
Clause-Learning Algorithms with Many Restarts

and Bounded-Width Resolution

Albert Atserias1, Johannes Klaus Fichte2, and Marc Thurley2

1 Universitat Politècnica de Catalunya, Barcelona, Spain
2 Humboldt Universität zu Berlin, Berlin, Germany

Abstract. We offer a new understanding of some aspects of practi-
cal SAT-solvers that are based on DPLL with unit-clause propagation,
clause-learning, and restarts. On the theoretical side, we do so by ana-
lyzing a concrete algorithm which we claim is faithful to what practical
solvers do. In particular, before making any new decision or restart, the
solver repeatedly applies the unit-resolution rule until saturation, and
leaves no component to the mercy of non-determinism except for some
internal randomness. We prove the perhaps surprising fact that, although
the solver is not explicitely designed for it, it ends up behaving as width-
k resolution after no more than n

2k+1 conflicts and restarts, where n

is the number of variables. In other words, width-k resolution can be
thought as n

2k+1 restarts of the unit-resolution rule with learning. On
the experimental side, we give evidence for the claim that this theoretical
result describes real world solvers. We do so by running some of the most
prominent solvers on some CNF formulas that we designed to have res-
olution refutations of width k. It turns out that the upper bound of the
theoretical result holds for these solvers and that the true performance
appears to be not very far from it.

1 Introduction

The discovery of a method to introduce practically feasible clause learning to
DPLL-based solvers [15, 10] layed the foundation of what is sometimes called
“modern” SAT-solving. These methods set the ground for new effective imple-
mentations [11] that spawned tremendous gains in the efficiency of SAT solvers
with many practical applications. Such great and somewhat unexpected suc-
cess seemed to contradict the widely assumed intractability of SAT, and at the
same time uncovered the need for a formal understanding of the capabilities and
limitations underlying these methods.

Several different approaches have been suggested in the literature for devel-
oping a rigorous understanding. Among these we find the proof-complexity ap-
proach, which captures the power of SAT solvers in terms of propositional proof
systems [3, 4, 9], and the rewriting approach, which provides a useful handle to
reason about the properties of the underlying algorithms and their correctness

1 Partially supported by project CICYT TIN2007-68005-C04-03.

[12]. In both approaches, SAT solvers are viewed as algorithms that search for
proofs in some underlying proof system for propositional logic. With this view in
mind, it was illuminating to understand that the proof system underlying mod-
ern solvers is always a subsystem of resolution [3]. In particular, this means that
their performance can never beat resolution lower bounds, and at the same time
it provides many explicit examples where SAT solvers require exponential time.
Complementing this is the observation that an idealized SAT solver that relies
on non-determinism to apply the techniques in the best possible way will be
able to perform as good as general resolution [4, 9]. As the authors in [4] put it,
the negative proof complexity results uncover examples of inherent intractability
even under perfect choice strategies, while the positive proof complexity results
give hope of finding a good choice strategy.

In this work we add a new perspective to this kind of rigorous result. On
one hand we try to avoid non-deterministic choices on all components of our ab-
stract solver and still get positive proof complexity results. On the other hand, we
test the theoretical results experimentally with some of the available solvers, on
benchmarks designed for the purpose. Our main finding is that a concrete family
of SAT solvers that do not rely on non-determinism besides mild randomness is
at least as powerful as bounded width resolution. The precise proof-complexity
result is that under the unit-propagation rule, the totally random branching
strategy, and a standard learning scheme considered by true solvers, 8k ln(8n)n2k

conflicts and deterministic restarts are enough to detect the unsatisfiability of
any CNF formula on n variables having a width-k resolution refutation, with
probability at least 1/2. Note that this bound is not asymptotic. The exper-
imental results with actual solvers seem to confirm that our model is faithful
enough. We discuss these at the end of this introduction.

The theoretical result by itself has some nice consequences, which we shall
sketch briefly. First, it is not very surprising that, although not explicitely de-
signed for that purpose, SAT-solvers are able to solve instances of 2-SAT in very
reasonable time. The reason for this is that every unsatisfiable 2-CNF formula
has a resolution refutation of width two. More strongly, our result can be inter-
preted as showing that width-k resolution can be simulated by O(k log(n)n2k)
rounds of unit-clause propagation. To our knowledge, such a tight connection
between width-k resolution and repeated application of “width-one” methods
was unknown before. Another consequence is that SAT solvers are able to solve
formulas of bounded branch-width (and hence bounded treewidth) in polyno-
mial time. We elaborate on these later in the paper. Finally, from the partial
automatizability results in [5], it follows that SAT solvers are able to solve formu-
las having polynomial-size tree-like resolution proofs in quasipolynomial time,
and formulas having polynomial-size general resolution proofs in subexponential
time.

