
of MAP in NP: it sufices to guess a “small” assignment; check-thenw(p) = 0; (ii) if pis a tree with root the hyperedgeand
ing that it is indeed a model is trivially in P. childrenpsy, ..., pm, thenw(p) = W(e)+max(a)(p1), .. .,w(pm)).
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({u},2) = max(a(x)+ max(w(t))+W(Z.y) = maxa(x))+w(b).

O

Finally we are in condition to prove the equivalence of the
two problems. For convenience, in what remains of this sacti
we assume max-atoms to be of the form max(x) + k > z

Figure 1: Example of hypergraph. Theorem 2. MAP and the problem of well-definedness of the
distance functions of all subsets of vertices of a hypelgap

Given a nonempty subset of vertic¥sc V, X # 0, the polynomially reducible to each other.

distancefunctiondx : V — Z U {xoo} is defined agix(y) =

inf{w(pxy) | Pxy is @ hyperpath fronX to y}. The distance Proor. Firstwe prove that, given a sBtof max-atoms, one can
function 6 is said to bewell-definedif dx(y) > —oo for all compute in polynomial time a hypergrapl{S) whose distance
verticesy € V. functions are well-defined if and only 8 is satisfiable.

Let S be a set of max-atoms over the variablés We can
assume w.l.o.g. that there exists a variable V such that
there are max-atomg > y € S for everyy € V (adding
a fresh variable with these properties preserves satikfjgbi
The hypergraptH(S) is defined as follows: its set of ver-
tices isV; and for each max-atom max(2) + k > y, we de-
fine a hyperedge = (Z,y) with weightW(e) = k. For ex-
ample, the hypergraph corresponding to the set of max-atoms

Intuitively, here+oco means “no hyperpath” aneko is related
to negative cycles, for instance in the presence of an hyggere
such asW({x},x) = —1. We now show that MAP is PTIME-
equivalent to the problem of, given a hypergr&pk (V, E, W),
deciding whethefy is well-defined for all non-empt{ C V.

Example 1. Fig. 1(a) shows an example of a hypergraph. E.qg.,
the hyperedgé€{u}, X) has weight-10, while the weight of the - )
hyperedg€{u, x}, 2) is 25. The empty tree is a hyperpath from S={u-102xz>y,maxy) -1z maxu) + 252 Z}is

{u, y} to y with rank0; Fig. 1 (b) shows another hyperpath from that shown in Figure 1 (a?. L )
{u,y} to y, with rank24. Let us see that the distance functiénin H(S) is well-

defined if and only ifS is satisfiable (we writéy instead of

Lemma 2. Let H = (V,E,W) be a hypergraph and X Vv, 9 for the sake of clarity). Let us prove thatd is well-
X # 0 be a set of vertices such thato < dx(y) < +co forall ~ defined therS is satisfiable. By construction, for each max-

