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Abstract:* Since Zhang and Malik’s work in 2003
[ZM03], it is well-known that modern DPLL-based
SAT solvers with learning can be instrumented to write
a trace on disk from which, if the input is unsatisfiable,
a resolution proof can be extracted (and checked), and
hence also an unsatisfiable core: a (frequently small)
unsatisfiable subset of the input clauses.

In this article we first give a new algorithmic ap-
proach for processing these (frequently huge) traces. It
achieves the efficiency of a depth-first traversal, while
preserving the property that memory usage remains
upper bounded by that of the SAT solver that gener-
ated the trace.

The second part of this article is about in-memory
algorithms for generating SAT proofs and cores, with-
out writing traces to disk. We discuss advantages and
disadvantages of this approach and investigate why
the current SAT solvers with this feature still run out
of memory on long SAT runs. We analyze several of
these in-memory algorithms, based on carefully de-
signed experiments with our implementation of each
one of them, as well as with (our implementation of)
a trace-based one. Then we describe a new in-memory
algorithm which saves space by doing more bookkeep-
ing to discard unnecessary information, and show that
it can handle significantly more instances than the pre-
viously existing algorithms, at a negligible expense in
time.

*Technical Univ. of Catalonia, Barcelona. Partially sup-
ported by Spanish Min. of Educ. and Science through the
LogicTools-2 project, ref. TIN2007-68093-C02-01.

1. Introduction

More and more applications of DPLL-based
([DP60,DLL62]) (propositional) SAT solvers and
their extensions keep emerging. For some of these
applications, it suffices to obtain a yes/no answer,
possibly with a model in case of satisfiability. For
other applications, also in case of unsatisfiability
a more detailed answer is needed. For example,
one may want to obtain a small (or even mini-
mal, wrt. set inclusion) unsatisfiable subset of the
initial set of clauses. Such subsets, called unsat-
isfiable cores, are obviously useful in applications
like planning or routing for explaining why no fea-
sible solution exists, but many other applications
keep emerging, such as solving MAX-SAT prob-
lems [FM06,MSP08] or debugging software models
[Jac02].

In addition, it is frequently helpful, or even
necessary, to be able to check the unsatisfiability
claims produced by a SAT solver, using some small
and simple, independent, trusted checker for, e.g.,
resolution proofs. Note that, although for certain
classes of formulas the minimal resolution proof is
exponentially large [Hak85], for real-world prob-
lems the size tends to be manageable and fre-
quently surprisingly small (as is the core).

Since Zhang and Malik’s work in 2003 [ZM03],
it is well-known that modern DPLL-based SAT
solvers with learning can be instrumented to write
a trace on disk from which, if the input is unsat-
isfiable, a resolution proof can be extracted (and
checked), and hence also an unsatisfiable core a
(frequently small) unsatisfiable subset of the input
clauses explaining the reasons for the unsatisfiabil-
ity.

Efficiently finding proofs and cores is impor-
tant in many applications. The processing time
becomes even more important when, for reducing
the size of the core, one iteratively feeds it back
into the SAT solver with the hope of generating
a smaller one, until a fixpoint is reached (that
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may still not be minimal, so one can apply other
methods for further reducing it, if desired). Effi-
ciency is also important in other applications re-
quiring features like the identification of all disjoint
cores, i.e., all independent reasons for unsatisfiabil-
ity or applications where cores are used for solving
MAX-SAT problems [MSP08] or debugging soft-
ware models [Jac02].

In Section 3 of this article we give a new algorith-
mic approach for processing the (frequently huge)
traces generated in Zhang and Malik’s approach.
It achieves the efficiency of a depth-first traversal,
while maintaing the property that memory usage
remains upper bounded by the memory usage of
the SAT solver that generated the trace.

However, for further enhancing efficiency, in-
memory approaches are being developed. For in-
stance the one implemented by Biere in PicoSAT
[Bie08] essentially corresponds to storing the trace
file of [ZM03] in main memory. In those cases
where this is indeed feasible, i.e., if there is enough
memory, this has several advantages over the trace
file one. Not only does one avoid the inefficiencies
caused by the use of external memory, but also,
and more importantly, for retrieving the proof or
the core one does not need to sequentially traverse
the whole trace, but only those parts of it that ap-
pear in the proof. This gives one order of magni-
tude speedup in applications where cores or proofs
have to be produced frequently [BKO+07,Bie08],
and of course even more in the context of so-
phisticated (e.g., iterative) core/proof minimiza-
tion techniques.

The second part of this article (Sections 4–6) is
about such in-memory algorithms for generating
SAT proofs and cores. We discuss advantages and
disadvantages of the in-memory approach and in-
vestigate why the current SAT solvers with this
feature still run out of memory on longer SAT
runs. We analyze several of these in-memory al-
gorithms, based on carefully designed experiments
with our implementation of each one of them, as
well as with (our implementation of) a trace-based
one. Similar algorithms to the ones explained here
were also applied in the context of first-order the-
orem proving, (e.g. [RV02] and [DS96]).

Our motivation for this work was that we also
needed proofs and cores from longer runs. More-
over, we use SAT solvers inside other systems (e.g.,
for SAT Modulo Theories) where memory for the
SAT solver is more limited. All this will become

even more important if (multicore) processor per-
formance grows faster than memory capacity.

