
Higher-Order Orderings for Normal Rewriting

Jean-Pierre Jouannaud1? and Albert Rubio2??

1 LIX, École Polytechnique, 91400 Palaiseau, France
2 Technical University of Catalonia, Pau Gargallo 5, 08028 Barcelona, Spain

Abstract. We extend the termination proof methods based on reduction order-
ings to higher-order rewriting systems à la Nipkow using higher-order pattern
matching for firing rules, and accommodate for any use of eta, as a reduction,
as an expansion or as an equation. As a main novelty, we provide with a mech-
anism for transforming any reduction ordering including beta-reduction, such as
the higher-order recursive path ordering, into a reduction ordering for proving
termination of rewriting à la Nipkow. Non-trivial examples are carried out.

1 Introduction

Rewrite rules are used in logical systems to describe computations over
lambda-terms used as a suitable abstract syntax for encoding functional
objects like programs or specifications. This approach was pioneered in
this context by Nipkow [18] and is available in Isabelle [21]. Its main
feature is the use of higher-order pattern matching for firing rules. A
recent generalization of Nipkow’s setting allows one for rewrite rules of
polymorphic, higher-order type [15], see also [10]. Besides, it is shown
that using the η-rule as an expansion [20] or as a reduction [15] yields
very similar confluence checks based on higher-order critical pairs.

A first contribution of this paper is a general setting for addressing
termination of all variants of higher-order rewriting à la Nipkow, thanks
to the notion of a normal higher-order reduction ordering. While higher-
order reduction orderings actually include βη-reductions, normal higher-
order reduction orderings must be compatible with βη-equality since
higher-order rewriting operates on βη-equivalence classes of terms. This
is done by computing with βη-normal forms as inputs. Since this may
destroy stability under substitution, it becomes necessary to use higher-
order reduction orderings enjoying a stronger stability property. Restrict-
ing the higher-order recursive path ordering [12] to achieve this property
is our second contribution. Finally, the obtained ordering is used inside a
? Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS,

École Polytechnique, INRIA, Université Paris-Sud.
?? Project LogicTools (TIN2004-03382) of the Spanish Min. of Educ. and Science

powerful schema transforming an arbitrary higher-order reduction order-
ing satisfying the stronger stability property into a normal higher-order
reduction ordering. This is our third contribution. The obtained ordering
allows us to prove all standard examples of higher-order rules processing
abstract syntax.

We describe our framework for terms in Section 2, and for higher-
order rewriting in Section 3. The schema is introduced and studied in
Section 4. The restricted higher-order recursive path ordering is given in
Section 5. Two complex examples are carried out in Section 6. Signifi-
cance of the results is briefly discussed in Section 7.

Readers are assumed familiar with the basics of term rewriting [9,
16] and typed lambda calculi [4, 5]. Most ideas presented here originate
from [14], an unpublished preliminary draft. A full version is [13].

2 Higher-Order Algebras

Rewrite rules of polymorphic higher type are our target. To define them
precisely, we need to recall the framework of higher-order algebras [12].
We will consider the non-polymorphic case for simplicity. The general
case of polymorphic higher-order rewrite rules is carried out in [13].

2.1 Types

Given a set S of sort symbols of a fixed arity, denoted by s : ∗n → ∗, the
set of types is generated by the constructor→ for functional types:

TS := s(T n
S) | (TS → TS) for s : ∗n → ∗ ∈ S

Types are functional when headed by the → symbol, and data types
otherwise.→ associates to the right. We use σ, τ, ρ, θ for arbitrary types.
The type σ = τ1 → . . .→ τn → τ , τ not functional, has arity ar(σ) = n.

2.2 Signatures

Function symbols are meant to be algebraic operators equipped with a
fixed number n of arguments (called the arity) of respective types σ1 ∈
TS , . . . , σn ∈ TS , and an output type σ ∈ TS . Let

F =
⊎

σ1,...,σn,σ

Fσ1×...×σn→σ

The membership of a given function symbol f to Fσ1×...×σn→σ is called
a type declaration and written f : σ1× . . .× σn → σ. A type declaration
is first-order if it uses only sorts, and higher-order otherwise.

2

2.3 Terms

The set T (F ,X) of raw algebraic λ-terms is generated from the signa-
ture F and a denumerable set X of variables according to the grammar:

T := X | (λX : TS .T) | @(T , T) | F(T , . . . , T).