Concerning the techniques, it is perhaps surprising that the proof of our main
result does not proceed by showing that the width-k refutation is learned by the
algorithm. For all we know the produced proof has much larger width. All we
show is that every width-k clause in the refutation is absorbed by the algorithm,

2

which means that it behaves as if it had been learned, even though it might not.
In particular, if a literal and its complement are both absorbed, the algorithm
correctly declares that the formula is unsatisfiable. This analysis is the main
technical contribution of this paper, and deviates significantly from [4] and [9].

Before we close this introduction, a few words on the experimental results
are in order. We considered six of the most popular available SAT solvers: Berk-
Min 5.61 [8], MinSAT 2 [7], Siege ver. 4 [14], zChaff 2001.2.17 (32-Bit version),
ZChaff 2007.3.12. (64-Bit) [11] and RSat 2.02 [13]. We ran each of these solvers
with specially designed families of unsatisfiable formulas. The formulas come
parameterized by two integers q and k and are designed in such a way that the
number of variables n is roughly k2q, the number of clauses is roughly 8k2q,
and they have width-k resolution refutations. The outcome from the experiment
appears to be that the number of decisions (and hence conflicts) that the solvers
make on those formulas is bounded by a function of the form nck , where ck is a
real number that is in fact smaller but comparable to k.

2 Preliminaries

A literal is a propositional variable x or its negation x̄. We use the notation x0

for x̄ and x1 for x. Note that xa is defined in such a way that the assignment

x = a satisfies it. For a ∈ {0, 1}, we also use ā for 1 − a, and for a literal ℓ = xa

we use ℓ̄ for x1−a. A CNF formula F is a set of clauses which in turn are sets
of literals. The width of a clause is the number of literals in it. For two clauses
A = {x, ℓ1, . . . , ℓr} and B = {x̄, ℓ′1, . . . , ℓ

′

s} we define the resolvent of A and B
by Res(A, B) = {ℓ1, . . . , ℓr, ℓ

′

1, . . . , ℓ
′

s}. We further write Res(A, B, x) if we want
to refer to the variable which we resolve on. For a clause C, a variable x, and a
truth value a ∈ {0, 1}, the restriction of C on x = a is the constant 1 if the literal
xa belongs to C, and the clause obtained from C by deleting any occurrence of
the literal x1−a otherwise. We write C|x=a for the restriction of C on x = a.
A partial assignment is a sequence of assignments (x1 = a1, . . . , xr = ar) with
all variables distinct. If S is a partial assignment and C is a clause, we let C|S
be the result of applying the restrictions x1 = a1, . . . , xr = ar to C. Clearly the
order does not matter. We say that S satisfies C if it sets at least one of its
literals to 1; i.e., if C|S = 1. We say that S falsifies C if it sets all its literals
to 0; i.e., if C|S = ∅. If D is a set of clauses, we let D|S denote the result of
applying the restriction S to each clause in D, and removing the resulting 1’s.
We call D|S the residual set of clauses.

3 Algorithm and Resolution Width

3.1 Definition of the algorithm

A state is a sequence of assignments (x1 = a1, . . . , xr = ar) in which all
variables are distinct and some assignments are marked as decisions. We use the

notation xi
d

= ai to mean that the assignment xi = ai is a decision assignment.

3

In this case xi is called a decision variable. The rest of assignments are called
implied assignments. We use the letters S and T to denote states. The empty
state is the one without any assignments.

The algorithm maintains a current state S and a current database of clauses
D. There are four modes of operation DEFAULT, CONFLICT, UNIT, and DECI-

SION. Here is what the algorithm is required to do in each mode:

– DEFAULT. Check if S satisfies every clause in D, in which case stop and
output SAT together with the current state S. Otherwise, check if S falsifies
some clause in D, in which case move to CONFLICT mode. If not all clauses
are satisfied and none of the clauses is falsified, move to UNIT mode. Finally,
if control reaches this point, move to DECISION mode.

– CONFLICT. Apply the learning scheme to add a new clause to D. Then
apply the restart policy to decide whether to continue further or to restart
in DEFAULT mode with S initialized to the empty state and the current
D. In case we continue further, find the most recently added (or conflict-

causing) decision x
d

= a in S, if such exists. If none is found, stop and output
UNSAT. If one is found, replace it by x = a, delete all later assignments from
S, and go back to DEFAULT mode.

– UNIT. For any clause in D for which S gives value to all its literals but one,
say xa, add x = a to the current state and go back to DEFAULT mode.

– DECISION. Apply the branching strategy to determine a decision x
d

= a to
be added to the current state, and go back to DEFAULT mode.

The algorithm is started in DEFAULT mode with the empty state as the
current state and the given CNF formula F as the current database.

The well-known DPLL-procedure is the special case of this algorithm in which
the learning scheme never adds any new clause, the restart policy does not dictate
any restart at all, and the branching strategy chooses the first (or any other) vari-
able that is still unset in the current state. Note that unit-propagation is enforced
greedily before every decision is made in accordance to practical implementa-
tions. Modern SAT-solvers enhance the performance of the DPLL-procedure
by implementing non-trivial learning schemes, restart policies, and branching
strategies, as well as a technique known as backjumping. This is the mechanism
by which the solver in CONFLICT mode determines which conflict-causing de-
cision to backtrack on, based on the clause that the learning scheme adds to
the database. We discuss our choice for these components of the algorithm in
Section 3.3.

