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Abstract—We present an automated compositional program
verification technique for safety properties based on conditional
inductive invariants. For a given program part (e.g., a single
loop) and a postcondition ϕ, we show how to, using a Max-SMT
solver, an inductive invariant together with a precondition can be
synthesized so that the precondition ensures the validity of the
invariant and that the invariant implies ϕ. From this, we build
a bottom-up program verification framework that propagates
preconditions of small program parts as postconditions for
preceding program parts. The method recovers from failures
to prove the validity of a precondition, using the obtained
intermediate results to restrict the search space for further proof
attempts.

As only small program parts need to be handled at a time,
our method is scalable and distributable. The derived conditions
can be viewed as implicit contracts between different parts of
the program, and thus enable an incremental program analysis.

I. INTRODUCTION

To have impact on everyday software development, a verifi-
cation engine needs to be able to process the millions of lines of
code often encountered in mature software projects. At the same
time, the analysis should be repeated every time developers
commit a change, and should report feedback in the course of
minutes, so that fixes can be applied promptly. Consequently,
a central theme in recent research on automated program
verification has been scalability. As a natural solution to this
problem, compositional program analyses [1]–[3] have been
proposed. They analyze program parts (semi-)independently
and then combine the results to obtain a whole-program proof.

For this, a compositional analysis has to predict likely
intermediate assertions that allow us to break whole-program
reasoning into many instances of local reasoning. This strategy
simplifies the individual reasoning steps and allows distributing
the analysis [4]. The disadvantage of compositional analyses has
traditionally been their precision: local analyses must blindly
choose the intermediate assertions. While in some domains (e.g.
heap) some heuristics have been found [2], effective strategies
for guessing and/or refining useful intermediate assertions or
summaries in arithmetic domains remains an open problem.

In this paper we introduce a new method for predicting and
refining intermediate arithmetic assertions for compositional
reasoning about sequential programs. A key component in our
approach is Max-SMT solving. Max-SMT solvers can deal with
hard and soft constraints, where hard constraints are mandatory,
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and soft constraints are those that we would like to hold, but
are not required to. Hard constraints express what is needed
for the soundness of our analysis, while soft ones favor the
solutions that are more useful for our technique. More precisely,
we use Max-SMT to iteratively infer conditional inductive
invariants1, which prove the validity of a property, given that
a precondition holds. Hence, if the precondition holds, the
program is proved safe. Otherwise, thanks to a novel program
transformation technique we call narrowing2, we exploit the
failing conditional invariants to focus on what is missing in the
safety proof of the program. Then new conditional invariants
are sought, and the process is repeated until the safety proof is
finally completed. Based on this, we introduce a new bottom-up
program analysis procedure that infers conditional invariants in
a goal-directed manner, starting from a property that we wish
to prove for the program. Our approach makes distributing
analysis tasks as simple as in other bottom-up analyses, but
also enjoys the precision of CEGAR-based provers.

II. ILLUSTRATION OF THE METHOD

In this section, we illustrate the core concepts of our approach
by using some small examples. We will give the formal
definition of the used methods in Sect. IV.

We handle programs by considering one strongly connected
component (SCC) C of the control-flow graph at a time, together
with the sequential parts of the program leading to C, either
from initial states or other SCCs.

Instead of program invariants, for each SCC we synthesize
conditional inductive invariants. These are inductive properties
such that they may not always hold whenever the SCC is
reached, but once they hold, then they are always satisfied.

while i > 0 do
x := x + 5;
i := i− 1;

done
assert(x ≥ 0);

Fig. 1.

a) Conditional Inductive Invariants:
As an example, consider the program
snippet in Fig. 1, where we do not as-
sume any knowledge about the rest of
the program. To prove the assertion, we
need an inductive property Q for the loop
such that Q together with the negation of
the loop condition i > 0 implies the assertion. Using our
constraint-solving based method CondSafe (cf. Sect. IV-A),
we find Q1 = x + 5 · i ≥ 0. The property Q1 can be seen as a
precondition at the loop entry for the validity of the assertion.

1This concept was previously introduced with the name “quasi-invariant”
in [5] in the different context of proving program non-termination.

2This narrowing is inspired by the narrowing in term rewrite systems, and
is unrelated to the notion with the same name used in abstract interpretation.



b) Combining Conditional Inductive Invariants: Once
we have found a conditional inductive invariant for an SCC,
we use the generated preconditions as postconditions for its
preceding SCCs in the program.

while j > 0 do
j := j− 1;
i := i + 1;

done
Fig. 2.

As an example, assume that the loop
from Fig. 1 is directly preceded by the
loop in Fig. 2. We now use the precon-
dition Q1 we obtained earlier as input to
our conditional invariant synthesis method,
similarly to the assertion in Fig. 1. Thus,

we now look for an inductive property Q2 that, together with
¬(j > 0), implies Q1. In this case we obtain the conditional
invariant Q2 = j ≥ 0∧ x+ 5 · (i+ j) ≥ 0 for the loop. As with
Q1, now we can see Q2 as a precondition at the loop entry,
and propagate Q2 up to the preceding SCCs in the program.

c) Recovering from Failures: When we cannot prove
that a precondition always holds, we try to recover and find
an alternative precondition. In this process, we make use of
the results obtained so far, and narrow the program using our
intermediate results. As an example, consider the loop in Fig. 3.

while unknown() do
assert(x 6= y);
x := x + 1;
y := y + 1;

done
Fig. 3.

We again apply our method
CondSafe to find a conditional in-
variant for this loop which, together
with the loop condition, implies the
assertion in the loop body. As it
can only synthesize conjunctions of
linear inequalities, it produces the
conditional invariant Q3 = x > y for the loop. However,
assume that the precondition Q3 could not be proven to always
hold in the context of our example. In that case, we use
the obtained information to narrow the program and look for
another precondition. if ¬(x>y) then

while ¬(x>y) do
assert(x 6= y);
x := x + 1;
y := y + 1;

done
fi

Fig. 4.