The raw term λx : σ.u is an abstraction and @(u, v) is an application. We
may omit σ in λx : σ.u and write @(u, v1, . . . , vn) or u(v1, . . . , vn), n >
0, omitting applications. The raw term @(u, v) is a (partial) left-flattening
u being possibly an application. Var(t) is the set of free variables of t.
A term t is ground if Var(t) = ∅. The notation s shall be ambiguously
used to for a list, a multiset, or a set of raw terms s1, . . . , sn.

Raw terms are identified with finite labeled trees by considering λx :
σ.u, for each variable x and type σ, as a unary function symbol taking
u as argument to construct the raw term λx : σ.u. Positions are strings
of positive integers. Λ and · denote respectively the empty string (root
position) and string concatenation. Pos(t) is the set of positions in t. t|p
denotes the subterm of t at position p. We use t � t|p for the subterm
relationship. The result of replacing t|p at position p in t by u is written
t[u]p. A raw term t[x : σ]p with a hole of type σ at position p is a context.

Given a binary relation −→ on raw terms, a raw term s such that
s|p−→ t for some position p ∈ Pos(s) is called reducible. Irreducible
raw terms are in normal form. A raw term s is strongly normalizable
if there is no infinite sequence of −→-steps issuing from s. The rela-
tion −→ is strongly normalizing, or terminating or well-founded, if all
raw terms are strongly normalizable. We denote by←→ the symmetric
closure of the relation −→, by ∗−→ its reflexive, transitive closure, and

by ∗←→ its reflexive, symmetric, transitive closure. The relation −→ is
confluent (resp. Church-Rosser) if s−→∗ u and s−→∗ v (resp. u←→∗ v)
implies u−→∗ t and v−→∗ t for some t.

2.4 Typing rules

Definition 1. An environment Γ is a finite set of pairs written as {x1 :
σ1, . . . , xn : σn}, where xi is a variable, σi is a type, and xi 6= xj for
i 6= j. Var(Γ) = {x1, . . . , xn} is the set of variables of Γ . Given two
environments Γ and Γ ′, their composition is the environment Γ · Γ ′ =
Γ ′ ∪ {x : σ ∈ Γ | x 6∈ Var(Γ ′)}. Two environments Γ and Γ ′ are
compatible if Γ · Γ ′ = Γ ∪ Γ ′.

3

Our typing judgements are written as Γ `F s : σ. A raw term s has type
σ in the environment Γ if the judgement Γ `F s : σ is provable in our
inference system given at Figure 1. Given an environment Γ , a raw term
s is typable if there exists a type σ such that Γ `F s : σ. Typable raw
terms are called terms. An important property of our simple type system
is that a raw term typable in a given environment has a unique type.

Variables:
x : σ ∈ Γ

Γ F̀ x : σ

Functions:
f : σ1 × . . .× σn → σ ∈ F

Γ F̀ t1 : σ1 . . . Γ F̀ tn : σn

Γ F̀ f(t1, . . . , tn) : σ

Abstraction:
Γ · {x : σ} F̀ t : τ

Γ F̀ (λx : σ.t) : σ → τ

Application:
Γ F̀ s : σ → τ Γ F̀ t : σ

Γ F̀ @(s, t) : τ

Fig. 1. The type system for monomorphic higher-order algebras

Because variables are typed, they must be replaced by typable terms:

Definition 2. A substitution γ = {(x1 : σ1) 7→ (Γ1, t1), . . . , (xn : σn) 7→
(Γn, tn)}, is a finite set of quadruples made of a variable symbol, a type,
an environment and a term, such that

(i) ∀i ∈ [1..n], ti 6= xi and Γi `F ti : σi,
(ii) ∀i 6= j ∈ [1..n], xi 6= xj , and
(iii) ∀i 6= j ∈ [1..n], Γi and Γj are compatible environments.

We may omit the type σi and environment Γi in (xi : σi) 7→ (Γi, ti).
The set of (input) variables of γ is Var(γ) = {x1, . . . , xn}, its domain is
the environment Dom(γ) = {x1 : σ1, . . . , xn : σn} while its range is the
environmentRan(γ) =

⋃
i∈[1..n] Γi.

Definition 3. A substitution γ is compatible with the judgement Γ F̀ s :
σ (or simply, with Γ) if (i) Dom(γ) is compatible with Γ , and
(ii)Ran(γ) is compatible with Γ \ Dom(γ).