Here we describe a new and better in-memory
method that saves space by doing some book-
keeping to discard unnecessary information, and
show that it can handle significantly more in-
stances than the previously existing algorithms,
at a negligible expense in time. We give a care-
ful experimental comparison of it with the pre-
vious ones, which is non-trivial, since, for assess-
ing different data structures and algorithms for
SAT, it is crucial to develop implementations of
each one of them, based on the same SAT solver,
and in such a way that the search performed by
the SAT solver is always identical. All software
sources and benchmarks used here can be found at
www.lsi.upc.edu/~rasin.

2. Short Overview on DPLL Algorithms for SAT

For self-containedness of the paper, here we give
a short overview on DPLL based on the abstract
presentation of [NOT06]. Let P be a fixed finite
set of propositional symbols. If p ∈ P , then p is an
atom and p and ¬p are literals of P . The negation
of a literal l, written ¬l or l, denotes ¬p if l is p,
and p if l is ¬p. A clause is a disjunction of literals
l1∨ . . .∨ ln. A unit clause is a clause consisting of a
single literal. The empty clause is a clause that has
no literals. A (CNF) formula is a conjunction of
zero or more clauses C1∧. . .∧Cn. When it leads to
no ambiguities, we will sometimes also write such
a formula in set notation {C1, . . . , Cn}, or simply
replace the ∧ connectives by commas. A (partial
truth) assignment M is a set of literals such that
{p,¬p} ⊆ M for no p. M will be written as a
sequence (also seen as a set when convenient) of
(possibly annotated) literals with Ml meaning the
concatenation of M with l. A literal l is true in M

if l ∈ M , is false in M if ¬l ∈ M , and is undefined
in M otherwise. A literal is defined in M if it is
either true or false in M . A clause C is true in
M if at least one of its literals is true in M . It is
false in M if all its literals are false in M , and it
is undefined in M otherwise, the empty clause is
always false. A formula F is true in M , or satisfied
by M , denoted M |= F , if all its clauses are true
in M . In that case, M is a model of F . If F has no
models then it is unsatisfiable. Then, any formula
F containing the empty clause is unsatisfiable. If
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Fig. 1. Set of rules that model a DPLL procedure

UnitPropagate :

M || F, C ∨ l =⇒ M l || F, C ∨ l if

{

M |= ¬C

l is undefined in M

Decide :

M || F =⇒ M ld || F if

{

l or ¬l occurs in a clause of F

l is undefined in M

Fail :

M || F, C =⇒ Fail if

{

M |= ¬C

M contains no decision literals
Backjump :

M ld N || F, C =⇒ M l′ || F, C if























M ld N |= ¬C, and there is
some clause C ′ ∨ l′ such that:

F,C |= C ′ ∨ l′ and M |= ¬C ′,

l′ is undefined in M , and
l′ or ¬l′ occurs in F or in M ld N

Learn :

M || F =⇒ M || F, C if

{

each atom of C occurs in F or in M

F |= C

Forget :
M || F, C =⇒ M || F if

{

F |= C

F and F ′ are formulas, we write F |= F ′ if F ′ is
true in all models of F . Then we say that F ′ is
entailed by F , or is a logical consequence of F . If
C is a clause l1 ∨ . . . ∨ ln, we write ¬C to denote
the formula ¬l1 ∧ . . . ∧ ¬ln.

A state of the DPLL procedure is a pair of the
form M || F , where F corresponds to a (CNF) for-
mula, and M is, essentially, a (partial) assignment.
A literal l may be annotated as a decision literal
(see below), writing it as ld. We say that a state
M is at decision level n if in M there are n literals
marked as decisions. A clause C is conflicting in a
state M || F,C if M |= ¬C. A DPLL procedure
can be modeled by a set of rules over such states
(see figure 1).

– The Decide rule represents a case split: an un-
defined literal l is chosen and added to the
model, annotated as a decision literal.

– UnitPropagate forces a literal l to be true if
there is a clause C ∨ l in F whose part C is
false in M .

– By Learn one can add any entailed clause to
F . Learned clauses prevent repeated work in
similar conflicts, which frequently occur in in-
dustrial problems having some regular struc-
ture.

– Since a lemma is aimed at preventing fu-
ture similar conflicts, it can be removed using

Forget, when such conflicts are not very likely
to be found again. In practice, a lemma is re-
moved when its relevance (see, e.g., [BS97]) or
its activity level drops below a certain thresh-
old; the activity can be, e.g., the number of
times it becomes a unit or a conflicting clause
[GN02].

– Fail rule applies only when a conflicting clause
C is detected and M contains no decision lit-
erals (i.e. when there is a clause at decision
level zero). FailState state is then produced
and search ends.

– On the other hand, if there is some deci-
sion literal in M and an entailed conflict-
ing clause, then one can always find (and
Learn) a backjump clause, an entailed clause
of the form C ∨ l′, such that Backjump us-
ing C∨ l′ applies. Good backjump clauses can
be found by conflict analysis of the conflict-
ing clause [MSS99,ZMMM01]. To better un-
derstand how the Backjump and Learn rules
work we refer to the example of Section 3.

Modern DPLL-based solvers also frequently
restart the search. This is somewhat orthogonal to
the subject of this paper and we refer to [NOT06]
for futher details on this and DPLL in general.

For deciding the satisfiability of an input for-
mula F , one can generate an arbitrary derivation
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∅ || F =⇒ . . . =⇒ Sn, where Sn is a final
state (no rule applies). Under simple conditions,
this always terminates. Moreover, for every deriva-
tion like the above ending in a final state Sn, (i) F

is unsatisfiable if, and only if, Sn is Fail , and (ii)
if Sn is of the form M || F then M is a model of
F (see [NOT06] for all details).

Also for self-containedness of the paper, we de-
fine resolution between two clauses and give the
concept of a resolution proof of some entailed
clause.

