Minimal-Model-Guided Approaches to Solving
Polynomial Constraints and Extension%

Daniel Larraz, Albert Oliveras, Enric Rodriguez-Carbigraand Albert Rubio

Universitat Politecnica de Catalunya, Barcelona, Spain

Abstract. In this paper we present new methods for deciding the sdtittyeof
formulas involving integer polynomial constraints. Inyiis work we proposed
to solve SMT(NIA) problems by reducing them to SMT(LIA): rtinear mono-
mials are linearized by abstracting them with fresh vagatand by performing
case splitting on integer variables with finite domain. Whanables do not have
finite domains, artificial ones can be introduced by imposidgwer and an up-
per bound, and made iteratively larger until a solution isi® (or the procedure
times out). For the approach to be practical, unsatisfiatniescare used to guide
which domains have to be relaxed (i.e., enlarged) from aratibn to the fol-
lowing one. However, it is not clear then how large they havbd made, which
is critical.

Here we propose to guide the domain relaxation step by anglyzinimal mod-
els produced by the SMT(LIA) solver. Namely, we consider tlifferent cost
functions: the number of violated artificial domain bouraisg the distance with
respect to the artificial domains. We compare these appesaeith other tech-
nigues on benchmarks coming from constraint-based progretysis and show
the potential of the method. Finally, we describe how onehelsé minimal-
model-guided techniques can be smoothly adapted to dehlthdt extension
Max-SMT of SMT(NIA) and then applied to program terminatjmmving.

1 Introduction

Polynomial constraints are ubiquitous. They arise nafumalmany contexts, ranging
from the analysis, verification and synthesis of softwak@fer-physical systems [17,
43,44,42,14] to, e.g., game theory [6]. In all these caséscritical to have #icient
automatic solvers that, given a formula involving polynahdonstraints with integer
or real variables, either return a solution or report thatftirmula is unsatisfiable.
However, solving this kind of formulas has been a challeggiroblem since the
early beginnings of mathematics. A landmark result is dugaxski [48], who con-
structively proved that the problem is decidable for the-firgler theory of real closed
fields, in particular if variables are reals. Still, the aitfom in the proof has no use
in practice as it has non-elementary complexity. More fdagprocedures for solving
polynomial constraints on the reals are based on cylindailcgebraic decomposition

* This work has been supported by the Spanish Ministry MIGIMMECO under the project
SweetLogics-UPC (TIN2010-21062-C02-01) and the FPI g(Batiel Larraz) BES-2011-
044621.

(CAD) [16, 2]. However, their applicability is limited, abeir complexity is still dou-
bly exponential.

With the breakthrough of SAT and SMT solving [7, 39], numes¢echniques and
tools have been developed which exploit thigcéency and automaticity of this tech-
nology. Many of these approaches for solving polynomialsti@ints on the reals are
numerically-driven. E.g., in [25] interval constraint pamgation is integrated with
SMT(LRA) solving. In [23], non-linear formulas are pre-passed and then fed to an
off-the-shelf SMT(LRA) solver. Other works for instance imatg interval-based arith-
metic constraint solving in the SAT engine [21], combineiwal arithmetic and testing
[29], or focus on particular kinds of constraints like coxeenstraints [40]. In order to
address the ever-present concern that numerical errorgsalin incorrect answers in
these methods, it has been proposed to relax constraintoasdlers-complete deci-
sion procedures [24, 26]. As opposed to numerically-dravgproaches, recently sym-
bolic CAD-based techniques have been successfully irtegdjia a model-constructing
DPLL(T)-style procedure [28, 36], and several libraries and toxdis have been made
publicly available for the development of symbolicallyivem solvers [19, 37].

On the other hand, when variables must take integer valves, the problem of
solving a single polynomial equation is undecidable (HillselOth problem, [18]). In
spite of this theoretical limitation, and similarly to theat case, several methods that
take advantage of the advancements in SAT and SMT solving begn proposed for
solving integer polynomial constraints. The common idethe$e methods is to reduce
instances of integer non-linear arithmetic into problerha simpler language that can
be directly handled by existing SASMT tools, e.g., propositional logic [22], linear
bit-vector arithmetic [49], or linear integer arithmetitl]. All these approaches are
satisfiability-oriented, which makes them more conveniegbntexts in which finding
solutions is more relevant than proving that none exist. (@ invariant generation
(31]).

In this paper we build upon our previous method [11] for derjdhe satisfiability
of formulas involving integer polynomial constraints. lmat work, non-linear mono-
mials are linearized by abstracting them with fresh vadaland by performing case
splitting on integer variables with finite domain. In the eds which variables do not
have finite domainsartificial ones are introduced by imposing a lower and an upper
bound, and made iteratively larger until a solution is fogothe procedure times out).
For the approach to be useful in practice, unsatisfiablescare employed to guide
which bounds have to be relaxed (i.e., enlarged) from omatita to the following
one. However, one of the shortcomings of the approach isuthestisfiable cores pro-
vide no hint on how large the new bounds have to be made. Thistisal, since the
size of the new formula (and hence the time required to deterits satisfiability) can
increase significantly depending on the number of new casesriust be added.

The contributions of this paper are twofold:

1. We propose heuristics for guiding the domain relaxatiep by means of the anal-
ysis of minimal models [4, 5, 47] generated by the SMT(LIANg0. More specif-
ically, we consider two dferent cost functions: first, the number of violated ar-
tificial domain bounds, which leads tdaximum Satisfiability Modulo Theories
(Max-SMT, [38, 15]) problems; and second, the distance vaipect to the artifi-

cial domains, which boils down t@ptimization Modulo Theorieg®MT, [46, 41])
problems. The results of comparing these approaches widr t&¢chniques show
the potential of the method.

2. We extend the first of these approaches to handle probleMax-SMT(NIA).

This paper is structured as follows. Section 2 reviews bagkground on SMT,
Max-SMT and OMT, and also on our previous approach in [11]Sé&ttion 3 two
different heuristics for guiding the domain relaxation steppaioposed, together with
an experimental evaluation. Then Section 4 presents tieagirin of the technique from
SMT(NIA) to Max-SMT(NIA). Finally, Section 5 summarizesdlttonclusions of this
work and sketches lines for future research.