A substitution γ compatible with a judgement Γ `F s : σ operates
classically as an endomorphism on s, resulting in a term denoted by sγ.

Lemma 1. Given a signature F and a substitution γ compatible with the
judgement Γ `F s : σ, then Γ · Ran(γ) `F sγ : σ.

4

2.5 Conversions

We consider α-convertible terms as identical, and hence α-conversions
are omitted. The congruence generated by the β- and η-equalities
(λx.u, v) =β u{x 7→ v} λx.@(u, x) =η u if x 6∈ Var(u)
is written =βη. An important property, subject reduction, is that typable
terms u, v such that u =βη v have the same type. Both equalities can
be oriented as rewrite rules. There are two possible choices for rewriting
with η, either as a reduction or as an expansion, in which case termi-
nation is ensured by restricting its use to positions other than the first
argument of an application. Typed lambda-calculi have all termination
and confluence properties one may need, with respect to: βη-reductions;
β-reductions and η-expansions; β-reductions modulo η-equality. Using
the notations u−→β v for one β-rewrite step, u−→∗

β v for its transitive
closure, u ↓β (u↓ for short) for the β-normal form of u, and ←→∗

η or
=η for η-equality, the Church-Rosser property of β-reductions modulo
η-equality for typable terms can be phrased as

s =βη t iff s↓β=η t↓β

3 Normal Higher-Order Rewriting of Higher Type

Normal higher-order rewriting [20, 18] allows defining computations on
λ-terms used as a suitable abstract syntax for encoding functional objects
like programs or specifications. Nipkow’s framework assumes that rules
are of basic type, and that left-hand sides of rules are patterns in the sense
of Miller [19], assumptions which are not made here, nor in [15].

Nipkow’s normal higher-order rewriting uses βη-equalities in two dif-
ferent ways: given a term s to be rewritten with a set R of rules, s is first
normalized, using η-expanded β-normal forms, before to be searched for
left-hand sides of rules in R via higher-order pattern matching, that is,
matching modulo =βη. In this section, we define higher-order rewriting
so as to capture the different ways in which a term can be βη-normalized
before pattern matching its subterm with a left-hand side of rule.

Definition 4. A normal rewrite rule is a rewrite rule Γ ` l → r : σ
such that l and r are higher-order terms in β-normal form satisfying
Γ `F l : σ and Γ `F r : σ. A normal term rewriting system is a set of
normal rewrite rules.

Given a normal term rewriting system R, an environment Γ , two β-
normal terms s and t, and a type σ such that Γ `F s : σ, we say that s

5

rewrites to t at position p with the normal rule Γi ` li → ri : σi and the
term substitution γ, written Γ ` s−→p

Rβη
t, or s−→p

Rβη
t assuming the

environment Γ , if the following conditions hold:

(i) Dom(γ) ⊆ Γi (iii) s|p =βη liγ
(ii) Γi · Ran(γ) ⊆ Γs|p (iv) t =η s[riγ]p↓β

where Γs|p is the environment of the judgement Γs|p F̀ s|p : σi, obtained
as a subterm of the proof of the judgement Γ `F s : σ.

Note that t is any term in the η-equivalence class of s[riγ]p↓β . Higher-
order rewriting is therefore defined up to η-equivalence of target terms.
By providing a method for proving termination of this relation, we do
provide a termination method for all variants of higher-order rewriting
based on higher-order pattern matching. A key observation is this:

Lemma 2. Assume Γ `F s : σ and Γ ` s→Rβη
t. Then Γ `F t : σ.

Example 1. We present here an encoding of symbolic derivation in which
functions are represented by λ-terms of a functional type. We give two
typical rules of higher type. Both rules have the same environment Γ =
{F : real→ real}, and x, y stand for real values. Let S = {real}, and

F = { sin, cos : real→ real; diff : (real→ real)→ real→ real
+,× : (real→ real)→ (real→ real)→ real→ real}

diff(λx. sin(@(F, x)))→ λx. cos(@(F, x))× diff(λx.@(F, x))
diff(λx.@(F, x)× λy.@(F, y))→ (diff(λx.@(F, x))× λy.@(F, y))+

(λx.@(F, x)× diff(λy.@(F, y)))

This example makes sense when using normal higher-order rewriting,
because using plain pattern matching instead would not allow to compute
the derivative of all expressions: diff(λx.sin(x)) =β diff(λx.sin((λy.y) x))
does require higher-order pattern matching. We shall give a mechanical
termination proof of both rules in Section 5.