The (binary) Resolution rule is the following in-
ference rule with two clauses as premises and an-
other clause as conclusion:

x ∨ C ¬x ∨ D

C ∨ D
Resolution

Let F be a set of clauses and let C be a clause. A
Resolution proof of C from F is a directed acyclic
graph where:

– each vertex is (labeled by) a clause
– C is its single sink vertex (i.e., a vertex with

no outgoing edges)
– the source vertices (no incoming edges) are

clauses from S

– every non-source vertex has two incoming
edges from clauses from which it can be ob-
tained in one Resolution step.

3. Zhang and Malik’s trace-based method

Since Zhang and Malik’s work in 2003 [ZM03],
it is well-known that modern DPLL-based solvers
with learning can be instrumented to write a trace
on disk from which a resolution proof can be ex-
tracted and checked.

In this approach, essentially, each learned clause
generates a line in the trace with only the list of
its parents’ identifiers (ID’s), i.e., the ID’s of the
clauses involved in the conflict analysis, which is a
sequence of resolution steps (see the example be-
low).

When unsatisfiability is detected, that is, a con-
flict with no decision literals in the current assign-
ment, it provides a last line in the trace corre-
sponding to the parents list of the empty clause.
By processing the trace file backwards from this

last line one can hence reconstruct a resolution
proof and find the subset of the clauses in the orig-
inal formula F that is used in it.

We explain the technique by means of the follow-
ing example (see [NOT06] Section 2 for details).
Consider, among others, a set of clauses:

9∨6∨7∨8 8∨7∨5 6∨8∨4 4∨1
4∨5∨2 5∨7∨3 1∨2∨3

and a state of the DPLL procedure where the par-
tial assignment M is of the form: . . . 6 . . . 7 . . . 9d 8
5 4 1 2 3. It is easy to see that this state can
be reached after the last decision 9d by six unit
propagation steps with these clauses (in the given
order).

For example, 8 is implied by 9, 6, and 7 because
of the first clause. Now, the clause 1∨2∨3 is con-
flicting (it is false in the current assignment), and
working backwards from it we get an implication
graph:

6

8

4

5

2

1

37

9
d

where the so-called 1UIP cut (the dotted line, see
[MSS99,MMZ+01]) gives us the backjump clause
8∨ 7∨ 6 that is learned as a lemma. For those
who are more familiar with resolution, this is sim-
ply a backwards resolution proof on the conflict-
ing clause, resolving away the literals 3, 2, 1, 4 and
5, in the reverse order their negations were propa-
gated, with the respective clauses that caused the
propagations:

8∨7∨5

6∨8∨4

4∨1

4∨5∨2

5∨7∨3 1∨2∨3

5∨7∨1∨2

4∨5∨7∨1

5∨7∨4

6∨8∨7∨5

8∨7∨6

until reaching a clause with only one literal of the
current decision level (here, literal 8). This clause
8∨7∨6 will be learned, adding it as a new clause
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(a lemma). It allows one to backjump to the state
. . . 6 . . . 7 8, as if it had been used on . . . 6 . . . 7 for
unit propagation.

It is easy to see that this kind of linear resolu-
tion proofs can be reconstructed with as only in-
formation the ordered list of clauses that are re-
solved. This is true because the proof has a linear
structure, and because in each binary resolution
step the two given clauses have only one literal
that can be resolved upon (otherwise the conclu-
sion would be a tautology, which is never the case
in this context).

Now assume that an input clause’s ID is simply
its line number in the input CNF file, and that
a lemma’s ID is its line number in the trace file,
i.e., the line containing the ordered list of its par-
ents’ ID’s (some additional prefix can be used to
distinguish lemma ID’s from input clauses ID’s).

Then it is clear that one can reconstruct and
check the whole resolution proof from (i) the input
clauses file and (ii) the ordered list of parent ID’s
at each line of the trace file.

The overhead in time for producing the trace
file is usually small (typically around 10 per cent,
[ZM03], see Section 6), but the traces quickly be-
come large (hundreds of MB from a few minutes
run, and several GB from long runs). Therefore,
extracting from it the proof or the core, i.e., the
leaves of the proof DAG, may be expensive.

This is especially the case since usually the trace
does not fit into memory, and hence in [ZM03] a
breadth-first processing of the trace is proposed
that is guaranteed not to exceed the memory us-
age of the SAT solver that generated the trace.
Here we propose a simple implementation idea
that achieves the same property, but with an al-
gorithm that is as efficient as the depth-first one,
and hence, according to the experimental results
of [ZM03] much more efficient than the breadth-
first approach (which we did not re-implement our-
selves).

The first step is to reverse the whole trace file
line-wise, i.e., in an N -line trace, line i becomes
line N − i + 1 in the reversed trace. The linux
tac (the reverse cat) command does this very ef-
ficiently (in time negligible w.r.t. the rest of our
algorithm).

In [GN03] an alternative method to check unsat-
isfiability (and also extract the core) from a trace is
presented. This method, nevertheless, is more time
consuming than the one presented below (specially
for the core extraction process).

3.1. Processing reversed traces: cores

Let us first consider unsatisfiable core extrac-
tion. The first line of the reversed trace will con-
sist of the ID’s of the parents of the empty clause.
These ID’s will become active, meaning that they
participate in the proof of the empty clause. These
active ID’s are stored in some datastructure (e.g.,
a hash table) where one can check in constant time
whether a given ID is active or not. While travers-
ing the reversed trace, at each line one can hence
determine whether the given line number corre-
sponds to an active ID or to a passive one. If the
current line is active, all its ID’s are set to active
too (note that some may already be active before-
hand since the resolution proof is a DAG rather
than a tree).