2 Preliminaries

2.1 SMT, Max-SMT and OMT

Let® be a fixed finite set gbropositional variableslf p € #, thenp and-p areliterals.
The negationof a literall, written =, denotes-p if | is p, andp if | is =p. A clause
is a disjunction of literal$; v - - - v I,. A (CNF) propositional formulas a conjunction
of clause<C; A --- A Cy. The problem opropositional satisfiabilitfabbreviated SAT)
consists in, given a propositional formula, to determinethier it issatisfiablei.e., if
it has amodel an assignment of Boolean values to variables that sattsfeformula.

A generalization of SAT is thaatisfiability modulo theories (SMTProblem: to
decide the satisfiability of a given quantifier-free firsther formula with respect to a
background theory. In this setting, a model (which we mag aéer to as aolution)
is an assignment of values from the theory to variables ti#fes the formula. Here
we will focus on integer variables and the theoriedinéar integer arithmetic (LIA)
where literals are linear inequalities, and the more gétleeary ofnon-linear integer
arithmetic (NIA) where literals are polynomial inequalitiés.

Another generalization of SAT islax-SAT[32, 1, 34], which extends the problem
by asking for more information when the formula turns outéaunsatisfiable: namely,
the Max-SAT problem consists in, given a formdfa to find an assignment such that
the number of satisfied clausessnis maximized, or equivalently, that the number of
falsified clauses is minimized. This problem can in turn beegalized in a number
of ways. For example, inveighted Max-SA®ach claus€; of ¥ has aweightw; (a
positive natural or real number), and then the goal is to firdassignment such that
thecost i.e., the sum of the weights of the falsified clauses, is min¢d. Yet a further
extension of Max-SAT is theartial weighted Max-SATproblem, where clauses in
¥ are either weighted clauses as explained above, catiicclausesn this setting,
or clauses without weights, calldthrd clausesin this case, the problem consists in
finding the model of the hard clauses such that the sum of thghteeof the falsified
soft clauses is minimized. Equivalently, hard clauses dsm lae seen as soft clauses
with infinite weight.

LIn some classes of formulas of practical interest, realadeis can also be handled by our
methods. See Section 2.2 for details.

The problem oMax-SMTmerges Max-SAT and SMT, and is defined from SMT
analogously to how Max-SAT is derived from SAT. Namely, tfiax-SMT problem
consists in, given a set of paifECy, w1], . . ., [Cm, wm]}, Where eaclt; is a clause and
wj Is its weight (a positive number or infinity), to find a modehtiminimizes the sum
of the weights of the falsified clauses in the backgroundrheo

Finally, the problem ofOptimization Modulo Theories (OMT$§ similar to Max-
SMT in that they are both optimization problems, rather tdacision problems. It
consists in, given a formul& involving a particular variable calledost to find the
model of# such that the value assigneddmstis minimized. Note that this framework
allows one to express a wide variety of optimization protdémaximization, piecewise
linear functions, etc.).

2.2 Solving SMT(NIA) with Unsatisfiable Cores

In [11], we proposed a method for solving SMT(NIA) problemeséd on encoding
them into SMT(LIA). The basic idea is to linearize each nmeér monomial in the
formula by applying a case analysis on the possible valuemwfe of its variables.
For example, if the monomiafyzappears in the input SMT(NIA) formula andmust
satisfy 0 < x < 2, we can introduce a fresh variablg,,, replace the occurrences
of x?yz by Vyzy, and add to the clause set the following these splitting clauses
X=0 = Ve, =0,X=1 = Ve, = yzandx = 2 — Vs, = 4yz In turn, new non-
linear monomials may appear, e.gzin this example. All non-linear monomials are
handled in the same way until a formula in SMT(LIA) is obtainéor which dficient
decision procedures exist [20].

Note that, in order to linearize a non-linear monomial, ¢hest be at least one
variable in it which is both lower and upper bounded. Whes finoperty does not hold,
newartificial bounds can be introduced for the variables that require theprinciple,
this implies that the procedure is no longer complete, simtirearized formula with
artificial bounds may be unsatisfiable while the original IMIR) formula is actually
satisfiable. A way to overcome this problem is to proceediieely: variables start with
bounds that make the size of their domains small, and theddah®ins are enlarged
on demand if necessary, i.e., if the formula turns out to beatisfiable. The decision
of which bounds are to be relaxed is heuristically taken thasethe analysis of an
unsatisfiable cordan unsatisfiable subset of the clause set) that is obtaihed the
solver reports unsatisfiability (e.g. by writing a trace @skane can extract a resolution
refutation, whose leaves form a core [50]). Note that thehmetellswhich bounds
should be enlarged, but does not provide any guidance indégaow largethe new
bounds should be. This is critical, as the size of the fornmuthe next iteration (and so
the time needed to determine its satisfiability) can growisicantly depending on the
number of new case splitting clauses that have to be added.

Altogether, the overall algorithm in [11] for solving a givéormula in SMT(NIA)
is as follows (see Figure 1). First, the needed artificialrutsuare added (procedure
initial_bound$ and the linearized formula (proceduli@earize is passed to an
SMT(LIA) solver (proceduresolveLlA). If the solver returnsSAT, we are done. If
the solver returnENSAT, then an unsatisfiable core is computed. If this core does not

contain any of the artificial bounds, then the original nm@&r formula must be unsat-
isfiable, and again we are done. Otherwise, at least one aftifieial bounds appearing
in the core must be chosen for relaxation (procedelsx domain$. Once the domains
are enlarged and the formula is updated (procedpdatg, the new linearized formula
is tested for satisfiability, and the process is repeatgud@ly, while a prefixed time
limit is not exceeded). We refer the reader to [11] for a morenal description.

status solveNIA(Formula%y) {
b = initial _bounds(¥y); // enough artificial bounds to linearizg
F = linearizg¥o, b);
while (not timedout()) {
(st core) = solveLIA(¥); // core computed here to ease presentation
if (st== SAT) return SAT;
else if (b core==0) return UNSAT;
else {
b = relax.domaingb, core); // at least one in the intersection is relaxed
¥ = updaté¥, b); / add new bounds and case splitting clauses

bl
return UNKNOWN;

Fig. 1. Algorithm in [11] based on unsatisfiable cores

Finally, notice that the assumption that all variables $thdnave integer type can
be weakened, since it ffiices that there arenoughfinite domain variables to perform
the linearization. For example, this can be exploited inQMIT problems coming from
constraint-based program analysis [31, 30]. Those forsnaita produced by applying
Farkas’ Lemma [45], and therefore only quadratic mononuéthe forma - u appear.
Although in principle botht andu are real unknowns, in the context of invariant and
ranking function generation it is reasonable to assumeutshbuld be integer. Hence,
by case splitting oru one can linearize the monomial and does not need to force
to take integer values. Moreover, when analyzing prograitisinteger variables, one
often needs to be able to reason taking into account theradiggof the variables. In
this situation integer versions of Farkas’ Lemma [9] can sed,) which when applied
in the context of, e.g., invariant generation, require agiaé unknownsi to be inZ.