3.1 Normal Higher-Order Reduction Orderings

We shall use well-founded relations for proving strong normalization
properties. For our purpose, these relations may not be transitive, but
their transitive closures will be well-founded orderings, justifying some
abuse of terminology. Reduction orderings operating on judgements turn

6

out to be an adequate tool for showing termination of normal rewrit-
ing. We consider two classes of reduction orderings called higher-order
reduction ordering when they include β-reductions and normal higher-
order reduction ordering when they are compatible with =βη.

Definition 5. A binary relation � on the set of judgements is

– coherent iff for all terms s, t such that (Γ `F s : σ) � (Γ `F t :
σ), and for all environment Γ ′ such that Γ and Γ ′ are compatible,
Γ ′ `F s : σ and Γ ′ `F t : σ, then (Γ ′ `F s : σ) � (Γ ′ `F t : σ);

– stable iff for all terms s, t such that (Γ ` F s : σ) � (Γ ` F t :
σ), and all substitution γ whose domain is compatible with Γ , then
(Γ · Ran(γ) `F sγ : σ) � (Γ · Ran(γ) `F tγ : σ);

– monotonic iff for all terms s, t and type σ such that (Γ `F s : σ) �
(Γ ` F t : σ), for all Γ ′ compatible with Γ and ground context
u[] such that Γ ′ ` F u[x : σ] : τ , then (Γ · Γ ′ ` F u[s] : τ) �
(Γ · Γ ′ `F u[t] : τ) (note the assumption that u[] is ground);

– normal-monotonic iff for all terms s and t such that (Γ `F s : σ) �
(Γ F̀ t : σ), for all Γ ′ compatible with Γ and for all ground context
u[] such that Γ ′ `F u[x : σ] : τ and u[s] is in β-normal form, then
(Γ · Γ ′ `F u[s] : τ) � (Γ · Γ ′ `F u[t] : τ);

– functional iff for all terms s, t such that (Γ F̀ s : σ−→β t : σ), then
(Γ `F s : σ) � (Γ `F t : σ);

– compatible iff for all terms s′, s, t, t′ such that (Γ `F s′ : σ =βη s :
σ), (Γ `F t : σ =βη t′ : σ) and (Γ `F s : σ) � (Γ `F t : σ) then
(Γ `F s′ : σ) � (Γ `F t′ : σ).

A higher-order reduction ordering � is a well-founded ordering of
the set of judgements satisfying coherence, stability, monotonicity and
functionality.

A normal higher-order reduction ordering �n is a well-founded or-
dering of the set of judgements satisfying coherence, stability, normal-
monotonicity and compatibility.

Let us show that no ordering � can satisfy monotonicity, stability,
compatibility and well-foundedness, therefore explaining the need for
the weaker notion of normal-monotonicity. Assume s : σ � t : σ
(omitting judgements), where s : σ is in β-normal form. Consider the
term λy.a : σ → τ where a : τ is a constant. Then, by monotonicity,
@(λy.a, s) : τ � @(λy.a, t) : τ and by compatibility, a : τ � a : τ , con-
tradicting well-foundedness. Normal-monotonicity removes the problem

7

since @(λy.a, s) is not in β-normal form. As a consequence, we cannot
have @(X, s) � @(X, t) when s � t, but only @(X, s) = @(X, t).

Theorem 1. Let R = {Γi ` li → ri : σi}i be a higher-order rewrite
system and� a normal higher-order reduction ordering s.t. (Γi F̀ li) �
(Γi `F ri) ∀i. Then the relation −→Rβη

is strongly normalizing.

Proof. Without loss of generality, let s be a ground normal term such
that Γ `F s

p−→
Γi ` li→ri:σi

t. By definition 4, t is a ground normal term. It

therefore suffices to show that Γ F̀ s � t, which we proceed to do now.
By assumption, Γi F̀ li � ri. By stability, Γi ·Ran(γ) F̀ liγ � riγ,
therefore, by coherence, Γs|p `F liγ � riγ. By definition, s|p =βη liγ,
hence, by compatibility, Γs|p ` F s|p � riγ. By monotonicity of �
for normal ground terms (of equal type), Γs|p · Γ `F s � s[riγ]p. By
coherence Γ `F s � s[riγ]p, hence Γ `F s � t by compatibility. 2

By lemma 2, higher-order rewriting can be seen as a type preserv-
ing relation on terms in a given environment Γ typing the term originat-
ing the sequence of rewrites. We can therefore simplify our notations by
omitting the typing judgements unless they are really necessary.