In addition, if a line corresponding to an active
ID is reached, then this ID can be removed from
the datastructure of active ID’s, since no more uses
of it will be found in the (reversed) trace. As a
consequence, this datastructure will never contain
more ID’s than the maximum number of clauses
simultaneously kept by the SAT solver that gener-
ated the trace.

Each time an input clause’s ID is set to active,
this means that this input clause belongs to the un-
satisfiable core. The process terminates (possibly
before the whole reversed trace is scanned) when
the set of active ID’s becomes empty.

3.2. Processing reversed traces: proofs

We now describe an extension of the previous
core-extraction method for generating and/or on-
the-fly checking the resolution proof. Note that
this involves actually determining the literals of
the intermediate clauses and, if desired, checking
all resolution steps for deriving the empty clause.

The first stage of the algorithm is similar to the
aforementioned method for core extraction from
the reversed trace, but where instead of keeping
an active/passive bit, a counter is kept that is in-
creased each time another use of an ID is detected.
In this way for all clauses appearing in the proof
its total number of uses is computed.

The second stage of the algorithm is a forward
pass over the original unreversed trace. Each time
an active clause’s line is visited, one can infer its
list of literals by reconstructing its linear resolution
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proof from the (ordered) list of parent clauses that
are being resolved.

Each time a parent clause is used in such a
step, its counter is decremented; when the counter
reaches zero, this means that this parent clause
has no more children and hence there is no need
to store its literal list any longer. Note that in
this way no more clauses are ever stored than in
the SAT solver generating this trace. In fact sig-
nificanty less clauses are stored, since here it is
known (from the information collected during the
first stage) which ones participate in the proof and
only these ones are kept.

This counting method for deleting lemmas that
are not longer needed is also used in the breadth-
first algorithm of [ZM03], but there also the lem-
mas that do not participate in the proof are gener-
ated and kept (while they have any “active” chil-
dren). On the other hand, in our approach between
the two stages we need to keep a counter for ev-
ery clause that participates in the proof, and not
only for the ones that are active at any point of
the second stage; but note that even for proofs
from extremely long SAT runs, with many mil-
lions of new clauses (i.e., conflicts), keeping these
counters still causes no important additional mem-
ory consumption. The use of reference counters is
also briefly mentioned in [Bie08]. This same idea
of active-children counting will be used later on in
this article in the in-memory algorithm introduced
in Section 6.2.

4. In-Memory Algorithms

To overcome the inefficiencies of the trace file
approach, in what follows we study four alterna-
tive in-memory algorithms for generating unsatisfi-
ability proofs and cores using DPLL-based propo-
sitional SAT solvers. Here we first give a short de-
scription of each one of them.

The first algorithm is based on adding one dis-
tinct new initial ancestor (IA) marker literal to
each initial clause. These literals are set to false
from the beginning. Then the solver is run without
ever removing these false IA-marker literals from
clauses, and the empty clause manifests itself as
a clause built solely from IA-marker literals, each
one of which identifies one initial ancestor, that is,
one clause of the unsatisfiable core. This idea ap-
pears to be quite widely applied (e.g., in SAT Mod-

ulo Theories). As far as we know, it stems from
the Minisat group (around 2002, Eén, Sörensson,
Claessen). It requires little implementation effort,
but here, in Subsection 5.1 we give experimental
evidence showing that it is extremely inefficient in
solver time and memory and explain why.

Our second algorithm, given in Subsection 5.2,
tries to overcome these shortcomings by storing
initial ancestor information at the meta level along
with the clauses: each clause has an attached list
with the ID’s of its initial ancestors. This reduces
part of the overhead of the first algorithm. How-
ever, our experiments reveal that also this method
is still far too expensive in memory, especially
in combination with certain clause simplification
methods, which on the other hand, when turned
off, slow down the solver too much.

The third algorithm (Section 6.1) stores the
immediate parents list along with each clause.
The problem with this approach is that if a low-
activity clause is deleted (as usual in modern SAT
solvers), its associated parent information can be
removed only if this clause has generated no chil-
dren (the literals of deleted clauses need not be
kept, though).

This approach, implemented by Biere in Pi-
coSAT [Bie08], essentially corresponds to storing
the trace file of [ZM03] in main memory. As said,
in those cases where this is indeed feasible, i.e., if
there is enough memory, this has several advan-
tages over the trace file one. One not only avoids
the inefficiencies caused by the use of external
memory, but also, and more importantly, for re-
trieving the proof or the core one does not need
to sequentially traverse the whole trace, but only
those parts of it that appear in the proof. Ac-
cording to [BKO+07,Bie08] this gives an order of
magnitude speedup in applications where cores or
proofs have to be produced frequently, and, as a
consequence, even more in the context of certain
sophisticated core/proof minimization techniques
such as iteration (e.g., to fixpoint) as in [ZM03].

Our new in-memory algorithm, described in Sec-
tion 6.2, keeps only the potentially needed parent
information. The idea is to keep for each clause
also a counter of how many of its children do have
some active descendant. If it becomes zero the par-
ent information can be removed. Here we show
that (i) when implemented carefully, the overhead
on the SAT solver time is still essentially negligible
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Fig. 2. goldb-heqc-rotmul memory usage of Biere and Child-
count methods
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(around 5 per cent, similar to Biere’s approach)
and (ii) the memory usage frequently grows signif-
icantly slower.