3 Domain Relaxation with Minimal Models

Taking into account the limitations of the method based aer€when domains have to
be enlarged, in this section we propose a model-guided apprio perform this step.
The idea is to replace the satisfiability check in linearhamiétic with an optimization

call, so that the best model found by the linear solver candeel as a reference for
relaxing bounds (e.g., by extending the domains up to theevial that best model for
those bounds that have to be relaxed).

status solveNIA(Formula%y) {
b = initial _bounds(¥y); // enough artificial bounds to linearizg
F = linearizg¥o, b);
while (not timedout()) {
(st mode} = optimizeLIA(F);
if (st==UNSAT) return UNSAT;
else if (cos{mode) == 0) return SAT;
else {
b = relax.domaingb, mode);
¥ = updaté¥F, b); / add new bounds and case splitting clauses

bl
return UNKNOWN;

Fig. 2. Algorithm for solving SMT(NIA) based on minimal models

Thus, the high-level algorithm we propose for solving a gifmula in SMT(NIA)
is shown in Figure 2 (cf. Figure 1). Here the SMT(LIA) blackdxioes not just decide
satisfiability, but finds the minimum model of the formula aading to a prefixed non-
negative cost function (proceduogtimizeLlA). This function must have the property
that the models of the linearized formula with cost O are tnazlels of the original
non-linear formula, and that if the linearization is unsfdible then so is the original
formula. In addition to procedu@ptimizeLIA, the concrete implementations of proce-
dureslinearize relax.domainsandupdatealso depend on the cost function.

Below we suggest two such cost functions: the number of tedlartificial bounds
(Section 3.1), and the distance with respect to the artifiiienains (Section 3.2).

3.1 A Max-SMT(LIA) Approach

A possibility is to define the cost of an assignment as the rarrobviolated artificial
domain bounds. A natural way of implementing this is to tfama the original non-
linear formula into a linearized weighted formula and use axMNsMT(LIA) tool. In
this settinglinearizeworks as in the core-based algorithm, with the followintfett
ence: the clauses of the original formula (after being lireea by replacing non-linear
monomials with fresh variables) together with the casdtsmii clauses are considered
to be hard, while the artificial bounds are soft (with weightFollowing the same con-
struction, procedurepdateupdates the soft clauses with the relaxed bounds, and adds
the new case splitting clauses as hard clauses.

As regards the optimization step, procedapgimizeLIA boils down to making a
call to a Max-SMT(LIA) solver on the linearized formula (vehi, e.g., can be imple-
mented on top of an SMT(LIA) solver with branch-and-boumalthis case, the status
stin Figure 2 corresponds to the satisfiability of the hard sésu It is clear that if this
status i9UNSAT, then the original non-linear clause set is also unsatisfigiiven that
the models of the original formula are a subset of the moddlssohard clauses of the
linearized formula. Another important property is thataimodel of the linearization
has cost 0, then it is a true model of the non-linear formula.

Finally, procedureelax. domainsdetermines the bounds to be relaxed by inspecting
the soft clauses that are falsified. Moreover, as outlinedafthe bounds are enlarged
as follows. Let us assume thak uis an artificial bound that is falsified in the minimal
model. Ifx is assigned valu® in that model (and, henca,< U), thenx < U becomes
the new upper bound of A similar construction applies for lower bounds.

Regarding the weights of the soft clauses, in general itisiacessary to have unit
weights. One may use fiierent values, provided they are positive, and then the cost
function corresponds to a weighted sum. Moreover, notevilegghts can be dierent
from one iteration of the loop afolveNIA to the next one.

Example 1.Let us consider the formutx+wy > 4 A t?+ x> +W? +y? < 12, where
variablest, x,w, y are integer. Let us also assume that we add the followinfjcaati
boundsin orderto linearize:l < t, x,w,y < 1. Then we obtain the following linearized
weighted formula:

Vix +Viy 2 4 A Vg +Vie + Ve + Ve <12 A

t=-1->vx=-X A (W=-1>Vy=-Y)
(t:o —)VtX:O) A (W:O —)VWy:O) A
t=1 ->vx=xX A (W=1 Svy=y) A

>

t=-1->v=1) A (W=-1->ovVve=1) A (%)
= —>Vt2=0) A (W:O —>VW2=O) A
t=1 ->ve=1) A (W=1 ->ve=1) A

X=-1->Vve=1) A (y=-1->ve=1) A
(Xx=0 —-ve=0)) A (y=0 —-ve=0) A
(X=1 -ve=1) A (y=1 —-ve=1) A

[F1<t,IJA[-1< X1 A[-1<swI1]A[-1<y, 1] A
[t<1,1]A [x<L11A [w<11]A]y<1,1],

wherevix, Vuy, Viz, Viz, V2, V2 are integer fresh variables standing for non-linear mono-
mials. Soft clauses are writte@,[w], while clauses without weight are hard clauses.
In this case minimal solutions have cost 1, since at leasbbttee artificial bounds
has to be violated so as to satisfy+ vy > 4. For instance, the Max-SMT(LIA) solver
could return the assignmerit= 1, X = 4, ix = 4, W =Yy = Vyy = Vg = Vo = 0,
Ve = 1 andvye = 0, where the only soft clause that is violated xs§ 1, 1]. Note
that, asx = 4 is not covered by the case splitting clausesvipr the values of/,. and
x are unrelated. Now the new upper bound fowould bex < 4 (so the soft clause
[x < 1,1] would be replaced byx < 4,1]), and the following hard clauses would be
addedx =2 > ve =4,Xx=3 > Ve = 9andx = 4 - v = 16. In the next iteration
there are solutions with cost 0, e.95 1, X =3, Vix = 3, W =Y = Vyuy = Vyz = Vyo = 1,
Viz = 1 andvy = 9. [

One of the disadvantages of this approach is that potgntiadl Max-SAT(LIA)
solver could return models with numerical values much latiggn necessary. Since the
model is used for extending the domains, it could be the dedetprohibitive number

of case splitting clauses are added, and at the next itardat@goMax-SAT(LIA) solver is

not able to handle the formula with a reasonable amount olress. For instance, in
Example 1, it could have been the case that the Max-SAT(LdNes returnedi = y =
0,t=1,x=10° v, = 0, etc. However, as far as we have been able to experimesit, thi
kind of behaviour is rarely observed in our implementatisge Section 3.3 for more
details. On the other hand, the cost function in Section 8l@vbdoes not stier from

this drawback.