3.2 Runs of the algorithm

Consider a run of the algorithm started in DEFAULT mode with the empty state
and initial database D, until a clause is falsified and thus a conflict occurs. Such a
run is called a round started with D and we represent it by the sequence of states
S0, . . . , Sm that the algorithm goes through, where S0 is the empty state and Sm

is the state where the falsified clause is found. Note that for i ∈ {1, . . . , m}, the

4

state Si extends Si−1 by exactly one assignment of the form xi = ai or xi
d

= ai

depending on whether UNIT or DECISION is executed at that iteration.
A partial round is an initial segment S0, . . . , Sr of a round up to a state where

one of the following is true for the residual database D|Sr
: either D|Sr

has no
clauses left, or D|Sr

contains the empty clause, or D|Sr
does not contain any

unit clause. If one of the first two cases occurs we say that the partial round is
conclusive. If a partial round is not conclusive we call it unconclusive. We say
that the partial round satisfies a clause if its last state, interpreted as a partial
assignment, satisfies it. We say that it falsifies it if its last state, interpreted as a
partial assignment, falsifies it. Note that a round may neither satisfy nor falsify
a clause.

One important feature of partial rounds is that if they are unconclusive, then
the residual database D|Sr

does not contain unit clauses and, in particular, it
is closed under unit propagation. This means that for an unconclusive partial
round S0, . . . , Sr started with D, if A is a clause in D and Sr falsifies all its
literals but one, then Sr must satisfy the remaining literal, and hence A as well.
Besides those in D, other clauses may have this property, which is important
enough to deserve a definition:

Definition 1. Let D be a set of clauses and let A be a non-empty clause. We

say that D absorbs A if for every literal ℓ in A and every unconclusive partial

round S0, . . . , Sr started with D, if Sr falsifies A \ {ℓ}, then it satisfies A.

We argued already that every clause in D is absorbed by D. We give an exam-
ple showing that D may absorb other clauses. Let D be the database consisting
of the three clauses

a ∨ b̄ b ∨ c ā ∨ b̄ ∨ d ∨ e.

In this example, the clause a ∨ c is absorbed by D but does not belong to D.
Also the clause b̄ ∨ d ∨ e is not absorbed by D (consider the partial round that

starts by d
d

= 0, e
d

= 0) but is a consequence of D (resolve the first and the third
clause on a).

The following lemma states three nice monotonicity properties of the concept
of clause-absorption, where the first is the one that motivated its definition.

Lemma 1. Let D and E be sets of clauses and let A and B be non-empty

clauses. The following hold:

1. if A belongs to D, then D absorbs A,

2. if A ⊆ B and D absorbs A, then D absorbs B,

3. if D ⊆ E and D absorbs A, then E absorbs A.

Proof. To prove 1. assume for contradiction that there is a literal ℓ in A and
an unconclusive partial round S0, . . . , Sr started with D which falsifies A \ {ℓ}
but does not satisfy A. As the round is unconclusive, we cannot have A|Sr

= ∅,
which means then that A|Sr

= {ℓ}, in contradiction to the definition of partial
round.

5

For the proof of 2. let ℓ be a literal of B and define B′ = B \{ℓ}. We consider
two different cases. If ℓ /∈ A then A ⊆ B′ and, as A is absorbed by D, there
is no unconclusive partial round which falsifies B′. Thus B is absorbed in this
case. If ℓ ∈ A, let A′ = A \ {ℓ} and let S0, . . . , Sr be an unconclusive partial
round started with D which falsifies B′. Then it falsifies A′ and satisfies A by
absorption. Thus it satisfies B, and B is absorbed in this case as well.

It remains to prove 3. Let ℓ be some literal in A and A′ = A \ {ℓ}. Let
T0, . . . , Tr be an unconclusive partial round started with E which contradicts
A′. We have to prove that this partial round satisfies A. To do this, define a
partial round S0, . . . , Sr started with D as follows. The first state is the empty
state S0 = T0. The state Si+1 extends Si by a single extension assignment. If the
last assignment in Ti+1 is a decision, then this will be the extension assignment.
If the last assignment x = a in Ti+1 is not a decision, the unit clause {xa} must
be in E|Ti

. Now if {xa} is also in D|Si
, we let the extension assignment be x = a,

and if not, we let it be x
d

= a.
It follows straightforwardly from this definition that S0, . . . , Sr is an uncon-

clusive partial round started with D. Further Sr falsifies A′ as Tr does. And as
A is absorbed by D it is satisfied by Sr. Therefore it is also satisfied by Tr which
completes the proof. ⊓⊔

The following lemma describes how the resolvent of two absorbed clauses
might look if it stays unabsorbed. We say that a partial round S0, . . . , Sr branches

in a set of literals C if all decision variables of Sr are variables of C.