Intuitively, our program narrowing
reflects that states represented by the
conditional invariant found earlier
are already proven to be safe. Hence,
we only need to consider states for
which the negation of the conditional
invariant holds, i.e., we can add its
negation as an assumption to the
program. In our example, this yields the modified version
of Fig. 3 displayed in Fig. 4. Another call to CondSafe then
yields the conditional invariant Q′3 = x < y for the loop. This
means that we can ensure the validity of the assertion if before
the conditional statement we satisfy that ¬(x > y)⇒ x < y,
or equivalently, x 6= y. In general, this narrowing allows us to
find (some) disjunctive invariants.

III. PRELIMINARIES

1) SAT, Max-SAT, and Max-SMT: Let P be a fixed set
of propositional variables. For p ∈ P , p and ¬p are literals.
A clause is a disjunction of literals l1 ∨ · · · ∨ ln. A (CNF)
propositional formula is a conjunction of clauses C1∧· · ·∧Cm.
The problem of propositional satisfiability (SAT ) is to
determine whether a propositional formula is satisfiable. An
extension of SAT is satisfiability modulo theories (SMT) [6],

where satisfiability of a formula with literals from a given
background theory is checked. We will use the theory of
quantifier-free integer (non-)linear arithmetic, where literals are
inequalities of linear (resp. polynomial) arithmetic expressions.

Another extension of SAT is Max-SAT [6], which generalizes
SAT to finding an assignment such that the number of satisfied
clauses in a given formula F is maximized. Finally, Max-SMT
combines Max-SAT and SMT. A (weighted partial) Max-SMT
problem is a formula of the form H1∧. . .∧Hn∧[S1, ω1]∧. . .∧
[Sm, ωm], where the hard clauses Hi and the soft clauses Sj

(with weight ωj) are disjunctions of literals over a background
theory, and the aim is to find a model of the hard clauses that
maximizes the sum of the weights of the satisfied soft clauses.

2) Programs and States: We make heavy use of the program
structure and hence represent programs as graphs. For this,
we fix a set of (integer) program variables V = {v1, . . . , vn}
and denote by F(V) the formulas consisting of conjunctions
of linear inequalities over the variables V . Let L be the
set of program locations, which contains a canonical start
location `0. Program transitions T are tuples (`, τ, `′), where
` and `′ ∈ L represent the pre- and post-location respectively,
and τ ∈ F(V ∪V ′) describes its transition relation. Here
V ′ = {v′1, . . . , v′n} are the post-variables, i.e., the values of
the variables after the transition.3 A transition is initial if its
source location is `0. A program is a set of transitions. We view
a program P = (L, T ) as a directed graph (the control-flow
graph, CFG), in which edges are the transitions T and nodes
are the locations L.4

A state s = (`,v) consists of a location ` ∈ L and a
valuation v : V → Z. A state (`,v) is initial if ` = `0.
We denote an evaluation step with transition t = (`, τ, `′)
by (`,v) →t (`′,v′), where the valuations v, v′ satisfy the
formula τ of t. We use→P if we do not care about the executed
transition, and →∗P to denote the transitive-reflexive closure
of →P . We say that a state s is reachable if there exists an
initial state s0 such that s0 →∗P s.

3) Safety and Invariants: An assertion (t, ϕ) is a pair of a
transition t ∈ T and a formula ϕ ∈ F(V). A program P is
safe for the assertion (t, ϕ) if for every evaluation (`0,v0)→∗P
◦ →t (`,v), we have that v |= ϕ holds.5 Note that proving
that a formula ϕ always holds at a location ` can be handled
in this setting by adding an extra location `∗ and an extra
transition t∗ = (`, true, `∗) and checking safety for (t∗, ϕ).

We call a map I : L → F(V) a program invariant (or
often just invariant) if for all reachable states (`,v), we have
v |= I(`) holds. An important class of program invariants are
inductive invariants. An invariant I is inductive if the following
conditions hold:

Initiation: > |= I(`0)
Consecution: For (`, τ, `′) ∈ P: I(`) ∧ τ |= I(`′)′

3For ϕ ∈ F(V), ϕ′∈F(V ′) is the version of ϕ using primed variables.
4Since we label transitions only with conjunctions of linear inequalities,

disjunctive conditions are represented using several transitions with the same
pre- and post-location. Thus, P is actually a multigraph.

5Here, →∗P ◦ →t denotes arbitrary program evaluations that end with an
evaluation step using t.



4) Constraint Solving for Verification: Inductive invariants
can be generated using a constraint-based approach [7], [8].
The idea is to consider templates for candidate invariant
properties, such as (conjunctions of) linear inequalities. These
templates contain both the program variables V as well as
template variables VT , whose values have to be determined to
ensure the required properties. To this end, the conditions on
inductive invariants are expressed by means of constraints of
the form ∃VT .∀V . . . .. Any solution to these constraints then
yields an invariant. In the case of linear arithmetic, Farkas’
Lemma [9] is often used to handle the quantifier alternation in
the generated constraints. Intuitively, it allows one to transform
∃∀ problems encountered in invariant synthesis into ∃ problems.
In the general case, an SMT problem over non-linear arithmetic
is obtained, for which effective SMT solvers exist [10], [11].
By assigning weights to the different conditions, invariant
generation can be cast as an optimization problem in the Max-
SMT framework [5], [12].

IV. PROVING SAFETY

Most automated techniques for proving program safety
iteratively construct inductive program invariants as over-
approximations of the reachable state space. Starting from the
known set of initial states, a process to discover more reachable
states and refine the approximation is iterated, until it finally
reaches a fixed point (i.e., the invariant is inductive) and is
strong enough to imply program safety. However, this requires
taking the whole program into account, which is sometimes
infeasible or undesirable in practice.