3.2 An OMT(LIA) Approach

Another possibility is to define the cost of an assignmenhaslistance with respect to
the artificial domains. This can be cast as a problem in OMAYlals follows.

First of all, given a non-linear formulgy, the linearizatiory (procedurdinearize
is computed like in the algorithm based on cores, excephfofact that artificial bounds
are not included in the linearizatioff: consists only of the clauses &% (after being
linearized), and of the case splitting clauses (togethtr ather constraints to express
the cost function, to be described below).

Now, letS be the set of variablesfor which an artificial domain.{x, v4] is added
in the linearization. Formally, the cost function}§.s d(x, [1x, vx]), Whered(z [, v])
is thedistanceof zwith respect to {, v]:

A-zifz<a
6(z[4,v]) =40 fi<z<vy
z—v ifz>vy

Note that, in the definition of the cost function, one coulgloainclude true original
bounds: the contribution to the cost of these is null, sitey are part of the formula
and therefore must be respected.

In procedureoptimizeLIA, the OMT(LIA) solver (which can be implemented by
adding a phase Il [45] to the consistency checks of an SMTYIsdlver) minimizes
this function, expressed in the following way. Laistbe the variable that the solver
minimizes. For each variabblee S with domain [y, v4], let us introduce once and for
all two extra integer variabldg anduy (meaning the distance with respect to the lower
and to the upper bound of the domaingfrespectively) and thauxiliary constraints
Ix > 0,1x > Ax — X, Uux > 0, Uux > X— vx. Then the cost function is determined by the
equationcost = Y ,.s(Ix + Uy), which is added to the linearization together with the
auxiliary constraints listed above.

Note that a model of the linearization that has cost 0 musgmasslues within
the bounds for all variables. Therefore the variables stenfr non-linear monomials
must be assigned consistent values with their semantiogrtoye of the case splitting
clauses. Thus, models of the linearization with null costrapdels of the original non-
linear formula. Moreover, if the linearized formula is utiséable, then the original
formula must be unsatisfiable too, since the models of thggr@i formula are included
in the models of the linearized formula.

As regards domain relaxation, procedwetax domainsdetermines the bounds to
be enlarged by identifying the variablgsuy that are assigned a non-null value. Further,

again the bounds are enlarged by taking the optimal modetefegence: similarly as
in Section 3.1, ifx < uis an artificial bound to be relaxed amds assigned valué

in the best model, ther < U becomes the new upper bound. Then procedpdate
updates the auxiliary constraints (eu.,> x — uis replaced by, > x — U), and adds
the new case splitting clauses (for tHe- ucasesx = u+ 1, ...,x = U, etc.). Note that
precisely the value diy in the optimal model i&J — u > 0. Hence, intuitively the cost
function corresponds to thrmimber of new casdblat will have to be taken into account
for the next iteration of the loop afolveNIA.

It is also possible to consider a slightlyfidirent cost function, which corresponds
to thenumber of new clausebat will have to be added for the next iteration. For that
purpose, it is only necessary to multiply variablgsuy in the equation that defines
costby the number of monomials whose value is determined by gal#é&rg on x.

In general, similarly to Section 3.1, one may have a genarst function of the form
cost= Y ,s(axlx+BxUy), whereay, Bx > O for all x € S. Further, again these ciieients
may be changed from one iteration to the next one.

Example 2.Let us consider again the same non-linear formula from Exarhpx +
wy > 4 A P+ x2+w2+y? < 12, where variables x, w, y are integer. Let us also assume
that we add the following artificial bounds in order to linear—1 < t, x, w,y < 1. Then
we obtain the following OMT(LIA) problem:

min cost subject to

constraints) from Example 1 A
cost=lt+ U + Iy + Uy + lw + Uy + 1y + Uy A

>0 A k>-1-t A u=>20 A w>2t-1 A
A dly>=1-X A u>0 A ux>x-1 A

lw>0 A ly>2-1-w A Uy>0 A uy>2w-1 A
ANdly>2-1-y A w>0 A uw>y-1

In this case, it can be seen that minimal solutions have cosbfexample, the
OMT(LIA) solver could return the assignmenti= 1,ve = 1,t =2, vix = 4,V = 0
andw =y = vy = V2 = W2 = 0. Note that, a = 2 is not covered by the case splitting
clauses, the values #f; andv, are unrelated td. Now the new upper bound faris
t < 2, constrainy; >t — 1 is replaced by >t — 2, and clauses= 2 — v = 2x and
t=2- vp =4 are added.

At the next iteration there is still no solution with cost Bdaat least another further
iteration is necessary before a true model of the non-lifegarula can be found. =

One of the drawbacks of this approach is that, as the prewerasiple suggests,
domains may be enlarged very slowly. This implies that, sesavhere solutions have
large numbers, many iterations are needed before one ofitaistovered. See Section
3.3 below for more details on the performance of this methagatactice.

3.3 Experiments

In this section we evaluate experimentally the performari¢ke two minimal-model-
guided approaches proposed above, and compare them wéthcotinpeting non-linear
solvers. Namely, we consider the following tcois

— bcl-maxsmt, our Max-SMT-based algorithm from Section 3.1;
— bcl-omt, our OMT-based algorithm from Section 3.2;

— bcl-cores, our core-based algorithm [11];

— Z3 version 4.3.1 [35].

The experiments were carried out on an Intel Core i7 with GH8 clock speed
and 16 GB of RAM. We set a timeout of 60 seconds.