Lemma 2. Let D be a set of clauses, let A and B be two resolvable clauses that

are absorbed by D, and let C = Res(A, B). If C is non-empty and not absorbed

by D, then the following hold:

1. there is a literal xa which occurs in both A and B,
2. there is an unconclusive partial round R started with D that falsifies C\{xa},
3. the partial round R branches in C \ {xa} and leaves x unassigned, and

4. extending R by the decision x
d

= ā yields a conclusive round.

Proof. Let A = {ℓ, ℓ1, . . . , ℓp} and B = {ℓ̄, ℓ′1, . . . , ℓ
′

q}. As C is non-empty and
not absorbed by D, there is a literal xa in C and an unconclusive partial round
T0, . . . , Ts started with D which falsifies C′ = C \ {xa} but does not satisfy
C. In particular x is not assigned a in Ts. Also x is not assigned ā in Ts since
otherwise, as A and B are absorbed by D, both ℓ and ℓ̄ would be satisfied by
Ts. This shows that x is unassigned in Ts.

Assume without loss of generality that xa belongs to A, let A′ = A\{xa} and
define B′ = B \{ℓ̄}. We also have that xa belongs to B. To see this, observe that
otherwise Ts would falsify B′, implying that ℓ is falsified by Ts as B is absorbed
by D. Then Ts falsifies A′ and thus x is set to a in Ts, this time because A is
absorbed by D. This contradicts the previous argument that x is unassigned in
Ts. Altogether we have that xa occurs in both A and B.

We still need to prove the existence of an unconclusive partial round S0, . . . , Sr

as stated in the Lemma. We will construct this round from the given unconclu-
sive one T0, . . . , Ts. As Ts falsifies C′ and x is unassigned in Ts the sole issue we

6

need to resolve is the possibility that Ts might not branch in C′. We will define
S0, . . . , Sr inductively. It will be convenient to also define an offset ji for each
i ∈ {0, . . . , r}. Recall that S0 is the empty state by definition. We define j0 = 0.
To construct Si+1, let h > ji be the minimum number in {0, . . . , s} such that
the h-th assignment in Ts is of one of the following types, if it exists:

1. a decision y
d

= b for some variable y from C′,
2. an implied assignment y = b, and {yb} is a unit clause in D|Si

,
3. an implied assignment y = b, and y is a variable from C′.

If no such h exists, we stop the construction and let r = i. If such an h exists, we
define ji+1 = h and Si+1 from Si by cases. In the first of the three cases above,

let Si+1 be obtained from Si by adding the decision y
d

= b. In the second case,
the assignment is due to the existence of the unit clause {yb} in D|Th−1

. As {yb}
is also a unit clause in D|Si

, we define Si+1 as the extension of Si by adding this
assignment. If the first two cases do not occur, we must be in the third, and we

define Si+1 from Si by extending it with y
d

= b.
Clearly, this defines a valid partial round S0, . . . , Sr which branches in C′.

Further Sr falsifies C′ and all the assignments in Sr also appear in Ts except for
some additional “decision” marks on some assignments. Therefore the partial
round is unconclusive and the variable x is unassigned in Sr. Finally, as the
assignments Sr and Ts are the same with respect to the literals in A and B,

extending the partial round S0, . . . , Sr by a decision x
d

= ā yields a conclusive
round; otherwise both ℓ and ℓ̄ would be satisfied since both A and B are absorbed
by D. ⊓⊔

The following lemma will allow us to turn the existential statement about a
partial round R in Lemma 2 into a universal statement about all partial rounds
R′ that make decisions that are already in R. If R and R′ are partial rounds,
we say that the decisions of R′ are subsumed by R if every decision assignment
in R′ is also an assignment in R. We say that R′ is subsumed by R if every
assignment made in R′ is also an assignment in R.

Lemma 3. Let D be a set of clauses, let R be an unconclusive partial round

started with D, and let R′ be a partial round started with D with all its decisions

subsumed by R. Then R′ is subsumed by R.

Proof. Let S0, . . . , Sr and T0, . . . , Ts be the partial rounds R and R′, respectively.
Assume for contradiction that R′ is not subsumed by R. Then there exists a
minimal i ∈ {1, . . . , s} such that all assignments made in Ti−1 are also in made
in R, but the last assignment in Ti is not made in R. Since every decision
assignment in R′ is also an assignment in R, the last assignment in Ti must be
an implied one of the form x = a. Thus, there exists a unit clause {xa} in D|Ti−1

.
As every assignment in Ti−1 is also made in R, and as R is unconclusive and

does not contain x = a or x
d

= a, there exists a j ∈ {0, . . . , r} such that this unit
clause is also present in D|Sj

. Finally, since R is an unconclusive partial round,
D|Sr

does not contain unit clauses and thus x = a is also an assignment in Sr.
Contradiction. ⊓⊔

7

One consequence of this lemma is that under the hypothesis and the notation
of Lemma 2, if xa and R are the literal and the unconclusive partial round
claimed to exist in that lemma, then every partial round started with D that
has all its decisions subsumed by R stays unconclusive, and if in addition it ends
up falsifying C \ {xa}, then it yields a conclusive round after extending it with

x
d

= ā. Indeed, the extension x
d

= ā would force the round to satify both ℓ and
ℓ̄ as both A and B are absorbed by hypothesis. We will need this fact in what
follows.