As figure 2 shows, and as expected, in Biere’s
approach (parents-list without childcount) mem-
ory usage always grows linearly in the num-
ber of conflicts (or more, since parents lists get
longer in longer runs). In our ChildCount ap-
proach (parents-list with childcount), perform-
ing exactly the same search on this instance
(goldb-heqc-rotmul; cf. Section 6.3 for many
more experimental results), one can see in the fig-
ure that on this particular example memory usage
grows much slower. Skews in the plot correspond
to clause deletion phases of the solver.

5. Basic Algorithms, Only for Core Extraction

In this section we introduce and compare two
basic algorithms that can be used for extracting
unsatisfiable cores, but not unsatisfiability proofs.

5.1. First Algorithm: Marker Literals

As said, in this approach one adds to each ini-
tial clause Ci one distinct new initial ancestor
(IA) marker literal, say, a positive literal yi. These
literals are set to false from the beginning, and
hence the logical meaning of the clause set does
not change.

Then the solver is run, but without applying to
the yi-literals the usual simplification technique of

removing from all clauses the literals that are false
at decision level zero (henceforth: false literal dele-
tion). In every lemma that is generated, its subset
of yi-literals shows exactly the subset of the initial
clauses it has been derived from. In such a run, un-
satisfiability is then witnessed by the appearance
of an “empty clause” built solely from yi-literals,
i.e., a clause of the form yj1∨. . .∨yjk

, indicating that
{Cj1 , . . . , Cjk

} is an unsatisfiable core. Note that
this technique can only be used for finding unsat-
isfiable cores, and not for generating a resolution
proof, since the proof structure is lost.

The interesting aspect of this method is that
it requires very little implementation effort. How-
ever, it leads to important inefficiencies in the SAT
solver. Clauses can become extremely long, using
large amounts of memory, and for clauses that
without the yi-literals would have been units or
two-literal clauses this is no longer the case. This
leads to an important loss of efficiency in, for in-
stance, the unit propagation data structures and
algorithms.

5.2. Second Algorithm: Initial Ancestor Lists

An obvious way for overcoming the shortcom-
ings of the previous algorithm is by storing ini-
tial ancestor information at the meta level along
with the clauses, instead of adding dummy literals
for this. Therefore in this second algorithm each
clause has an attached list with the ID’s of its ini-
tial ancestors. This reduces part of the overhead of
the first algorithm. For example, unit clauses are
really treated as such, and false literal detection is
not hindered by the additional IA literals.

In most DPLL-based SAT solvers, unit clauses
and two-literal clauses are not explicitly stored as
such. Units are usually simply set to true in the
assignment at decision level zero, whereas binary
clauses are typically kept in an adjacency list data
structure, i.e., for each literal l there is a list of lit-
erals l1 . . . ln, such that each l∨li is a binary clause.
This is much faster and memory-efficient for unit
propagation than the standard two-watched literal
data structures that are used for longer clauses.

In the algorithm for core extraction given here,
we also need to store the IA information for unit
clauses and two-literal clauses. This is done here
in a memory bank separate from the one of the
other clauses. Since one- and two-literal clauses are
never removed in our solver, neither is their IA
information.
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5.3. Experiments: the First Two Algorithms vs
Our Basic Solver

In table 1 we compare a basic version of our own
Barcelogic SAT solver without proof or core ex-
traction (column Basic) with the two algorithms
described in this section (marker lits and exter-
nal IAs ). Each one of these two algorithms is im-
plemented on top of the basic version with the
minimal amount of changes. In particular, binary
clauses are still represented in their efficient special
form and no unit propagation using longer clauses
is done if there is any pending two-literal clause
propagation.

As said, for the algorithm based on marker liter-
als we had to turn off false literal deletion. For the
IA algorithm, each time a clause C ∨ l with IA list
L1 gets simplified due the decision level zero literal
¬l with IA list L2, the new clause C gets the IA list
L1 ∪L2. It turns out that the IA lists became long
and memory consuming. Therefore for this first ex-
periment also in the IAs algorithm we switched off
false literal deletion, which slowed down the solver
and also made it search differently with respect to
the basic version, but it prevented memory outs.
Also to prevent memory outs, we were doing very
frequent clause deletion rounds: every 5000 con-
flicts we were deleting all zero-activity clauses. To
make the comparison fairer, we also did this in the
basic algorithm, for which this is not precisely its
optimal setting.

Note that therefore all three versions of the
solver perform a different search1 and hence, due
to “luck” a core-generating version could still
be faster than the basic one on some particu-
lar benchmark. All experiments were run on a
2.66MHz Xeon X3230, giving each process a 1.8GB
memory limit and a timeout limit of 90 min-
utes. Times are indicated in seconds, and time
outs are marked here with TO. The table is split
into two parts. The first part has the unsatisfi-
able problems from the qualification instance sets
of the 2006 SAT Race (SAT-Race TS 1 and 2,
see fmv.jku.at/sat-race-2006) taking between
5 and 90 minutes in our basic solver. The second
part has much easier ones. In all experiments the
unsatisfiability of the extracted cores has been ver-
ified with independent SAT solvers.

1Below there is a version of the IA algorithm with false
literal detection that does perform the same search as the
basic version.