All bcl-* solvers share essentially the same underlying SAT engine and Llérthe
solver. Moreover, some strategies are also common:

— proceduranitial_boundsuses a greedy algorithm to approximate the minimal set
of variables that have to be introduced in the linearizafiid]. For each of them,
we force the domain-1, 1], even if variables have true bounds (for ease of pre-
sentation, we will assume here that true bounds always icojrtd, 1]). This turns
out to be useful in practice, as in some cases formulas hdavugos with small
codficients. By forcing the domainl, 1], unnecessary case splitting clauses are
avoided and the size of the linearized formula is reduced.

— the first time a bound has been chosen to be enlarged is haspedlly. Let us

assume it is the first time that a lower bound (respectively@per bound) ok has
to be enlarged. By virtue of the remark above, the bound nwust the formx > -1
(respectivelyx < 1). Now, if x has a true bound of the form > | (respectively,
X < u), then the new bound is the true bound. Otherwis&,dbes not have a true
lower bound (respectively, upper bound), then the lowemnidas decreased by one
(respectively, the upper bound is increased by one). Aglaimjs useful to capture
the cases in which there are solutions with smalfigoents.

— from the second time a bound has to be enlarged onwards, daalakation of
bcl-maxsmt andbcl-omt follows basically what is described in Section 3, except
for a correction factor aimed at instances where soluti@ve Ilsome large values.
Namely, if x < u has to be enlarged and in the minimal mogé$ assigned value
U, then the new upper boundls+a-min(s, =), whereax andg are parameters,is
the number of times the upper bounddias been relaxed, amdis the number of
occurrences of in the original formula. As regardscl-cores, a similar expression
is used in which the current bounds used instead dfl, since there is no notion
of “best model”. The analogous strategy is applied for lol@unds.

In this evaluation we considered twdfiiirent sets of benchmarks. The first bench-
mark suite consists of 1934 instances generated by ourregmsbased termination

2 We also experimented with other tools, nam@Real [26], SMT-RAT [19] andMiniSMT [49].
It turned out that the kind of instances we are considerig lee not well-suited for these
solvers, and many timeouts were obtained.

3 Available atwww.1lsi.upc.edu/~albert/satl4.tgz.

prover [30]. As pointed out in Section 2.2, in these problems-linear monomials are
quadratic. Moreover, since it makes sense in our applicatar each benchmark we
have runz3 (which cannot solve any of our non-linear integer instapo@sversions
of the instances where all variables are reals. This has deesin order to perform a
fairer comparison, since unlike our approact#sis targeted to the real case. Results
can be seen in Table 1, where columns represent systemswsgossible outcomes
(SAT, UNSAT, UNKNOWN andTIMEOUT). Each cell contains the number of prob-
lems with that outcome obtained with the correspondingesysior the total time to
process them.

Table 1. Experiments with benchmarks from Termination prover

z3 bcl-cores || bcl-maxsmt bcl-omt
#prob| secs|| #prob| secs|| #prob| secs|| #prob| secs
SAT 1136 | 2578|| 1838 |5464|| 1852 |3198|| 1798|7896
UNSAT 0 0 0 0 4 0 62 | 112

UNKNOWN 11 2 0 0 0 0 0 0
TIMEOUT 787 |4722Q0| 96 |5760|| 78 |4680| 74 |4440

Table 2. Experiments with benchmarks from model checking

z3 bcl-cores || bcl-maxsmt bcl-omt

#prob| secs|| #prob| secs|| #prob| secs|| #prob | secs

SAT 30 2 35 | 55 35 | 72 34 | 263
UNSAT 1 0 1 0 1 0 1 0

UNKNOWN 0 0 0 0 0 0 0 0
TIMEOUT 5 | 300 0 0 0 0 1 60

The second benchmark suite consists of 36 examples of SMJ(@&nerated by
theQArmc-Hsf(c) tool [27], a predicate-abstraction-based model checkitravspecial
focus on liveness properties. In these problems all vaggahbte integer, and monomi-
als beyond quadratic appear. Results are in Table 2 andvftie same format as in
Table 1.

As we can see in the tablas;l-cores andbcl-maxsmt are the mostféicient sys-
tems on satisfiable instances. WHhild-omt is doing slightly worseZ3 is clearly out-
performed, even when variables have real type. After ingpgc¢he traces, we have
seen thabcl-omt enlarges the domains too slowly, which is hindering thecear

Regarding unsatisfiable instances, it can also be obsema¢td-cores performs
worse than the model-guided approaches, and that in plartioei-omt is surprisingly

effective. The reason is that, while the latter will always itifgrwhen the linear ab-
straction of the formula is unsatisfiable, this may not bectee with the former, which
depending on the computed core may detect or not the unahbtig§i. In fact, for the
sake of diciency,bcl-cores does not guarantee that cores are minimal with respect
to subset inclusion: computinginimial unsatisfiable setf8] to eliminate irrelevant
clauses implies an overhead that in our experience doesagatip

Finally, as a side note, it is worth mentioning that we alspegimented with a
mixed version of the Max-SMT and OMT approaches. This versiorks as follows.
Once the Max-SMT(LIA) finds a propositional model of the (positional skeleton of
the) linearization that minimizes the number of violatiofthe artificial bounds (this is
the Max-SMT part), instead of taking any of the solutiong gaisfy this propositional
model, one finds a solution among those that minimizes thardie with respect to
the artificial domains (this is the OMT part). This hybridina did not perform signif-
icantly better than the Max-SMT approach, because mosh dffite solution computed
by default by the Max-SMT(LIA) solver turns out to be alreamhtimal with respect to
the distance cost function, and in general the gain obtaiitdthis final optimization
does not compensate the overhead it incurs in the total égadime.

4 Extension to Max-SMT(NIA)

As we showed in previous work [30], the framework of Max-SMITA) is particu-
larly appropriate for constraint-based termination pngviOther applications of Max-
SMT(NIA) in program analysis can be envisioned given thersmous expressive power
of its language. For the feasibility of this kind of applicats, it is of paramount impor-
tance that fficient solvers are available. For this reason, this sectitifbevdevoted to
the extension of our techniques for SMT(NIA) to Max-SMT(NIA

More specifically, the experiments in Section 3.3 indichtd,twhen applied to sat-
isfiable instances of SMT(NIA), the Max-SMT(LIA) approacéhaves better than the
OMT(LIA) one, and similarly to the core-based one, althoogtthe instances coming
from our program analysis applications it tends to perfoettds. Because of this, in
Section 4.1 the Max-SMT(LIA) approach will be taken as a §agion which a new
algorithm for Max-SMT(NIA) will be proposed, which is morarple and natural than
what a Max-SMT(NIA) system built on top of a core-based SMIKNsolver would
be. Finally, in Section 4.2 we will report on the applicatmfran implementation of this
algorithm to program termination.