In contrast to this, our method starts with the known unsafe
states, and iteratively constructs an under-approximation of the
set of safe states, with the goal of showing that all initial states
are contained in that set. For this, we introduce the notion of
conditional safety. Intuitively, when proving that a program is
(t̃, ϕ̃)-conditionally safe for the assertion (t, ϕ) we consider
evaluations starting after a →t̃ (˜̀, ṽ) step, where ṽ satisfies ϕ̃,
instead of evaluations starting at an initial state. In particular,
a program that is (t0,>)-conditionally safe for (t, ϕ) for all
initial transitions t0 is (unconditionally) safe for (t, ϕ).

Definition 1 (Conditional safety). Let P be a program, t, t̃
transitions and ϕ, ϕ̃ ∈ F(V). The program P is (t̃, ϕ̃)-
conditionally safe for the assertion (t, ϕ) if for any evaluation
that contains →t̃ (˜̀, ṽ)→∗P (¯̀, v̄)→t (`,v), we have ṽ |= ϕ̃
implies that v |= ϕ. In that case we say that the assertion
(t̃, ϕ̃) is a precondition for the postcondition (t, ϕ).

Conditional safety is “transitive” in the sense that if a set
of transitions E = {t̃1, . . . , t̃m} dominates t,6 and for all i =
1, . . . ,m we have P is (t̃i, ϕ̃i)-conditionally safe for (t, ϕ) and
P is safe for (t̃i, ϕ̃i), then P is also safe for (t, ϕ). In what
follows we exploit this observation to prove program safety by
means of conditional safety.

A program component C of a program P is an SCC of
the control-flow graph, and its entry transitions (or entries)

6We say a set of transitions E dominates transition t if every path in the
CFG from `0 that contains t must also contain some t̃ ∈ E .

xxxxxx

. . .
while i > 0 do
x := x + 5;
i := i− 1;

done
assert(x ≥ 50)

xxxxxxxx

`1

`2

i ≤ 0
∧ x′ = x
∧ i′ = i

i > 0
∧ x′ = x+ 5
∧ i′ = i− 1

Fig. 5. Source code of program snippet and its CFG.

EC are those transitions t = (`, τ, `′) such that t 6∈ C but
`′ appears in C. By considering each component as a single
node, we can obtain from P a DAG of SCCs, whose edges
are the entry transitions. Our technique analyzes components
independently, and communicates the results of these analyses
to other components along entry transitions.

Given a component C and an assertion (t, ϕ) such that
t 6∈ C but the source node of t appears in C, we call t an
exit transition of C. For such exit transitions, we compute a
sufficient condition ψt̃ for each entry transition t̃ ∈ EC such
that C ∪ {t} is (t̃, ψt̃)-conditionally safe for (t, ϕ). Then we
continue reasoning backwards following the DAG and try to
prove that P is safe for each (t̃, ψt̃). If we succeed, following
the argument above we will have proved P safe for (t, ϕ).

In the following, we first discuss how to prove conditional
safety of single program components in Sect. IV-A, and then
present the algorithm that combines these local analyses to
construct a global safety proof in Sect. IV-B.

A. Synthesizing Local Conditions

Here we restrict ourselves to a program component C and
its entry transitions EC , and assume we are given an assertion
(texit, ϕ), where texit = (˜̀

exit, τexit, `exit) is an exit transition
of C (i.e., texit 6∈ C and ˜̀

exit appears in C). We show how
a precondition (t, ψ) for (texit, ϕ) can be obtained for each
t ∈ EC . Here we only consider the case of ϕ being a single
clause (i.e., a disjunction of literals); if ϕ is in CNF, each
conjunct is handled separately. The preconditions on the entry
transitions will be determined by a conditional inductive
invariant, which like a standard invariant is inductive, but not
necessarily initiated in all program runs. Indeed, this initiation
condition is what we will extract as precondition and propagate
backwards to preceding program components in the DAG.

Definition 2 (Conditional Inductive Invariant). We say a map
Q : L → F(V) is a conditional (inductive) invariant for a
program (component) P if for all (`,v)→P (`′,v′), we have
v |= Q(`) implies v′ |= Q(`′).

Conditional invariants are convenient tools to express condi-
tions for safety proving, allowing reasoning in the style of “if
the condition for Q holds, then the assertion (t, ϕ) holds”.

Example 1. Consider the program snippet in Fig. 5. A con-
ditional inductive invariant supporting safety of this program
part is Q5(`1) ≡ x+ 5 · i ≥ 50, Q5(`2) ≡ x ≥ 50. In fact, any
conditional invariant Qm(`1) ≡ x+m · i ≥ 50 with 0 ≤ m ≤ 5



would be a conditional inductive invariant that, together with
the negation of the loop condition i ≤ 0, implies x ≥ 50.

We use a Max-SMT-based constraint-solving approach to
generate conditional inductive invariants. Unlike in [5], to
use information about the initialization of variables before a
program component, we take into account the entry transitions
EC . The precondition for each entry transition is the conditional
invariant that has been synthesized at its target location.

To find conditional invariants, we construct a constraint
system. For each location ` in C we create a template
I`,k(V) ≡ ∧1≤j≤k I`,j,k(V) which is a conjunction of k linear
inequations7 of the form I`,j,k(V) ≡ i`,j +

∑
v∈V i`,j,v · v ≤ 0,

where the i`,j , i`,j,v are fresh variables from the set of template
variables VT . We then transform the conditions for a conditional
invariant proving safety for the assertion (texit, ϕ) to the
constraints in Fig. 6. Here, e.g., I ′`′,k refers to the variant
of I`′,k using primed versions of the program variables V , but
unprimed template variables VT .