Table 1

Times for Basic, marker literals an IAs solvers

Runtimes (seconds)

Instance Basic marker IAs

lits

manol-pipe-cha05-113 448 5035 786

manol-pipe-f7idw 546 2410 1181

6pipe 717 TO 1324

manol-pipe-g10idw 830 4171 2299

manol-pipe-c7idw 1534 TO 3701

manol-pipe-c10b 1938 TO 3926

manol-pipe-g10b 1969 TO 5365

manol-pipe-c6bid i 2219 TO 4253

manol-pipe-g10ni 2419 TO 4412

manol-pipe-g10nid 2707 TO TO

manol-pipe-c6nidw i 2782 TO TO

velev-dlx-uns-1.0-05 3306 1028 TO

goldb-heqc-frg2mul 3891 TO TO

7pipe q0 k 4184 TO TO

manol-pipe-g10bidw 4650 TO TO

goldb-heqc-i8mul 4911 TO TO

hoons-vbmc-s04-06 TO 4543 TO

2dlx-cc-mc-ex-bp-f 1.81 2.91 1.35

3pipe-1-ooo 1.45 1.91 0.71

3pipe-3-ooo 1.92 3.53 1.59

4pipe-1-ooo 3.56 8.77 4.57

4pipe-3-ooo 5.38 11.67 5.36

4pipe-4-ooo 6.90 20.35 7.31

4pipe 8.15 33.64 14.82

5pipe-1-ooo 11.32 20.52 12.51

5pipe-2-ooo 10.31 18.98 14.33

5pipe-4-ooo 21.41 52.64 54.54

cache.inv14.ucl.sat. 13.36 75.23 18.85

chaff.4.1.bryant

ooo.tag14.ucl.sat. 7.05 6.78 7.96

chaff.4.1.bryant

s1841184384-of-bench-sat 2.07 4.62 1.97

04-984.used-as.sat04-992

s57793011-of-bench-sat 9.10 66.05 10.36

04-724.used-as.sat04-737

s376420895-of-bench-sat 2.50 5.48 2.28

04-984.used-as.sat04-1000

From the results of table 1 it follows that these
techniques are not practical except for very simple
problems.

It is well-known that DPLL-based SAT solvers
are extremely sensitive in the sense that any small
change (e.g., in the heuristic or in the order in
which input clauses or their literals are given)
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causes the solver to search differently, which in
turn can cause dramatic changes in the runtime
on a given instance. Therefore, most changes in
SAT solvers are hard to assess, as they can only
be evaluated by running a statistically significant
amount of problems and measuring aspects like
runtime averages. For this reason, all experiments
mentioned from now on in this paper have been
designed in such a way that for each method for
proof/core extraction our solver performs exactly
the same search (which was impossible in the algo-
rithm with marker literals). This allows us to mea-
sure precisely the overhead in runtime and memory
consumption due to proof/core generation book-
keeping.

Table 2 compares our basic solver on the easy
problems with the IAs method, in runtime and in
memory consumption. Here MO denotes memory
out (> 1.8 GB) after the indicated number of sec-
onds. The difference in times with the previous ta-
ble comes from the fact that here the setting of the
solver is the standard one, with less frequent clause
deletion phases, and with false literal deletion. As
said, false literal deletion makes the IAs method
even more memory consuming and also slower, as
longer lists of parents have to be merged.

As we can see, usually only on the very simple
problems the runtimes are comparable. As soon as
more than few seconds are spent in the basic ver-
sion, not only does the memory consumption ex-
plode, but also the runtime due to the bookkeeping
(essentially, computing the union of long parents
lists and copying them).

6. Algorithms for Extracting Proofs and Cores

Here we analyze more advanced algorithms that
are not only able to extract unsatisfiable cores, but
also resolution proof traces, i.e., the part of the
trace that corresponds to the resolution proof.

6.1. In-Memory Parent Information

We now consider the in-memory method, a sim-
pler version of which is implemented in the Pi-
coSAT solver [Bie08]. Here, along with each clause
the following additional information is stored: its
ID, its list of immediate parents’ ID’s, and what
we call its is-parent bit, saying whether this clause
has generated any children itself or not. The par-

Table 2

Time and Memory for Basic and IAs method (same search)

Basic vs IAs

(same search, Time in seconds, Memory in MB)

Instance T Basic M Basic T IAs M IAs

2dlx-cc-mc-... 1.64 3 4.17 298

3pipe-1-ooo 1.35 3 2.07 122

3pipe-3-ooo 1.78 5 3.99 215

4pipe-1-ooo 3.98 14 22.76 843

4pipe-3-ooo 4.88 13 30.08 1175

4pipe-4-ooo 7.14 19 36.14 MO

4pipe 11.35 47 32.80 1106

5pipe-1-ooo 10.52 24 55.53 MO

5pipe-2-ooo 10.30 23 50.92 MO

5pipe-4-ooo 33.08 65 42.87 MO

cache.inv14.. 12.75 5 39.43 MO

ooo.tag14.. 6.21 3 9.12 612

s1841184384.. 1.83 1 1.86 51

s57793011-.. 7.75 32 8.47 74

s376420895-.. 1.99 1 2.37 89

ents list is what one would write to the trace in the
[ZM03] technique. Each time a new lemma is gen-
erated, it gets a new ID, its is-parent bit is initial-
ized to false, the ID’s of its parents are collected
and attached to it, and the is-parent bit of each
one of its parents is set to true. In this approach,
the parent information of a deleted clause (by ap-
plication of the Forget rule during the clause dele-
tion phase of the SAT solver) is removed only if its
is-parent bit is false.

Once the empty clause is generated (i.e., a con-
flict at level zero appears), one can recover the
proof by working backwards from it (without the
need of traversing the whole trace, and on disk, as
in [ZM03]).