4.1 Algorithm

We will represent the inpuf, of a Max-SMT(NIA) instance as a conjunction of a set of
hard clause${p = {C1, - - - ,Cy} and a set of soft clausé& = {{D1, w1], - - - ,[Dm, wm]}.
The aim is to decide whether there exist assignmersisch thatr = Ho, and if so, to
find one such thalp ,jcs, | oep @ IS Minimized.

The algorithm for solving Max-SMT(NIA) is shown in Figure B its first step,
as usual the initial artificial bounds are chosen (proceihitial _bound$ and the input
formulafo = Ho A Sp is linearized (procedutdeearize). As a result, a weighted linear
formula# is obtained with hard clausé$ A C and soft clauseS A B, where:

<Status Modeb> solveMax SMT_NIA(Formula %) {
b = initial _bounds(%y);
F = linearizg¥o, b);
bestsafar = 1;
max.soft.cost= oo
while (not timedout()) {
(st mode} = solveMax SMT.LIA(¥, maxsoft.cos);
if (st==UNSAT)
if (bestsafar == 1) return < UNSAT, L >;
else return < SAT, bestsafar >;
else if (cosz(mode) == 0) {
bestsafar = model;
maxsoft.cost= costs(mode) — 1;
}
else {
b = relax.domaingb, mode);
F = updatéF, b);
b}
return < UNKNOWN, L >;

}

Fig. 3. Algorithm for solving Max-SMT(NIA) based on Max-SMT(LIA)

— H andS are the result of replacing the non-linear monomialfinandS, by their
corresponding fresh variables, respectively;

— C are the case splitting clauses;

— Bisthe set of artificial bounds of the form g |, Q], [x < u, '], where the weights
Q, & are positive numbers that are introduced in the lineadmati

Now notice that there are two kinds of weights: those fronathiginal soft clauses,
and those produced by the linearization. As they hafferdint meanings, it is conve-
nient to consider them separately. Thus, given an assignmeme define its(total)
costascos{a) = (cosi(a), cosk(a)), wherecosl(a) = X gjes|aps 2 is thebound
cost i.e., the contribution to the total cost due to artificialubds, andcosts(a) =
Y D.wjes | oD W IS the soft cost corresponding to the original soft clauses. Equiva-
lently, if weights are written as pairs, so that artificialubad clauses become of the
form [C, (€2, 0)] and soft clauses become of the for@) (0, w)], we can writecos{a) =
2IC(@w)esus | apc (2, w) , where the sum of the pairs is component-wise.

In what follows, pairs ¢osts(«), costs(a)) will be lexicographically compared, so
that the bound cost (i.e., to be consistent in NIA) is morewvaht than the soft cost.
Hence, by taking this cost function and this ordering we hawax-SMT(LIA) in-
stance in which weights are not natural or non-negativemeabers, but pairs of them.

In the next step of the algorithm, procedwelveMax SMT_LIA calls a Max-
SMT(LIA) tool to solve this instance. A efierence with the usual setting is that the Max-
SMT(LIA) solver admits a parametaraxsoft. costthat restrains the models of the hard
clauses we are considering: only assignmergach thatosk(a) < maxsoftcostare
taken into account. Thus, this adapted Max-SMT(LIA) solgemputes, among the

modelsa of the hard clauses such thaisis(a) < maxsoft.cost(if any), one that min-
imizescos{«a). This allows one to prune the search lying under the Max-8NH)
solver when it is detected that the best soft cost found soalanot be improved. This
is not dificult to implement if the Max-SAT solver follows a branch-aindund scheme,
as itis our case.

Now the algorithm examines the result of the call to the MMIELIA) solver.
If it is UNSAT, then there are no models of the hard clauses with soft casioat
maxsoftcost Therefore, the algorithm can stop and report the bestisaldbund
so far, if any. Otherwisemodelsatisfies the hard clauses and has soft cost at most
maxsoftcost If it has null bound cost, i.e., it is a true model of the halauses of
the original formula, then the best solution found so far enak soft. costare updated,
in order to search for a solution with better soft cost. Hinal the bound cost is not
null, then domains are relaxed as described in Sectionr8drder to widen the search
space. In any case, the algorithm jumps back to a new catiiteeMax SMT_LIA.

4.2 Application

As far as we know, none of the competing non-linear solvepsasiding native support
for Max-SMT, and hence no fair comparison is possible. Farrgason, in order to give
empirical evidence of the usefulness of the algorithm dlesdrin Section 4.1, here we
opt for giving a brief summary of the application of Max-SMY fgrogram termination

[30] and, most importantly, highlighting the impact of ouraddSMT solver on the

efficacy of the termination prover built on top of it.

Termination proving requires the generation of rankingsfions as well as support-
ing invariants. Previous work [12] formulated invariantlaranking function synthesis
as constraint problems, thus yielding SMT instances. If, [8@x-SMT is proposed as
a more convenient framework. The crucial observation i§ Hikeit the goal is to show
that program transitions cannot be executed infinitely bgifig a ranking function or
an invariant that disables them, if we only discover an imaray or an invariant and a
quasi-ranking functiorthat almost fulfills all needed properties for well-foundeds,
we have made some progress: either we can remove part ofs#titarandor we have
improved our knowledge on the behavior of the program. A rghtway to implement
this idea is by considering that some of the constraints are {ihe ones guaranteeing
invariance) and others are soft (those guaranteeing weltdedness).

Thus, éficient Max-SMT solvers open the door to more refined analysesmina-
tion, which in turn allows one to prove more programs terriita In order to support
this claim, we carried out the experiment reported in Tabletiere we considered two
termination provers:

— The tool EMT) implements the generation of invariants and ranking fiomstus-
ing a translation to SMT(NIA), where all constraints arechar

— The tool Max-SMT) is based on the same infrastructure, but expresses tHeesjst
of invariants and ranking functions as Max-SMT(NIA) praii& As outline above,
this allows performing more refined analyses.