ye V. If(Z,y) € E, thensx(y) < W(Z, y) + Maxez(6x(2)). atom maxz(2) + k > y € S there exists a hyperedge= (Z,y)
in H(S) with weightW(e) = k. Now, sincedy is well-defined
Proor. By hypothesis for aly € V we have-w < x(y) < +00.  and all vertices are hyperconnected{tg, by Lemma 2 we
Thus, in particular, for alz € Z there exists a hyperpath ~have maxz(6x(2) + W(Z,y) > ox(y), and soéx = S. Let us
from X to z such thatw(t,) = 6x(2). Now the treet with root ~ Prove the converse, i.e., thatSfis satisfiable thedy is well-
(Z,y) and children the trees for eachz € Z is a hyperpath defined, by contradiction. Let us assume thiais not well-
from X toy. Soéx(y) < w(t) = W(ZY) + Maxez(w(ty) = defined and letr be a model ofS. Then there iy € V such
W(Z, y) + Maxez(6x(2)). O thatdx(y) = —co. This implies that for alw € Z there exists
a hyperpath,, from {x} to y such thatw(t,) < w; in particular,
Lemma 3. Let H= (V, E, W) be a hypergraph and : V — 7  this holds forw = a(y) — a(x). Asa E S, by Lemma 3 we
be such that(y) < max.z(a(2)) + W(Z,y) for all hyperedges havea(x) + w(tw) > a(y), i.e.,w(tw) > a(y) - a(x), which is a
(Z,y) € E. Iftis a hyperpath from a non-emptyXV toye V,  contradiction.
thena(y) < maxex(@(X)) + w(t). Finally, as inH(S) all vertices are hyperconnected{td by
a hyperedge, it is clear thay is well-defined if and only if so
Proor. Let us prove it by induction over the depthtofin the sy forall X C V, X # 0.
base caseé= 0, and thereforg € X. Sincew(0) = 0, trivially Secondly, let us prove that given a hypergraphone can
aly) < maxex(a() = Maxex(a(x)) + w(@). Now, if t has  compute in polynomial time a s&(H) of max-atoms such that
positive depth, its rootis a hyperedgey) € E, and its children  y has a well-defined distance functiog for all X € V, X # 0
are trees, ..., tm CONNECNGX 10 24, ..., Zn respectively, where it and only if S(H) is satisfiable. Givei = (V, E, W), the vari-
Z = {z, .., Zm}. By induction hypothesis, for eadfin 1...m  gpjes ofS(H) areV, the vertices oH; and for each hyperedge

we haver(z) < maxex(a(X)) + w(ti). Now: (Z,y) € E, we consider the max-atom max(z) + W(Z,y) > V.
The proof concludes by observing thtdhas a well-defined dis-
a(y) < maX(a(z)) + W(Z,y) < tance functiorsy for all X € V, X # 0 if and only if the same
o property holds foH(S(H)), if and only if S(H) is satisfiable.
< maxmaxX@(X)) + w(t;)) + W(Z,y) = O

I<isn xeX
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5. FromZto Q Theorem 3. MAP overZ is weakly polynomial.

If the domain of variables andffsets isQ, one can nat- Proor. Let S be a conjunction of max-atoms, with variables
urally transform the original problem into an equivaleneon V, where|V| = n. For deciding the satisfiability & one can
in Z as follows. Given a conjunction af atoms with ratio- ~construct an arbitrary max-derivation, starting, e.gonfrthe
nal ofsets maxg,y) + pi/G > Z, foriin 1...n, if lcmis  assignmenty with ag(X) = O for all x in V. At each step,
the least common multiple of the's, one can express each one variable decreases by at least oneS I satisfiable, by
atom as max{,y;) +r;/lcm > z for certainr;’s and solve the the Small Model Property and by Lemma 6, there is a model
equisatisfiable conjunction of atoms m&x{;)+r; > z overZ.  a such that-Ks < a(x) < 0 for all x in V. Moreover, by the

This shows that any PTIME algorithm for MAP ové&  previous lemma, no variabbewill ever get lower thar(x) in
would also give us a PTIME algorithm ovép. But this is  the derivation. Altogether this means that, if no model isfo
not the case for the followingreaklypolynomial algorithm for ~ aftern- Ks steps, ther® is unsatisfiable. O
MAP overZ. W.l.o.g. in what follows max-atoms are of the
form max,y) + k > zwith x # z, y # z. This can be assumed
by removing trivial contradictions max(x) + k > x (k < 0),
trivial tautologies max{,y) + k > x (k > 0), and by replacing
max(x, y) + k > x by maxf,y) + k > xif k < 0 andx # y.