In our implementation of this method, unlike
what is done in PicoSAT, we maintain the special-
purpose two-literal clause adjacency-list represen-
tation also when the solver is in proof-generation
mode. Hence the performance slowdown with re-
spect to our basic reference solver corresponds ex-
actly to the overhead due to the bookkeeping for
proof generation. Our implementation treats all
conflicts in a uniform way, including the one ob-
taining the empty clause. This in in contrast to
what is done with the final decision-level-zero con-
flict in Zhang and Malik’s trace format, which gets
a non-uniform treatment in [ZM03] (in fact, the
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explanations given in section 3 correspond to our
simplified uniform view where the empty clause
has its conflict analysis like any other clause).

The parents lists of units and binary clauses are
stored in a separate memory zone, as we also did
for the IAs method. Unit and binary clauses are
never deleted in our solver. Essentially, at SAT
solving time (more precisely, during conflict anal-
ysis) what is required is a direct access to the ID
of a given clause. For unit and binary clauses we
do this by hashing (for the larger clauses this is
not necessary, since the clause, along with all its
information and literals, is already being accessed
during conflict analysis). At proof extraction time,
one needs direct access to the parent list corre-
sponding to a given clause ID. This we do by an-
other hash table that only exists during proof ex-
traction. In [Gel02] another in-memory algorithm
for extracting shorter proofs is presented; however,
it is reported to need much more memory and time
than the algorithms explained here.

6.2. Our New Method with Child Count

The idea we develop in this section is the fol-
lowing: instead of just an is-parent bit, we keep
along with each clause a counter, called the child-
counter, of how many of its children have some ac-
tive descendant. Here a clause is considered active
if it participates in the DPLL derivation rules that
are implemented in the SAT solver. In our solver,
that is the case if it has at most two literals (these
clauses are never deleted in our solver) or if it has
at least three literals and has not been removed by
the Forget rule (i.e., it is being watched in the two-
watched literal data structure for unit propagation
[MMZ+01]).

If the childcounter becomes zero also the parent
information can be removed, since this clause can
never appear in a proof trace of the empty clause
(obtained from active clauses only). Note that this
is a recursive process: each time a clause C is se-
lected for deletion, i.e., when C goes from active
to non-active, if its childcounter is zero then a re-
cursive childcounter-update(C) process starts:

For each parent clause PC of C,

1. Decrease by one the childcounter of PC.

2. If the childcounter now becomes zero and PC

is non-active, then do
childcounter-update(PC).

3. Delete all information of C.

We have again implemented this method on top
of our basic Barcelogic solver, and again we have
done this in such a way that the search is not af-
fected, i.e., again the additional runtime and mem-
ory consumption with respect to our basic solver
correspond exactly to the overhead due to the
bookkeeping for proof generation.

As before, during conflict analysis again we need
to add the parent’s ID’s to the parent list of the
new lemma, but now, in addition, the childcoun-
ters of these parents are increased. For this, as be-
fore, we use hashing to retrieve the ID of parent
clauses with less than three literals. For the parent
clauses with at least three literals this is not nec-
essary, since these clauses, along with all their in-
formation and literals, are already being accessed
during conflict analysis.

The main additional implementation issue is
that now during the clause deletion phase, when
doing childcounter-update(C), given the ID of
an (active or non-active) clause, we may need ac-
cess its information (their childcounters and par-
ent lists). For this we use an additional hash table,
which supposes only a negligible time overhead.
Note that the clause deletion phase is not invoked
very frequently and takes only a small fraction of
the runtime of the SAT solver.

6.3. Experiments

We have run experiments with the same unsat-
isfiable instances as before (the harder ones): from
the qualification instance sets of the 2006 SAT
Race (SAT-Race TS 1 and 2), the ones taking be-
tween 250 seconds and 90 minutes. Here again we
run our solver in its standard settings, with false
literal deletion and less frequent clause deletion
phases.

In all experiments the correctness of the ex-
tracted proofs has been verified with the TraceCheck
tool, see [Bie08] and fmv.jku.at/tracecheck,
and a simple log information has been used to
verify that indeed exactly the same SAT solving
search was taking place in all versions.

Time consumption is analyzed in table 3 (where
instances are ordered by runtime) which has the
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Table 3

Times for Basic, Biere, Biere-b, Childcount and trace on

disk (Same search)

Time (s)

Instance basic Biere Biere-b disk Child

solve solve slv+tr solve slv+tr solve solve slv+tr

manol-pi-cha05-113 254 265 269 265 269 273 267 271

manol-pipe-f7idw 257 268 270 268 269 279 272 273

manol-pipe-c7idw 348 362 364 361 363 372 365 367

manol-pipe-g10idw 412 433 444 432 443 453 438 444

manol-pipe-c10b 527 550 561 546 558 567 555 564

goldb-heqc-i8mul 577 601 644 604 648 635 611 648

velev-dlx-uns-1.0-5 696 729 735 731 736 738 727 729

manol-pipe-c6bid i 748 780 790 771 780 800 788 794

6pipe 785 846 858 844 856 850 854 861

velev-pipe-uns-1.1-7 829 928 948 930 949 941 931 940

manol-pipe-c6nidw i 885 923 937 923 936 949 920 928

manol-pipe-g10nid 1030 1073 1080 1073 1079 1116 1071 1074

hoons-vbmc-s04-06 1053 1084 1099 1088 1103 1110 1107 1118

7pipe q0 k 1551 1725 1776 1718 1764 1781 1751 1768

manol-pipe-g10bidw 1709 MO MO 1774 1783 1856 1773 1777

manol-pipe-g10ni 1788 MO MO MO MO 2075 2029 2033

manol-pipe-c7nidw 4059 MO MO MO MO 4385 4209 4238

manol-pipe-c7bidw i 4255 MO MO MO MO 4646 4414 4445

Table 4

Memory usage for Basic, Biere, Biere-b, Childcount and Trace on disk (Same search)