Table 3 presents the number of instances (#ins.) in eachhbear& suite we con-
sidered (from [13]) and the number of those that respegtigath system proved ter-

minating (with a timeout of 300 seconds). As can be seen ingbalts, there is a non-
negligible improvement in the number of programs provethteating thanks to the
adoption of the Max-SMT approach and th&a@ency of our Max-SMT(NIA) solver.

Table 3. Comparison of SMT-based and Max-SMT-based terminationgrso

#ins.| SMT | Max-SMT
Setl| 449 | 212 228
Set2| 472 | 245 262

5 Conclusions and Future Work

In this paper we have proposed two strategies to guide domedéxation in the
instantiation-based approach for solving SMT(NIA) [11ptB are based on computing
minimal models with respect to a cost function, respecgfivitle number of violated
artificial domain bounds, and the distance with respect ¢oatttificial domains. The
results of comparing them with other techniques show thefemtial. Moreover, we
have developed an algorithm for Max-SMT(NIA) building upthe first of these ap-
proaches, and have shown its impact on the application of X (NIA) to program
termination.

As for future work, several directions for further reseaceim be considered. Re-
garding the algorithmics, it would be interesting to lookoimifferent cost functions
following the minimal-model-guided framework proposedéieas well as alternative
ways for computing those minimal models (e.g., by meansiofmal correction sub-
sets[33]). On the other hand, one of the shortcomings of our m&ition-based ap-
proach for solving Max-SMSMT(NIA) is that unsatisfiable instances that require
non-trivial non-linear reasoning cannot be captured. is tlontext, the integration of
real-goaled CAD techniques adapted to SMT [28] appears ta pemising line of
work.

Another direction for future research concerns appliceti&o far we have applied
Max-SMT(NIA) to array invariant generation [31] and terration proving [30]. Other
problems in program analysis where we envision the Max-SWIAY framework could
help in improving the state-of-the-art are, e.g., the asialgf worst-case execution time
and the analysis of non-termination. Also, so far we have eohsidered sequential
programs. The extension of Max-SMT-based techniques tewoant programs is a
promising line of work with a potentially high impact in thedustry.

Acknowledgments. We thank C. Popeea and A. Rybalchenko for their benchmarks.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

Ansotegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAgaaithms. Artif. Intell. 196, 77—
105 (2013)

Basu, S., Pollack, R., Roy., M.F.: Algorithms in Real Algaic Geometry. Springer-Verlag,
Berlin (2003)

. Belov, A., Lynce, |., Marques-Silva, J.: Towardig@ent MUS extraction. Al Commun.

25(2), 97-116 (2012)

. Ben-Eliyahu, R., Dechter, R.: On computing minimal med&hn. Math. Artif. Intell. 18(1),

3-27 (1996)

. Ben-Eliyahu-Zohary, R.: An incremental algorithm fongeating all minimal models. Atrtif.

Intell. 169(1), 1-22 (2005)

. Beyene, T., Chaudhuri, S., Popeea, C., Rybalchenko, Acomstraint-based approach to

solving games on infinite graphs. In: Proceedings of the AGW¥ SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. pp.223-POPL '14, ACM, New
York, NY, USA (2014)

. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (ed$gndbook of Satisfiability, Fron-

tiers in Artificial Intelligence and Applications, vol. 18B0S Press (February 2009)

. Bloem, R., Sharygina, N. (eds.): Proceedings of 10thrhatgonal Conference on Formal

Methods in Computer-Aided Design, FMCAD 2010, Lugano, 3aitand, October 20-23.
IEEE (2010)

. Bockmayr, A., Weispfenning, V.. Solving numerical coasits. In: Robinson, J.A.,

Voronkov, A. (eds.) Handbook of Automated Reasoning, pd—882. Elsevier and MIT
Press (2001)

Bonacina, M.P. (ed.): Automated Deduction - CADE-24th2aternational Conference on
Automated Deduction, Lake Placid, NY, USA, June 9-14, 2®8ceedings, Lecture Notes
in Computer Science, vol. 7898. Springer (2013)

Borralleras, C., Lucas, S., Oliveras, A., Rodriguezk@nell, E., Rubio, A.: SAT Modulo
Linear Arithmetic for Solving Polynomial Constraints. Juthm. Reasoning 48(1), 107-131
(2012)

Bradley, A.R., Manna, Z., Sipma, H.B.: Linear rankinghnieachability. In: Etessami, K.,
Rajamani, S.K. (eds.) CAV. Lecture Notes in Computer S@enol. 3576, pp. 491-504.
Springer (2005)

Brockschmidt, M., Cook, B., Fuhs, C.: Better terminatgyoving through cooperation. In:
Sharygina, N., Veith, H. (eds.) CAV. Lecture Notes in CongpuBcience, vol. 8044, pp.
413-429. Springer (2013)

Cheng, C.H., Shankar, N., Ruess, H., Bensalem, S.: EF@MTogical Framework for
Cyber-Physical Systems (2013), coRR/aB§6.3456

Cimatti, A., Franzén, A., Griggio, A., Sebastiani, Btenico, C.: Satisfiability Modulo the
Theory of Costs: Foundations and Applications. In: EspalzéMajumdar, R. (eds.) TACAS.
Lecture Notes in Computer Science, vol. 6015, pp. 99-118n&egr (2010)

Collins, G.E.: Hauptvortrag: Quantifier eliminatiorr feal closed fields by cylindrical al-
gebraic decomposition. In: Barkhage, H. (ed.) Automatacfhend Formal Languages.
Lecture Notes in Computer Science, vol. 33, pp. 134-183n§er (1975)

Colon, M., Sankaranarayanan, S., Sipma, H.: Lineariaat Generation Using Non-linear
Constraint Solving. In: Jr., W.A.H., Somenzi, F. (eds.) CAécture Notes in Computer
Science, vol. 2725, pp. 420-432. Springer (2003)

Cooper, S.B.: Computability Theory. Chapman KERC Mathematics Series (2004)
Corzilius, F., Loup, U., Junges, Qbrahém, E.: SMT-RAT: An SMT-Compliant Nonlinear
Real Arithmetic Toolbox - (Tool Presentation). In: Cimati., Sebastiani, R. (eds.) SAT.
Lecture Notes in Computer Science, vol. 7317, pp. 442—-4g8nger (2012)