In the overall constraint system, we mark the Consecution
and Safety constraints as hard requirements. Thus, any solution
to these constraints is a conditional inductive invariant implying
our assertion. However, as we mark the Initiation constraints
as soft, the found conditional invariants may depend on
preconditions not implied by the direct context of the considered
component. On the other hand, the Max-SMT solver prefers
solutions that require fewer preconditions. Overall, we create
the following Max-SMT formula

Fk
def
=
∧
t∈C

Ct,k ∧
∧

t∈EC,1≤j≤k

(
It,j,k ∨¬ pIt,j,k

)
∧Sk ∧

∧
t∈EC,1≤j≤k

[pIt,j,k , ωI],

where the pIt,j,k are propositional variables which are true
if the Initiation condition It,j,k is satisfied, and ωI is the
corresponding weight. 8 We use Fk in our procedure CondSafe
in Algo. 1.

Algorithm 1 Proc. CondSafe computing conditional invariant
Input: component C, entry transitions EC , assertion (texit, ϕ)

s.t. texit is an exit transition of C and ϕ is a clause
Output: None | Q, where Q maps locations in C to conjunc-

tions of inequations
1: k ← 1
2: repeat
3: construct formula Fk from C, EC and (texit, ϕ)
4: σ ← Max-SMT-solver(Fk)
5: if σ is a model then
6: Q ← {` 7→ σ(I`,k) | ` in C} return Q
7: k ← k + 1
8: until k > MAX CONJUNCTS return None

In CondSafe, we iteratively try “larger” templates of more
conjuncts of linear inequations until we either give up (in our

7In our overall algorithm, k is initially 1 and increased in case of failures.
8Farkas’ Lemma is applied locally to the subformulas Ct,k , It,j,k and Sk ,

and weights are added on the resulting constraints over the template variables.

implementation, MAX CONJUNCTS is 3) or finally find a
conditional invariant. Note, however, that here we are only
trying to prove safety for one clause at a time, which reduces
the number of required conjuncts as compared to dealing with
a whole CNF in a single step. If the Max-SMT solver is
able to find a model for Fk, then we instantiate our invariant
templates I`,k with the values found for the template variables
in the model σ, obtaining a conditional invariant Q. When we
obtain a result, for every entry transition t = (`, τ, `′) ∈ EC
the conditional invariant Q(`′) is a precondition that implies
safety for the assertion (texit, ϕ). The following theorem states
the correctness of this procedure.

Theorem 1. Let C be a component, EC its entry transitions,
and (texit, ϕ) an assertion with texit an exit transition of C and
ϕ a clause. If the procedure call CondSafe(C, EC , (texit, ϕ))
returns Q 6= None, then Q is a conditional inductive invariant
for C and P is (t,Q(`′))-conditionally safe for (texit, ϕ) for
all t = (`, τ, `′) ∈ EC .

Proof. All proofs can be found in Appendix A.

B. Propagating Local Conditions

In this section, we explain how to use the local procedure
CondSafe to prove safety of a full program. To this end we now
consider the full DAG of program components. As outlined
above, the idea is to start from the assertion provided by the
user, call the procedure CondSafe to obtain preconditions for
the entry transitions of the corresponding component, and then
use these preconditions as assertions for preceding components,
continuing recursively. If eventually for each initial transition
the transition relation implies the corresponding preconditions,
then safety has been proven. If we fail to prove safety for certain
assertions, we backtrack, trying further possible preconditions
and conditional invariants.

The key to the precision of our approach is our treatment
of failed proof attempts. When the procedure CondSafe finds
a conditional invariant Q for C, but proving (t,Q(`′)) as a
postcondition of the preceding component fails for some t =
(`, τ, `′) ∈ EC , we use Q to narrow our program representation
and filter out evaluations that are already known to be safe.

As outlined above, in our proof process we treat each clause
of the conjunction Q(`′) separately, and pass each one as its
own assertion to preceding program components, allowing for a
fine-grained program-narrowing technique. By construction of
Q, evaluations that satisfy all literals of Q(`′) after executing
t = (`, τ, `′) ∈ EC are safe. Thus, among the evaluations that
use t, we only need to consider those where at least one literal
in Q(`′) does not hold. Hence, we narrow each entry transition
by conjoining it with the negation of the conjunction of all
literals for which we could not prove safety (see line 13 in
Algo. 2). Note that if there is more than one literal in this
conjunction, then the negation is a disjunction, which in our
program model implies splitting transitions.

We can narrow program components similarly. For a tran-
sition t = (`, τ, `′) ∈ C, we know that if either Q(`) or
Q(`′)′ holds in an evaluation passing through t, the program



Initiation: For t = (`, τ, `′) ∈ EC , 1 ≤ j ≤ k: It,j,k
def
= τ ⇒ I ′`′,j,k

Consecution: For t = (`, τ, `′) ∈ C: Ct,k
def
= I`,k ∧ τ ⇒ I ′`′,k

Safety: For texit = (˜̀
exit, τexit, `exit): Sk

def
= I˜̀

exit,k
∧ τexit ⇒ ϕ′

Fig. 6. Constraints used in CondSafe(C, EC , (texit, ϕ))

Algorithm 2 Procedure CheckSafe for proving a program safe
for an assertion
Input: Program P , a component C, entries EC , assertion

(texit, ϕ) s.t. texit is an exit transition of C and ϕ a clause
Output: Safe | Maybe

1: let (`exit, τexit, `
′
exit) = texit

2: if (τexit ⇒ ϕ′) then return Safe
3: else if `exit = `0 then return Maybe
4: Q ← CondSafe(C, EC , (texit, ϕ))
5: if Q = None then return Maybe
6: for all t = (`, τ, `′) ∈ EC , L ∈ Q(`′) do
7: C̃ ← component(`,P)
8: EC̃ ← entries(C̃,P)
9: res[t, L]← CheckSafe(P, C̃, EC̃ , (t, L))

10: if ∀t = (`, τ, `′) ∈ EC , L ∈ Q(`′) . res[t, L] = Safe then
11: return Safe
12: else
13: ÊC ← {(`, τ ∧ ¬(

∧
L∈Q(`′)

res[t,L]=Maybe

L′), `′) | t = (`, τ, `′) ∈ EC}

14: Ĉ ← {(`, τ ∧ ¬Q(`′)′ ∧ ¬Q(`), `′) | (`, τ, `′) ∈ C}
15: return CheckSafe(P, Ĉ, ÊC , (texit, ϕ))

is safe. Thus, we narrow the program by replacing τ by
τ ∧ ¬Q(`) ∧ ¬Q(`′)′ (see line 14 in Algo. 2).