Num. Time Memory Usage (MB) Trace (MB)

Instance cnflcts (s) Basic Biere Biere-b Child full proof

velev-dlx-uns-1.0-05 199390 696 129 239 234 229 226 30

manol-pipe-f7idw 333275 257 35 140 127 78 183 24

manol-pipe-cha5-113 336968 254 108 228 218 167 218 112

goldb-heqc-i8mul 397702 577 376 MO 972 947 1002 937

manol-pipe-g10idw 423079 412 137 434 412 285 550 191

manol-pipe-c10b 530022 527 128 347 330 240 452 258

manol-pipe-c7idw 536341 348 107 209 192 141 217 42

manol-pipe-c6bid-i 1123035 748 105 393 347 187 543 166

manol-pipe-c6nidw-i 1256752 885 117 488 436 252 671 226

hoons-vbmc-s04-06 1301190 1053 21 320 309 228 358 322

manol-pipe-g10nid 1327600 1030 75 613 557 144 986 82

6pipe 1377876 785 316 519 502 418 433 205

velev-pipe-uns-1.1-7 1761066 829 69 447 409 210 751 260

manol-pipe-g10bidw 2250890 1709 70 MO 892 146 1679 100

manol-pipe-g10ni 2566801 1788 85 MO MO 159 2050 113

7pipe-q0-k 3146242 1551 81 810 753 342 1381 472

manol-pipe-c7nidw 3585110 4059 219 MO MO 613 2388 692

manol-pipe-c7bidw-i 4011227 4255 117 MO MO 643 2834 761
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following columns: basic: our basic SAT solver

without proof/core generation, Biere: the same

solver extended with Biere’s in-memory core gen-

eration, Biere-b: the same, also extended with is-

parent bit, disk: the basic solver writing traces

to disk, as in [ZM03], Child: our method with

child count. Columns “solve” include just the solv-

ing time (all version performing exactly the same

search), and “slv+tr” includes as well the time

needed for traversing the in-memory data struc-

tures and writing to disk the part of the trace that

contains the unsatisfiability proof. The entries la-

belled “MO” correspond to “Memory Out”, which

means more than 1.8GB.

The differences in runtime between our basic

SAT solver without proof/core generation and its

versions that do the necessary bookkeeping for

in-memory proof/core generation are always very

small, usually around five percent or less, and al-

ways less than the trace generation technique of

[ZM03]. We conjecture that this is mainly because

of the inefficiencies in writing to disk of the lat-

ter method (see below examples of the size of the

traces that are written) since it requires less ad-

ditional bookkeeping than the in-memory tech-

niques. Note that our Childcount method in prin-

ciple needs to do more work for generating the

trace.

Much more important and interesting are the

differences in memory usage. The plot we give be-

low compares memory usage of three methods: (i)

Biere’s method without the is-parent bit (called

“no removal” in the plot) i.e., where parent infor-

mation is never deleted, (ii) Biere’s method with

the is-parent bit as explained here in Section 6.1,

and (iii) our method with Childcount. We do this

for one of the instances that generate many con-

flicts.
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As we can see in table 4 (where “Time” refers to
the runtime of our basic SAT solver, and column
“Biere-b” is the one with is-parent bit), the bene-
fits of our Childcount methods are less important
on examples that are solved generating fewer con-
flicts. The is-parent bit of Biere’s methods has only
a very limited impact. In the last two columns we
also show the size of the whole DPLL trace on disk
(“full”) produced by the method of [ZM03], and
the size of its subset corresponding to the just the
proof trace (“proof”), i.e., the proof of the empty
clause, as it is generated by the methods Biere,
Biere-b, and Childcount (which all three produce
exactly the same proof trace in our implementa-
tions). Since the entire DPLL trace is usually much
larger than just the proof trace, the in-memory
methods are also faster if one writes to disk the
proof trace once the unsatisfiability has been de-
tected (although for many applications, such as
core minimization, this is not needed).

In these implementations we have not consid-
ered compression methods such as Biere’s Delta
Encoding, which compresses parents lists up to
four times [Bie08], since this is a somewhat orthog-
onal issue that can be applied (or not) to both
methods.

7. Conclusions and Future Work

We have shown that it is possible to handle
trace files efficiently, without exceeding the mem-
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ory usage of the SAT solver that generated the
trace. Since the trace-based approach requires a
smaller implementation effort than the in-memory
approaches, and is not limited by the capacity of
main memory, this may still be a good choice for
some applications.

We have also carried out a systematic and care-
ful implementation of different methods for in-
memory unsatisfiable core and proof generation,
which may be preferrable for applications where
efficiency is a primary concern.

Regarding the two simpler methods for generat-
ing cores, our IA technique is indeed slightly more
efficient than the one based on marker literals, but
none of both is useful for instances on which our
solver (using its default settings) takes more than
few seconds. We have also shown that the tech-
niques for generating cores and proofs explained
in Section 6 are applicable to large SAT solving
runs, and moreover allow one to keep the standard
setting of the solver without a significant overhead
in runtime.

Our experiments clearly show that our Child-
count technique makes it possible to go signifi-
cantly beyond previous in-memory techniques in
terms of memory requirements. We plan to imple-
ment it in combination with Biere’s Delta Encod-
ing compression technique, which will make it pos-
sible to handle even longer DPLL runs or use even
less memory. We also plan to use the basic under-
lying algorithms given here inside algorithms for
core-minimization and for applications using cores
(which are both outside the scope of this paper).
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