3.3 Restart policy, learning scheme, and branching strategy

The only really important issue of the restart policy that we want to use is that it
should dictate restarts often enough. As a matter of fact, we will state and prove
our result for the most aggressive of all restart policies, the one that dictates a
restart at every conflict, and the analysis will extend to other restart policies by
monotonicity. More precisely, by the monotonicity properties discussed in the
previous section, it will follow from our analysis that if we decide to use a policy
that allows c > 1 conflicts per round before a restart, then the upper bound on
the number of required restarts can only decrease (or stay the same). Only the
upper bound on the number of conflicts would appear multiplied by a factor of
c, even though the truth might be that even those decrease as well. One further
consequence of monotonicity is that the validity of our analysis is insensitive
to whether the solver implements backjumping or not. For the same reason as
before, allowing c > 1 conflicts per round with their corresponding backjumps
can only decrease the number of required restarts in our analysis, and multiply
the number of conflicts by a factor of c. Thus, for the rest of the paper, we fix
the restart policy to the one that restarts at every conflict.

Let us discuss now the learning scheme. This determines which clause to
add to the database in the CONFLICT mode of the algorithm. We will consider
the scheme called Decision in the literature, that obtains the clause by the
following method. Let S0, . . . , Sm be a conclusive round started with the clause
database D that ends up falsifying some clause of D. We anotate each state Si

of the round by a clause Ai by reverse induction on i ∈ {1, . . . , m}:

1. For i = m, let Ai be the first clause in D that is falsified by Si.

2. For i < m for which xi
d

= ai is a decision, let Ai = Ai+1.
3. For i < m for which xi = ai is implied, let Bi be the first clause in D which

contains literal xai

i and for which Si−1 gives value to all its literals but one,
and let Ai = Res(Ai+1, Bi, xi) if these clauses are resolvable on xi, and let
Ai = Ai+1 otherwise.

It is quite clear from the construction that each Ai has a resolution proof from
the clauses in the database D. In fact, the resolution proof is linear and even
trivial in the sense of [4]. The learning scheme called Decision is the one that
adds the clause A1 to the current database after each conflict. It is not hard to
check that every literal in A1 is the negation of some decision literal in Sm; this
will be important later on.

8

The branching strategy determines which literal xa is branched next in the
DECISION mode of the algorithm. We will analyse the totally random branch-
ing strategy defined as follows: if the current state of the algorithm is S, we
choose a variable x uniformly at random among the variables that appear in
the residual database D|S , and a value a in {0, 1} also uniformly at random
and independently of x. Our analysis actually applies to any other branching
strategy that randomly chooses between making a heuristic-based decision or a
random decision as above, provided the second case has non-negligible probabil-
ity of happening. If p ∈ (0, 1] is the probability of the second case, the bounds in
our analysis will appear multiplied by a factor of p−k, where k is the resolution
width that we are trying to achieve.

3.4 Resolution width

We start by analysing the number of rounds it takes until the resolvent of two
absorbed clauses is absorbed as a function of its width.

Lemma 4. Let D be a database of clauses, and let A and B be two resolv-

able clauses that are absorbed by D and that have a non-empty resolvent C =
Res(A, B). Then, for every integer t ≥ 0, the probability that C is not absorbed

by the database after t restarts is at most e−t/4nk

, where n is the total number

of variables in D and k is the width of C.

Proof. Let D0, D1, . . . , Dt be the sequence of databases produced by the algo-
rithm, starting with D = D0. By the monotonicity properties in Lemma 1, if C
is ever absorbed by some Di it will stay so until Dt. Thus, it will suffice to bound
the probability that Di+1 does not absorb C conditional on the event that Di

does not absorb C.
Assume Di does not absorb C. By Lemma 2, there exists a literal xa in

A ∩ B ∩ C and an unconclusive partial round R started with Di that falsifies
C \ {xa}, branches in C \ {xa}, leaves x unassigned, and the extension of R by

x
d

= ā yields a conclusive round. Moreover, by Lemma 3 and the discussion after
it, any partial round R′ that has all its decisions subsumed by R stays subsumed
by R and unconclusive, and if it ends up falsifying C \ {xa}, then its extension

by x
d

= ā will also yield a conclusive round. Such a round would yield a conflict
that makes the Decision scheme learn a subclause of C, which implies that C
would be absorbed by Di+1 by Lemma 1.

First, let us compute a lower bound on the probability that the first k − 1
choices of the branching strategy falsify C \ {xa} and that the k-th choice is

x
d

= ā. This probability is at least

[(

k − 1

2n

) (

k − 2

2(n − 1)

)

· · ·

(

1

2(n − k + 2)

)] (

1

2(n − k + 1)

)

≥
1

4nk
.