This narrowing allows us to generate disjunctive conditional
invariants, where each result of CondSafe is one disjunct. Note
that not all disjunctive invariants can be discovered like this,
as each intermediate result needs to be inductive using the
disjuncts found so far. However, this is the pattern observed
in phase-change algorithms [13].

Our overall safety proving procedure CheckSafe is shown
in Algo. 2. The helper procedures component and entries are
used to find the program component for a given location and the
entry transitions for a component. The result of CheckSafe is
either Maybe when the proof failed, or Safe if it succeeded. In
the latter case, we have managed to create a chain of conditional
invariants that imply that (texit, ϕ) always holds.

Theorem 2. Let P be a program, C a component and
EC its entries. Given an assertion (texit, ϕ) such that
texit is an exit transition of C and ϕ is a clause, if
CheckSafe(P, C, EC , (texit, ϕ)) = Safe, then P is safe for
(texit, ϕ).

Example 2. We demonstrate CheckSafe on the program
displayed on Fig. 7, called P in the following, which is an
extended version of the example from Fig. 3.

We want to prove the assertion (t5, x 6= y). Hence we
make a first call CheckSafe(P, {t4}, {t3}, (t5, x 6=y)): the non-
trivial SCC containing `2 is {t4} and its entry transitions are
{t3}. Hence, we call CondSafe({t4}, {t3}, (t5, x 6= y)) and
the resulting conditional invariant for `2 is either x < y
or y < x. Let us assume it is y < x. In the next step,
we propagate this to the predecessor SCC {t2}, and call
CheckSafe(P, {t2}, {t1}, (t3, y < x)).

In turn, this leads to calling CondSafe({t2}, {t1}, (t3, y <
x)) to our synthesis subprocedure. No conditional invariant
supporting this assertion can be found, and hence None is
returned by CondSafe, and consequently Maybe is returned
by CheckSafe. Hence, we return to the original SCC {t4}
and its entry {t3}, and then by narrowing we obtain two new
transitions:

t′4 = (`2, x
′ = x + 1 ∧ y′ = y + 1 ∧ ¬(y < x), `2),

t′3 = (`1, x < 0 ∧ x′ = x ∧ y′ = y ∧ ¬(y < x), `2).

Using these, we call CheckSafe(P, {t′4}, {t′3}, (t5, x 6=y)). The
next call to CondSafe then yields the conditional invariant
x < y at `2, which is in turn propagated backwards with the
call CheckSafe(P, {t2}, {t1}, (t′3, x < y)). This then yields a
conditional invariant x < y at `1, which is finally propagated
back in the call CheckSafe(P, {}, {}, (t1, x < y)), which
directly returns Safe.

C. Improving Performance
`0

`1

`2

`3

t1 : x < y
∧ x′ = x
∧ y′ = y

t2 : x ≥ 0
∧ x′ = x− 1
∧ y′ = y

t3 : x < 0
∧ x′ = x
∧ y′ = y

t4 : x′ = x+ 1
∧ y′ = y + 1

t5 : >

Fig. 7.

The basic method CheckSafe
can be extended in several ways
to improve performance. We now
present a number of techniques that
are useful to reduce the runtime
of the algorithm and distribute the
required work. Note that none of
these techniques influences the pre-
cision of the overall framework.

a) Using conditional invari-
ants to disable transitions: When
proving an assertion, it is often
necessary to find invariants that
show the unfeasibility of some transition, which allows
disabling it. In our framework, the required invariants can
be conditional as well. Therefore, CheckSafe must be called
recursively to prove that the conditional invariant is indeed
invariant. In our implementation, we generate constraints
such that every solution provides conditional invariants either
implying the postcondition or disabling some transition. By



imposing different weights, we make the Max-SMT solver
prefer solutions that imply the postcondition.

b) Handling unsuccessful proof attempts: One important
aspect is that the presented algorithm does not learn facts
about the reachable state space, and so duplicates work when
assertions appear several times. To alleviate this for unsuccess-
ful recursive invocations of CheckSafe, we introduce a simple
memoization technique to avoid repeating such calls. So when
CheckSafe(P, C, EC , (t, ϕ)) = Maybe, we store this result, and
use it for all later calls of CheckSafe(P, C, EC , (t, ϕ)). This
strategy is valid as the return value Maybe indicates that our
method cannot prove the assertion (t, ϕ) at all, meaning that
later proof attempts will fail as well. In our implementation,
this memoization of unsuccessful attempts is local to the initial
call to CheckSafe. The rationale is that, when proving unrelated
properties, it is likely that few calls are shared and that the
book-keeping does not pay off.

c) Handling successful proof attempts: When a re-
cursive call yields a successful result, we can strengthen
the program with the proven invariant. Remember that
CheckSafe(P, C, EC , (t, ϕ)) = Safe means that whenever
the transition t is used in any evaluation, ϕ holds in the
succeeding state. Thus, we can add this knowledge explicitly
and change the transition in the original program. In practice,
this strengthening is applied only if the first call to CheckSafe
was successful, i.e, no narrowing was applied. The reason
is that, if the transition relation of t was obtained through
repeated narrowing, in general one needs to split transitions,
and it is not correct to just add ϕ′ to t. Namely, assume
that to = (`, τo, `