As a corollary of the proof of the previous theorem, we ob-
tain a PTIME decision procedure for sets of atoms of the forms
max(x,y) > zor maxk,y) > z More generally, this also ap-
plies toK-bounded setswhere inS the absolute values of all
offsets are bounded by a given constént
Definition 3. Given a set of max-aton&defined over the vari-
ablesV and two assignments, o/, we writea —g o’ (or sim-
ply « — ', if Sis understood from the context) if there is a

Example 2. Let S be the set of max-atofis— 10 > X,z >
y, maxx,y) — 1 > z max(x, u) + 25 > z}, and letag be the as-
signment withwo(X) = ao(y) = @o(2) = ap(u) = 0. This initial

max-atom max{, y) + k > z€ S such that: assignmen violates u- 10 > x, which allows us to decrease
1. /(2 = max@(x), a(y)) + k x and assign it the value10: in terms of max-derivations
2. & (2 < a(2) (hence we say thatdecreasem this step) ap — a1, wWhereq; is the assignment witlv1(x) = —10,
3. () =a(u)forallue V,u+z a1(y) = a1(2 = aa(u) = 0.
Any sequence of stepsy — a1 — --- is called amax- Now the assignment only violatesnax(x, y)—1 > z, which

forces z to take the valu€l: in terms of max-derivationg;; —
a2, Wherea; is the assignment withy(X) = —10, ao(y) = 0,
Lemma 4. Let S be a set of max-atoms defined over the varia,(z2) = -1, a2(u) = 0. Thena, only violates z> y, which
ables V. An assignmeat: V — Zis amodel for S ifand only forces y to take the valuel too: @, — a3, whereas is the
if ¢ isfinal, i.e., there is n@’ such thatv — «'. assignment witles(X) = —10, as(y) = a3(2) = -1, as(u) = 0.
Itis easy to see thdtliterations of each of the last two steps
Swill be needed to find a model: finally we will have a derivation
ao =" a with a(X) = =10, a(y) = a(2) = —-11, a(u) = 0; since
Lemma 5. Let S be a set of max-atoms andddie a model of ~there is noa” such thate — o, @ is a model of S, hence S is
S.Ifag - -+ > apandag = «, thenay > a. satisfiable.
) ] o Notice that, if we replacd0in S by larger powers 010,
Proor. By induction ovemm, the length of the derivation. For \ye get a family of inputs whose sizes increase linearly, dut f
m = O there is nothing to prove. Now,ifi > O the stepro — @1 which the number of steps of the max-derivations reachirag to
is by an atom max(y) + k > z Let us prove thaty > . We  model grows exponentially. Since the number of steps isipely
only need to show that the inequality holds for the variab& t  mia| in thevalueof the gfisets, and not in thsizesof the gfsets,
changes, which ig, and indeedr;(2) = max(@o(X), ao(Y)) +  the algorithm based is weakly polynomial (but not polynd)nia
k > max(@(x), a(y)) + k > a(2). Now, by induction hypothesis  Now, if we consider the set of max-atomé S S U
m 2 @. = {max(x,y) + 9 > u}, we note thatr above does not satisfy the
The next lemma ensures that models of a set of max-atonfE€W co_nstraint. So we can decrease u and assign it the value
are invariant under “uniform” translations: -1, which makes & 10 > x fa_lse_and forces x tq take the value
—11. Thenmax(x,y) — 1 > z is violated, and z is decreased to
Lemma 6. Given a set of max-atoms S defined over the vari—12. Finally z > y becomes false, so y is assignetl. The
ables V and an assignmemt: V — Z which is a model of S, |oop of these four steps can be repeated over and over, making
for any de Z the assignment’ defined byr'(x) = a(x) + dis  all variables decrease indefinitely. Thus,iS unsatisfiable as
amodel of S. no model is found within the bound of Ks steps given in the

The previous lemmas, together with the Small Model Prop_prewoustheorem.

erty, provide us with a weakly polynomial algorithm (i.eunr The above transformation for MAP ovE&rinto MAP overQ
time is polynomial if numbers are encoded in unary). Thismay produce an exponential blow-up in tredueof the dfsets.
weakly polynomial algorithm can be seen as an extension ofhus, one cannot directly conclude that MAP ofeis weakly
the Bellman-Ford algorithm for shortest paths (this algolia@p  polynomial given that MAP oveZ. is so. Indeed, we have the
to the one of [9]): following.

derivationfor S.

The following lemma expresses that max-derivations, whil
decreasing variables, never “break through” any model:
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