Note that a round following these choices may not even be able to do some of
the decisions as the corresponding assignments may be implied. However, before

9

the decision x
d

= ā, the round will only perform decisions that are subsumed
by R and therefore stay subsumed by R by Lemma 3. In particular it will stay
unconclusive and x will remain unset. It follows that the probability that the
round will start by branching in, and falsifying, C \ {xa}, and end by deciding

x
d

= ā can only increase. This gives a lower bound on the probability that a
subclause of C is actually learned, and with it, the probability that C is not
absorbed by Di+1 is bounded by 1 − 1

4nk .
By chaining these t conditional probabilities, the probability that C is not

absorbed by Dt is bounded by
(

1 −
1

4nk

)t

≤ e−t/4nk

,

as was to be proved. ⊓⊔

Finally, we are ready to state and prove the main result of the paper.

Theorem 1 Let F be a set of clauses on n variables having a resolution refuta-

tion of width k and length m. With probability at least 1/2, the algorithm started

with F learns the empty clause after at most 4m ln(4m)nk conflicts and restarts.

Proof. The resolution refutation must terminate with an application of the reso-
lution rule of the form Res(x, x̄). We will show that for both ℓ = x and ℓ = x̄, the
probability that {ℓ} is not absorbed by the current database after 4m ln(4m)nk

restarts is at most 1/4. Thus, both {x} and {x̄} will be absorbed with probabil-
ity at least 1/2. If this is the case, it is straightforward that every round of the
algorithm is conclusive. In particular, the round that does not make any decision
is conclusive, and in such a case the empty clause is learned.

Let C1, C2, . . . , Cr = {ℓ} be the resolution proof of {ℓ} that is included in
the width-k resolution refutation of F . In particular r ≤ m − 1 and every Ci

is non-empty and has width at most k. Let D0, D1, . . . , Ds be the sequence of
databases produced by the algorithm where s = rt and t = ⌈4 ln(4r)nk⌉. For
every i ∈ {0, . . . , r}, let Ei be the event that every clause in the initial segment
C1, . . . , Ci is absorbed by Dit, and let Ei be its negation. Note that Pr[E0] = 1
vacuously and hence Pr[E0] = 0. For i > 0, we bound the probability that
Ei does not hold conditional on Ei−1 by cases. Let pi = Pr[Ei | Ei−1] be this
probability. If Ci is a clause in F , we have pi = 0 by Lemma 1. If Ci is derived

from two previous clauses, we have pi ≤ e−t/4nk

by Lemma 4, which is at most
1/4r by the choice of t.

The law of total probability gives

Pr
[

Ei

]

= Pr
[

Ei | Ei−1

]

Pr [Ei−1] + Pr
[

Ei | Ei−1

]

Pr
[

Ei−1

]

≤ Pr
[

Ei | Ei−1

]

+ Pr
[

Ei−1

]

.

Adding up over all i ∈ {1, . . . , r}, together with Pr
[

E0

]

= 0, gives

Pr
[

Er

]

≤
r

∑

i=1

pi ≤
r

4r
=

1

4
.

10

Since the probability that Cr is not absorbed by Drt is bounded by Pr[Er],
the proof follows. ⊓⊔

The total number of clauses of width k on n variables is bounded by 2k
(

n
k

)

,
which is at most 2nk for every n and k. Therefore, if F has n variables and a
width-k resolution refutation, we may assume that its length is at most 2nk. We
obtain the following consequence:

Corollary 1. Let F be a set of clauses on n variables having a resolution refu-

tation of width k. With probability at least 1/2, the algorithm started with F
learns the empty clause after at most 8k ln(8n)n2k conflicts and restarts.

An application of Corollary 1 is that, even though it is not explicitely defined
for the purpose, the algorithm can be used to decide the satisfiability of CNF
formulas of treewidth at most k in time O(k log(n)n2k+2). This follows from
the known fact that every unsatisfiable formula of treewidth at most k has a
resolution refutation of width at most k + 1 [1, 6, 2]. If we are interested in
producing a satisfying assignment when it exists, we proceed by self-reducibility:
we assign variables one at a time, running the algorithm log2(n) + 1 times at
each iteration to detect if the current partial assignment cannot be extended
any further, in which case we choose the complementary value for the variable.
For this we use the fact that if F has treewidth at most k, then F |x=a also has
treewidth at most k. Note that each iteration is correct with probability at least
1 − 1/2n, which means that all iterations are correct with probability at least
1/2. The running time of this algorithm is O(k(log(n))2n2k+3).