′) is the original (unnarrowed) version of
a transition t = (`, τ, `′) ∈ EC . As t is an entry transition
of C, we have τ = τo ∧ ¬ψ′1 ∧ . . . ∧ ¬ψ′m by construction,
where ψi is the additional constraint we added in the i-th
narrowing of component entries. Thus what we proved is that
ψ′1∨ . . .∨ψ′m∨ϕ′ always holds after using transition to. So we
should replace to in the program with a transition labeled with
τo ∧ (ψ′1 ∨ . . . ∨ ψ′m ∨ ϕ′). As we cannot handle disjunctions
natively, this implies replacing to by m+ 1 new transitions.

Note that this program modification approach, unlike mem-
oization, makes the gained information available to the Max-
SMT solver when searching for a conditional invariant. A
similar strategy can be used to strengthen the transitions in the
considered component C.

d) Parallelizing & distributing the analysis: Our analysis
can easily be parallelized. We have implemented this at two
stages. First, at the level of the procedure CondSafe, we try at
the same time different numbers of template conjuncts (lines
3-6 in Algo. 1), which requires calling several instances of the
solver simultaneously. Secondly, at a higher level, the recursive
calls of CheckSafe (line 9 in Algo. 2) are parallelized. Note that,
since narrowing and the “learning” optimizations described
above are considered only locally, they can be handled as
asynchronous updates to the program kept in each worker, and
do not require synchronization operations. Hence, distributing
the analysis onto several worker processes, in the style of
Bolt [4], would be possible as well.

Other directions for parallelization, which have not been
implemented yet, are to return different conditional invariants
in parallel when the Max-SMT problem in procedure CondSafe
has several solutions. Moreover, based on experimental observa-
tions that successful safety proofs have a short successful path
in the tree of proof attempts, we are also interested in exploring
a look-ahead strategy: after calling CondSafe in CheckSafe,
we could make recursive calls of CheckSafe on some processes
while others are already applying narrowing.

e) Iterative proving: Finally, one could store the condi-
tional invariants generated during a successful proof, which
are hence invariants, so that they can be re-used in later runs.
E.g., if a single component is modified, one can reprocess it
and compute a new precondition that ensures its postcondition.
If this precondition is implied by the previously computed
invariant, the program is safe and nothing else needs to be done.
Otherwise, one can proceed with the preceding components, and
produce respective new preconditions in a recursive way. Only
when proving safety with the previously computed invariants
in this way fails, the whole program needs to be reprocessed
again. This technique has not been implemented yet, as our
prototype is still in a preliminary state.

V. RELATED WORK

Safety proving is an active area of research. In the recent past,
techniques based on variations of counterexample guided ab-
straction refinement have dominated [14]–[23]. These methods
prove safety by repeatedly unfolding the program relation using
a symbolic representation of program states, starting in the
initial states. This process generates an over-approximation
of the set of reachable states, where the coarseness of
the approximation is a consequence of the used symbolic
representation. Whenever a state in the over-approximation
violates the safety condition, either a true counterexample
was found and is reported, or the approximation is refined
(using techniques such as predicate abstraction [24] or Craig
interpolation [25]). When further unwinding does not change
the symbolic representation, all reachable states have been
found and the procedure terminates. This can be understood as
a “top-down” (“forward”) approach (starting from the initial
states), whereas our method is “bottom-up” (“backwards”), i.e.
starting from the assertions.

Techniques based on Abstract Interpretation [26] have had
substantial success in the industrial setting. There, an abstract
interpreter is instantiated by an abstract domain whose elements
are used to over-approximate sets of program states. The
interpreter then evaluates the program on the chosen abstract
domain, discovering reachable states. A widening operator,
combining two given over-approximations to a more general
one representing both, is employed to guarantee termination
of the analysis when handling loops.

“Bottom-up” safety proving with preconditions found by
abduction has been investigated in [27]. This work is closest to
ours in its overall approach, but uses fundamentally different
techniques to find preconditions. Instead of applying Max-SMT,
the approach uses an abduction engine based on maximal



universal subsets and quantifier elimination in Presburger
arithmetic. Moreover, it does not have an equivalent to our
narrowing to exploit failed proof attempts. In a similar vein,
[28] uses straight-line weakest precondition computation and
backwards-reasoning to infer loop invariants supporting validity
of an assertion. To enforce a generalization towards inductive
invariants, a heuristic syntax-based method is used.

Automatically constructing program proofs from indepen-
dently obtained subproofs has been an active area of research
in the recent past. Splitting proofs along syntactic boundaries
(e.g., handling procedures separately) has been explored in [1],
[2], [4], [29]. For each such unit, a summary of its behavior
is computed, i.e., an expression that connects certain (classes
of) inputs to outputs. Depending on the employed analyzers,
these summaries encode under- and over-approximations of
reachable states [1] or changes to the heap using separation
logic’s frame rule [2]. Finally, [4] discusses how such compo-
sitional analyses can leverage cloud computing environments
to parallelize and scale up program proofs.

VI. IMPLEMENTATION AND EVALUATION

We have implemented the algorithms from Sect. IV-A and
Sect. IV-B in our early prototype VeryMax, using the Max-
SMT solver for non-linear arithmetic [30] in the Barcel-
ogic [31] system. We evaluated a sequential (VeryMax-Seq)
and a parallel (VeryMax-Par) variant on two benchmark sets.