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Dutertre, B., de Moura, L.M.: A Fast Linear-Arithmetiol@er for DPLL(T). In: Ball, T.,
Jones, R.B. (eds.) CAV. Lecture Notes in Computer Sciermle4\t44, pp. 81-94. Springer
(2006)

Franzle, M., Herde, C., Teige, T., Ratschan, S., Sahube Efficient solving of large non-
linear arithmetic constraint systems with complex bools@uacture. JSAT 1(3-4), 209-236
(2007)

Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp,TRiemann, R., Zankl, H.: SAT
Solving for Termination Analysis with Polynomial Interpagions. In: Marques-Silva, J.,
Sakallah, K.A. (eds.) SAT. Lecture Notes in Computer Saenol. 4501, pp. 340-354.
Springer (2007)

Ganai, M.K., Ivancic, F.: fiicient decision procedure for non-linear arithmetic caxiats
using CORDIC. In: FMCAD. pp. 61-68. IEEE (2009)

Gao, S., Avigad, J., Clarke, E.M-complete decision procedures for satisfiability over the
reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJ®ALecture Notes in Computer
Science, vol. 7364, pp. 286—300. Springer (2012)

Gao, S., Ganai, M.K., Ivancic, F., Gupta, A., Sankarayenan, S., Clarke, E.M.: Integrat-
ing ICP and LRA solvers for deciding nonlinear real arithimgtroblems. In: Bloem and
Sharygina [8], pp. 81-89

Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT Solver famhhear Theories over the
Reals. In: Bonacina [10], pp. 208-214

Grebenshchikov, S., Gupta, A., Lopes, N.P., Popee®ybalchenko, A.: HSF(C): A Soft-
ware Verifier Based on Horn Clauses - (Competition Contido)t In: Flanagan, C., Konig,
B. (eds.) TACAS. Lecture Notes in Computer Science, vol.472dp. 549-551. Springer
(2012)

Jovanovic, D., de Moura, L.M.: Solving non-linear amittic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR. Lecture Notes in Computer Soée vol. 7364, pp. 339-354.
Springer (2012)

Khanh, T.V., Ogawa, M.: SMT for Polynomial ConstraintsReal Numbers. Electr. Notes
Theor. Comput. Sci. 289, 27-40 (2012)

Larraz, D., Oliveras, A., Rodriguez-Carbonell, E.pbRUA.: Proving termination of imper-
ative programs using Max-SMT. In: FMCAD. pp. 218-225. IERB13)

Larraz, D., Rodriguez-Carbonell, E., Rubio, A.: SMdsBd Array Invariant Generation. In:
Giacobazzi, R., Berdine, J., Mastroeni, . (eds.) VMCAlIctiee Notes in Computer Science,
vol. 7737, pp. 169-188. Springer (2013)

Li, C.M., Manya, F.: MaxSAT, Hard and Soft Constrairlts. Biere, A., Heule, M., van
Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, rf@rs in Artificial Intelligence
and Applications, vol. 185, pp. 613-631. IOS Press (2009)

Marques-Silva, J., Heras, F., Janota, M., Previti, &lpB A.: On computing minimal cor-
rection subsets. In: Rossi, F. (ed.) IJCAL [JZAMAI (2013)

Morgado, A., Heras, F., ffiton, M.H., Planes, J., Marques-Silva, J.: Iterative ancecor
guided MaxSAT solving: A survey and assessment. ConssraBd), 478-534 (2013)

de Moura, L.M., Bjgrner, N.: Z3: AnfEcient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS. Lecture Notes in Computer Science, vol. 4963337-340. Springer (2008)
de Moura, L.M., Jovanovic, D.: A model-constructingsfability calculus. In: Giacobazzi,
R., Berdine, J., Mastroeni, |. (eds.) VMCAI. Lecture NotesDomputer Science, vol. 7737,
pp. 1-12. Springer (2013)

de Moura, L.M., Passmore, G.O.: Computation in realedadsfinitesimal and transcenden-
tal extensions of the rationals. In: Bonacina [10], pp. 152~

Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theoriesl &ptimization Problems. In:
Biere, A., Gomes, C.P. (eds.) SAT. Lecture Notes in Compsitéence, vol. 4121, pp. 156—
169. Springer (2006)

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SANd SAT Modulo Theories: From an
abstract Davis—Putnam—-Logemann—Loveland procedure td OR. J. ACM 53(6), 937—
977 (2006)

Nuzzo, P., Puggelli, A., Seshia, S.A., Sangiovannie¥ielli, A.L.: CalCS: SMT solving
for non-linear convex constraints. In: Bloem and Shary¢@&app. 71-79

Oliver, R.: Optimization Modulo Theories. Master’s sf& Universitat Politecnica de
Catalunya, Spain, (January 2012)

Platzer, A., Quesel, J.D., Rummer, P.: Real world \aiifon. In: Schmidt, R.A. (ed.) CADE.
Lecture Notes in Computer Science, vol. 5663, pp. 485-5ptinger (2009)
Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-litoegr invariant generation using
Grobner bases. In: Jones, N.D., Leroy, X. (eds.) POPL. pp-329. ACM (2004)
Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Cotisiguavariants for hybrid systems.
Formal Methods in System Design 32(1), 25-55 (2008)

Schrijver, A.: Theory of Linear and Integer Programmigiley (Jun 1998)

Sebastiani, R., Tomasi, S.: Optimization in SMT wiif(Q) Cost Functions. In: Gramlich,
B., Miller, D., Sattler, U. (eds.) IJCAR. Lecture Notes inr@puter Science, vol. 7364, pp.
484-498. Springer (2012)

Soh, T., Inoue, K.: Identifying necessary reactions @taholic pathways by minimal model
generation. In: Coelho, H., Studer, R., Wooldridge, M. (B&CAI. Frontiers in Artificial
Intelligence and Applications, vol. 215, pp. 277-282. I0843 (2010)

Tarski, A.: A decision method for elementary algebrageametry. Bulletin of the American
Mathematical Society 59 (1951)

Zankl, H., Middeldorp, A.: Satisfiability of non-linedir)rational arithmetic. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR (Dakar). Lecture Notes in Gmuiter Science, vol. 6355,
pp. 481-500. Springer (2010)

Zhang, L., Malik, S.: Validating SAT Solvers Using an épgndent Resolution-Based
Checker: Practical Implementations and Other Applicai®908 Design, Automation and
Test in Europe 1, 10880 (2003)