4 Experiments on Tseitin Formulas

In this section we will discuss the experiments performed to illustrate our theo-
retical results. The class of formulas we tested are Tseitin formulas on trees of

k-grids. To give a precise definition let the k-grid be a graph Gk = (Vk, Ek) with
vertex set Vk = {vi,j | i, j ∈ [k]} and edges Ek = {{vi,j, vi′,j′} | |i− j|− |i′− j′| =
1}. Let further k′ = ⌊k/2⌋ and define {v1,1, . . . , v1,k′} as the set of top vertices
and {vk,1, . . . , vk,k′} and {vk,k−k′ , . . . , vk,k} that of left and right bottom vertices
of Gk. In a given rooted binary tree T we associate with each node t a distinct
labelled k-grid Gt. Then if t has a child t′ the top vertices of Gt′ are merged
with the left bottom vertices of Gt by identifying v′1,i with vk,i for all i ∈ [k′]. A
second child t′′ is treated analogously by now merging the right bottom vertices
of Gt with the top vertices of Gt′′ .

For any tree of k-grids G = (V, E) as defined above, we construct an un-
satisfiable Tseitin CNF-formula FG. The construction is well-known an can be
found e.g. in [16]. Note that the number of variables of FG is roughly n = k2|V |.
Further, the resolution width of FG is at most k.

Randomized formulas. To average running times of SAT solvers on the above
formulas, we introduce some randomization. Let q ∈ N. A random binary tree
T contains a root r and is constructed as follows. Then for every node t assume

11

that we know the number q′ > 0 of its descendants to be constructed. Choose
q′′ ≤ q′ u.a.r. and recursively construct two subtrees, one with q′′ nodes, the
other one with q′ − q′′ nodes. The process stops if q′ = 0. For q, k ∈ N a random
Tseitin formula Fq,k is a formula FG for some tree of k-grids G which in turn
has been constructed from a random binary tree on q nodes.

4.1 Results

We conducted experiments using several SAT solvers on a Linux machine with
a 3.0 GHz Pentium 4 processor and 1 GB of RAM. The solvers tested include
BerkMin 5.61 [8], MinSAT 2 [7], Siege ver. 4 [14], zChaff 2001.2.17 (32-Bit ver-
sion), zChaff 2007.3.12. (64-Bit) [11] and RSat 2.02 [13]. As running times of the
solvers increase quickly with the parameter k, we chose to consider different test
sets for the different solvers.

Small values k = 2, . . . , 5. For each k we generated instances Fq,k with q varying
from 1 to 101 in steps of 10 with 100 instances per step. Note that for k = 5 and
q = 100 a formula Fq,k already contains about 4000 variables and 14000 clauses.

Average running times for solving instances Fq,k with k = 5 and q = 100
are as small as 20s for RSat, whereas MiniSat timed out after 10000s. We are
however not interested in the actual running times of the solver but we aim at
quantifying the difficulty (as a function of k) of solving these formulas.

We therefore chose to consider the average number of decisions with respect
to the number n of variables of the formulas Fq,k. Under the hypothesis that
for fixed k the number of decisions d is bounded by a polynomial in n, we
determined, for each solver and each n the minimum c = c(k) such that d ≤ nc.
The experimental results show that this c is a function c = c(k, n) of k and n.
The dependence of c on n is significant especially for small formulas. However,
for fixed k and large n it turns out that the value of c(k, n) is quite stable.
For example, on formulas with more than 100 tree nodes we observed that the
oscillation of c(k, n) did never exceed 10%. Figure 2 displays the exponents for
RSat, which, for comparability, are given in terms of the tree nodes q.

Altogether, it turns out that for fixed k the number of decisions of the solvers
is bounded by a polynomial nc(k). Figure 1 illustrates these values of c(k) for the
different solvers. The actual values were determined for q = 100, which we chose
as some solvers turned out to have problems solving much larger instances.

In particular, for k = 5 MiniSAT was not able to solve instances with q ≥ 60
within 10000s therefore the corresponding value has been excluded from Fig-
ure 1. Further, although the 2001 zChaff solved many instances for k = 4, 5 and
arbitrary q within the given time bounds, most of these instances could not be
solved due to out-of-memory errors.

Larger values k = 6, . . . , 8. The running times of most solvers quickly exceeded
10000s. Therefore we generated very sparse sets of test instances, mainly to show
the tendency of the growth of the running time.

For k = 6 we generated a test set with q = 1, . . . 101 in steps of 10 with 10
instances per step. On these formulas BerkMin showed a peculiar behaviour in so

12

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 1 2 3 4 5 6

c(
k)

k

BerkMin
MiniSAT

Siege
zChaff01
zChaff07

RSat

Fig. 1. The value c = c(k).

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 10 20 30 40 50 60 70 80 90 100

c(
k)

nodes

2x2
3x3
4x4
5x5

Fig. 2. Stabilization of the Degree

grid sz. BerkMin MiniSAT Siege zChaff01 zChaff07 RSat2.0

2 × 2 1.41 1.35 1.44 1.41 1.45 1.32
3 × 3 1.76 1.48 1.75 1.59 1.68 1.45
4 × 4 1.92 2.03 1.92 1.81∗ 1.91 1.60
5 × 5 2.12 2.62∗ 2.03 –∗ 2.07 1.77

6 × 6 – – 2.22 – 2.55∗ 1.91
7 × 7 – – 2.39 – – 2.04∗

8 × 8 – – 2.63∗ – – 2.13∗

Table 1. The value c = c(k). For the marks ∗ see the discussion in the text.

far as it was able to solve most instances of up to 6 tree-nodes within 50s although
starting at 7 nodes it was not at all able to solve any instance within 10000s.
The 2007 version of zChaff was much more stable, but the average running time
exceeded 10000s at 30 tree nodes. The exponent in the table was taken for q = 51
where the average running time exceeded even 31000s.