The first set (which we will call HOLA-BENCHS) are the
46 programs from the evaluation of safety provers in [27]
(which were collected from a variety of sources, among others,
[13], [32]–[42], the NECLA Static Analysis Benchmarks, etc.).
The programs are relatively small (they have between 17 and
71 lines of code, and between 1 and 4 nested or consecutive
loops), but expose a number of “hard” problems for analyzers.
All of them are safe.

On this first benchmark set we compare with three systems.
The first two were leading tools in the Software Verification
Competition 2015 [43]: CPAchecker9 [44], which was the
overall winner and in particular won the gold medal in
the “Control Flow and Integer Variables” category, and
SeaHorn [45], which got the silver medal, and also won
the “Simple” category. We also compare with HOLA [27],
an abduction-based backwards reasoning tool. Unfortunately,
we were not able to obtain an executable for HOLA. For
this reason we have taken the experimental data for this tool
directly from [27], where it is reported that the experiments
were performed on an Intel i5 2.6 GHz CPU with 8 Gb of
memory. For the sake of a fair comparison, we have run the
other tools on a 4-core machine with the same specification,
using the same timeout of 200 seconds. Tab. I summarizes
the results, reporting the number of successful proofs, failed
proofs, and timeouts (TO), together with the respective total
runtimes. Both versions of VeryMax are competitive, and our
parallel version was two times faster than our sequential one

9We ran CPAchecker with two different configurations, predicateAnalysis
and sv-comp15.

on four cores. As a reference, on these examples VeryMax-
Seq needed 2.8 overall calls (recursive or after narrowings) on
average, with a maximum of 16. The number of narrowings was
approximately 1, with a maximum of 13. Our memoization
technique making use of already failed proof attempts was
employed in about one third of the cases.

In our second benchmark set (which we will refer to as
NR-BENCHS) we have used integer abstractions of 217
numerical algorithms from [46]. For each procedure and for
each array access in it, we have created two safety problems
with one assertion each, expressing that the index is within
bounds. In some few cases the soundness of array accesses in
the original program depends on properties of floating-point
variables, which are abstracted away. So in the corresponding
abstraction some assertions may not hold. Altogether, the
resulting benchmark suite consists of 6452 problems, of up to
284 lines of C code. Due to the size of this set, and to give
more room to exploit parallelism (both tools with which we
compare on these benchmarks, CPAchecker and SeaHorn,
make use of several cores), we performed the experiments with
a more powerful machine, namely, an 8-core Intel i7 3.4 GHz
CPU with 16 GB of memory. The time limit is 300 seconds.

The results can be seen in Tab. II. On these instances,
VeryMax is able to prove more assertions than any of the
other tools, while being about as fast as SeaHorn, and
significantly faster than CPAchecker. Note that many examples
are solved very quickly in the sequential solver already,
and thus do not profit from our parallelization. VeryMax
is at an early stage of development, and is hence not yet
fully tuned. For example, a number of program slicing
techniques have not been implemented yet, which would be
very useful for handling larger programs. Thus, we expect
that further development will improve the tool performance
significantly. The benchmarks and our tool can be found at
http://www.cs.upc.edu/∼albert/VeryMax.html.

VII. CONCLUSION

We have presented a novel approach to compositional safety
verification. Our main contribution is a proof framework that
refines intermediate results produced by a Max-SMT-based
precondition synthesis procedure. In contrast to most earlier
work, we proceed bottom-up to compute summaries of code
that are guaranteed to be relevant for the proof.

We plan to further extend VeryMax to cover more program
features and include standard optimizations (e.g., slicing
and constraint propagation with simple abstract domains). It
currently handles procedure calls by inlining, and does not
support recursive functions yet. However, they can be handled
by introducing templates for function pre/postconditions.

In the future, we are interested in experimenting with
alternative precondition synthesis methods (e.g., abduction-
based ones). We also want to combine our method with a
Max-SMT-based termination proving method [12] and extend
it to existential properties such as reachability and non-
termination [5]. We expect to combine all of these techniques
in an alternating procedure [1] that tries to prove properties at



Tool Safe Σ s Fail Σ s TO Total s
CPAchecker sv-comp15 33 2424.41 3 61.28 10 4489.73
CPAchecker predicateAnalysis 25 503.05 11 19.72 10 2271.12
SeaHorn 32 7.95 13 3.477 1 211.56
HOLA 43 23.53 0 0 3 623.53
VeryMax-Seq 44 293.14 2 50.69 0 343.83
VeryMax-Par 45 138.40 1 12.81 0 151.21

TABLE I
EXPERIMENTAL RESULTS ON HOLA-BENCHS BENCHMARK SET.

Tool Safe Σ s Unsafe Σ s Fail Σ s TO Total s
CPAchecker sv-comp15 5570 614803.98 251 6188.30 326 28749.78 305 735336.82
CPAchecker predicateAnalysis 5928 23417.15 170 495.13 234 9105.69 120 64652.29
SeaHorn 6077 4276.21 233 135.25 80 529.09 62 24167.11
VeryMax-Seq 6105 5940.88 0 0 326 26739.30 21 38980.80
VeryMax-Par 6106 4789.73 0 0 346 18878.42 0 23668.15

TABLE II
EXPERIMENTAL RESULTS ON NR-BENCHS BENCHMARK SET.

the same time as their duals, and which uses partial proofs to
narrow the state space that remains to be considered. Eventually,
these methods could be combined to verify arbitrary temporal
properties. In another direction, we want to consider more
expressive theories to model program features such as arrays
or the heap.
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[37] A. Miné, “The octagon abstract domain,” Higher-Order and Symbolic
Computation, vol. 19, no. 1, 2006.

[38] R. Jhala and K. L. McMillan, “A practical and complete approach to
predicate refinement,” in TACAS, 2006.

[39] R. Sharma, A. V. Nori, and A. Aiken, “Interpolants as classifiers,” in
CAV, 2012.