The test set for k = 7 was identical to that for k = 6. Only Siege and RSat
remained for testing. Siege was able to finish the test set. For RSat, the exponent
was determined at q = 81, since at q = 91 out of memory errors occurred. For
k = 8 we generated a test set of 1, . . . 51 tree nodes in steps of 10 and 5 instances
per step. The average running time of both Siege and RSat was about 60000s at
51 tree nodes.

Discussion. The test set for smaller k seems to confirm the theoretical results of
the previous section. The growth of the decisions of all solvers is polynomial for
each fixed k and the exponent of this running time grows at most linearly with
k. For Siege and RSat this growth even seems to be mildly sublinear, although
exact analysis of this fact would necessitate more detailed tests. Note that the
number of decisions is always at least that of the conflicts. Thus the number of
conflicts is bounded as predicted by Theorem 1.

13

However, it is not possible to draw a safe conclusion from these results.
Especially by the sparsity of the test set for large k, we cannot take the results
to be more than an illustration of the link we assume between true SAT solvers
and our theoretical results.

5 Future Work

Our theoretical results establish a correlation between restarts and width, and
the experimental results indicate that real-world solvers seem tuned in a way
that exploits this correlation. The experiments are however at an early stage
and further work will be necessary before drawing definitive conclusions. First,
one should try larger test sets and larger values of the parameter k. A sec-
ond particularly urgent matter is that our experiments do not count restarts
directly; they count conflicts, which is only an upper bound on the number of
restarts. Related to this is the question of testing the different solvers with differ-
ent restart policies to compare their behaviour with the theoretical prediction.
This is perhaps the most promising open end for applications of our theoretical
investigation. Third, an important pressing issue is the lack of a truly general
model of randomized formulas of a given width. This is, indeed, a question of
theoretical interest by itself.

Acknowledgements

The authors would like to thank Martin Grohe for two reasons. First for giving
the idea for the class of formulas used in the experimental part. Most importantly
we thank him for the conjecture which became the main result of this paper.

References

1. Michael Alekhnovich and Alexander A. Razborov. Satisfiability, branch-width and
tseitin tautologies. In FOCS, pages 593–603. IEEE Computer Society, 2002.

2. Albert Atserias and Vı́ctor Dalmau. A combinatorial characterization of resolution
width. J. Comput. Syst. Sci., 74(3):323–334, 2008.

3. Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Understanding the power of
clause learning. In Georg Gottlob and Toby Walsh, editors, IJCAI, pages 1194–
1201. Morgan Kaufmann, 2003.

4. Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understanding and
harnessing the potential of clause learning. J. Artif. Intell. Res. (JAIR), 22:319–
351, 2004.

5. Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution made
simple. In STOC, pages 517–526, 1999.

6. Vı́ctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint satisfaction,
bounded treewidth, and finite-variable logics. In CP ’02: Proceedings of the 8th
International Conference on Principles and Practice of Constraint Programming,
pages 310–326, London, UK, 2002. Springer-Verlag.

14

7. Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, SAT, volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer, 2003.

8. E. Goldberg and Y. Novikov. Berkmin: A fast and robust sat-solver. Design,
Automation and Test in Europe (DATE’02), 2002.

9. Philipp Hertel, Fahiem Bacchus, Toniann Pitassi, and Allen Van Gelder. Clause
learning can effectively p-simulate general propositional resolution. In Dieter Fox
and Carla P. Gomes, editors, AAAI, pages 283–290. AAAI Press, 2008.

10. Robert J. Bayardo Jr. and Robert C. Schrag. Using csp look-back techniques to
solve real-world sat instances. In Proceedings of the Fourtheenth National Confer-
ence on Artificial Intelligence (AAAI’97), pages 203–208, 1997.

11. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient sat solver. In Proceedings of the 38th Design
Automation Conference (DAC’01), June 2001.

12. Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT
Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland proce-
dure to DPLL(T). Journal of the ACM, 53(6):937–977, 2006.

13. Knot Pipatsrisawat and Adnan Darwiche. Rsat 2.0: Sat solver description. Techni-
cal Report D–153, Automated Reasoning Group, Computer Science Department,
UCLA, 2007.

14. Lawrence Ryan. Efficient algorithms for clause-learning sat solvers. Master’s thesis,
Simon Fraser University, 2004.

15. Joao P. Marques Silva and Karem A. Sakallah. Grasp - a new search algo-
rithm for satisfiability. In Proceedings of IEEE/ACM International Conference
on Computer-Aided Design, pages 220–227, November 1996.

16. Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987.

15