[40] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K.
Rajamani, “SYNERGY: a new algorithm for property checking,” in FSE,
2006.

[41] B. S. Gulavani and S. K. Rajamani, “Counterexample driven refinement
for abstract interpretation,” in TACAS, 2006.

[42] I. Dillig, T. Dillig, and A. Aiken, “Automated error diagnosis using
abductive inference,” in PLDI, 2012.

[43] D. Beyer, “Software verification and verifiable witnesses - (report on
SV-COMP 2015),” in TACAS, 2015.

[44] D. Beyer and M. E. Keremoglu, “CPAchecker: A tool for configurable
software verification,” in CAV, 2011.

[45] T. Kahsai, J. A. Navas, A. Gurfinkel, and A. Komuravelli, “The SeaHorn
verification framework,” in CAV, 2015.

[46] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C++ (2Nd Ed.): The Art of Scientific Computing.
New York, NY, USA: Cambridge University Press, 2002.



APPENDIX A
PROOFS

Proof of Thm. 1. That Q is a conditional inductive invariant
follows directly from the structure of the generated constraints,
which are (modulo renaming) also discussed in [8].

We prove the claim about conditional safety by contradiction
via induction over the length of evaluations. Assume that there
is an unsafe execution

(`1,v1)→t1 (`2,v2)→t2 . . .→tn (`n,vn)

of length n ∈ N>1 such that t1 ∈ EC ∪ C (i.e., `2 is always
a location in C), tn = texit, v2 |= Q(`2) and vn 6|= ϕ. We
will show that no such evaluation can exist, implying our
proposition as the special case t1 ∈ EC .

As the component graph is a DAG, t1 ∈ EC ∪ C and texit is
an exit transition of C, we have ti ∈ C for all 1 < i < n.

We first consider the case n = 2 (n = 1 would be the
case where t1 is both an entry and exit transition, and thus
infeasible). Let t2 = (`1, τ2, `2). Then, v2 |= Q(`2) ≡ σ(I`2,k)
by choice and definition, and σ(I`2,k)∧ τ2 ⇒ ϕ′ by constraint
Sk. Thus, no unsafe evaluation of length 2 is possible.

We now assume n > 2 and that the proposition has been
proven for evaluations of length n − 1. Let t2 = (`2, τ2, `3).
For length n, we have that the valuations v2, v3 satisfy τ2,
and v2 |= Q(`2) ≡ σ(I`2,k). These are the premises of our
consecution constraint Ct2,k ≡ I`2,k ∧ τ2 ⇒ I`3,k, and thus
v3 |= σ(I`3,k) ≡ Q(`3). Hence, we instead have to consider
the evaluation of length n− 1 starting in (`2,v2), which by
our hypothesis is infeasible.

Proof of Thm. 2. We prove the proposition by induction over
the number u of recursive calls of CheckSafe.

In the base case u = 0, we have that τexit ⇒ ϕ′, i.e.,
the condition to prove is always a consequence of using the
transition texit, and the claim trivially holds.

Let now u > 0, and we assume that the proposition has
been shown for all calls of CheckSafe that return Safe and
need at most u− 1 recursive calls of CheckSafe.

We now consider a program evaluation

(`0,v0)→t0 . . .→tm−1 (`m,vm)→tm . . .→tn (`n,vn)

with tm−1 ∈ EC and tn = texit.
First, we consider the case that CheckSafe returns Safe

in line 11, where all preconditions are satisfied for all entry
transitions. By the condition ∀L ∈ Q(`m). res[tm−1, L] =
Safe and our induction hypothesis, we know that the program
is safe for (tm−1,Q(`m)). By construction of Q and Thm. 1,
this then implies that the program is safe for (texit, ϕ).

The second case is returning the result of CheckSafe on the
narrowed program in lines 19 and 20. For this, we need to
prove that our program narrowing is indeed correct. Assume
now that the considered evaluation is unsafe, i.e., that vn 6|= ϕ.
We will show that our narrowing preserves unsafe evaluations.
Then, as the recursive call of CheckSafe (with recursion depth
u− 1) is correct by our induction hypothesis, we can conclude
that Safe is only returned if there are no unsafe evaluations.

We first consider the narrowing ÊC . By our induction hy-
pothesis, we know that vm |= (

∧
L∈Q(`m),res[tm−1,L]=Safe L

′)
holds. Now assume that the narrowed version of tm−1 is
not enabled anymore because of the added condition. Then
vm 6|= ¬(

∧
L∈Q(`m),res[tm−1,L]=Maybe L

′) holds, and thus
vm |=

∧
L∈Q(`m) L

′. But then, our evaluation is safe (by the
same argument as in the proof of Thm. 1), contradicting our
assumption that the considered evaluation is unsafe. Thus,
unsafe evaluations are not broken by our narrowing of entry
transitions.

Similarly, we now consider the narrowing Ĉ. We consider
an evaluation step (`w,vw) →tw (`w+1,vw+1) with tw ∈
Ĉ. If the narrowed version t̂w ∈ Ĉ of tw cannot be used,
then either vw |= Q(`w) or vw+1 |= Q(`w+1) holds, and
again, by an argument similar to the proof of Thm. 1, this
contradicts the assumption that our evaluation is unsafe. Thus,
unsafe evaluations are preserved by narrowing of the program
component.

APPENDIX B
CHOICE OF WEIGHTS IN THE MAX-SMT FORMULATION

In VeryMax, all weights for the initiation conditions are
currently the same. Choosing different weights would bias the
solver towards satisfying certain initiation conditions. Weights
play a crucial role in VeryMax to favor invariants that imply
postconditions over ones that disable transitions (cf. Sect. IV-C-
a). The chosen MaxSMT framework also allows adding other
techniques with lower weights, e.g. the techniques from [5]
that strengthen single program transitions during the analysis.