4 Building Normal Higher-Order Reduction Orderings

In this section, we assume given a new function symbol ⊥σ for every
type σ and a function fnew for some of the function symbols in F . We
denote by Fnew the augmented signature. We write ⊥σ for ⊥σ(). The
higher-order rules we want to prove terminating are built from terms in
T (F ,X), not in T (Fnew,X). We successively introduce neutralization,
and the neutralized ordering schema. Neutralization replaces a term of
functional type by its application to a term headed by a ⊥-operator seen
as a container for its arguments. Neutralizing an abstraction creates a
redex which will be later eliminated by a β-normalization step.

Definition 6. The neutralization of level i (i-neutralization in short) of a
term t : τ ∈ T (Fnew,X) w.r.t. a list of (typable) terms 〈u1 : θ1, . . . , un :
θn〉 in T (Fnew,X), is the term Ni(t, 〈u1, . . . , un〉) defined as follows:

1. N0(t, 〈u1, . . . , un〉) = t;
2. Ni+1(t, 〈u1, . . . , un〉) = t if τ is a data type;
3. Ni+1(t, 〈u1, . . . , un〉) =
Ni(@(t,⊥θ1→...→θn→σ(u1, . . . , un)), 〈u1, . . . , un〉) if τ = σ → ρ.

8

From now one, we shall very precisely control for each function sym-
bol which of its arguments of a functional type are neutralized:

Definition 7. A signature F is neutralized if each symbol f : σ1 × . . .×
σn → σ ∈ F comes along with, for each argument position j ∈ [1..n]:

– a natural number Lj
f ≤ ar(σj), called neutralization level of f at

position j. We call neutralized those positions j for which Lj
f > 0.

– a subset Aj
f ⊆ [1..n] of argument positions of f used to filter out the

list t of arguments of f by defining t
j
f = 〈tk | k ∈ Aj

f〉.

The role of full neutralization is to neutralize terms of functional type
recursively from arguments of function symbols up to a given depth de-
pending on the function symbol itself and its selected argument. This will
allow us to eventually eliminate undesirable abstractions. This huge flex-
ibility provided by levels and argument positions allows us to tune our
coming normal higher-order ordering and carry out difficult and impor-
tant examples taken from the literature. In most of them, the chosen level
is 1, implying that neutralization applies to the top of the arguments only,
and the set of argument positions is empty, implying that⊥ is a constant.

To neutralize terms recursively, we need to introduce new function
symbols in the signature : for every declaration f : σ1 × . . . × σn →
σ, we assume given a new symbol fnew : σ′1 × . . . × σ′n → σ whose
type declaration depends upon the neutralization level of its argument
positions: if σi = τ1 → . . . → τk → τ and Li

f = q ≤ k, then σ′i =
τq+1 → . . .→ τk → τ .

Definition 8. The full neutralization of a term t is the term FN (t) s.t.

1. if t ∈ X , then FN (t) = t;
2. if t = λx.u, then FN (t) = λx.FN (u);
3. if t = @(t1, t2), then FN (t) = @(FN (t1),FN (t2));
4. if t = f(t1, . . . , tn) with f ∈ F , then
FN (t) = fnew(NL1

f
(FN (t1), t

1
f), . . . ,NLn

f
(FN (tn), t

n
f)).

Our definition makes sense since, in all cases, FN (t) is typable with
the same type as t. Note also that using Case 3 repeatedly for flattened
applications yields FN (@(t1, . . . , tn)) = @(FN (t1), . . . ,FN (tn)).

Example 1 (continued). We show here the full neutralization of the left-
hand and right-hand of the rules of Example 1 after β-normalizing. To

9

this end, we choose a neutralization level for each function symbol and
argument position. The associated subsets of argument positions are all
chosen empty. As a consequence, ⊥real is a constant abbreviated as ⊥.

L1
diff = 1 L1

sin = 0 L1
cos = 0

A1
diff = {} A1

sin = {} A1
cos = {}

L1
× = 1 L2

× = 1 L1
+ = 1 L2

+ = 1
A1
× = {} A2

× = {} A1
+ = {} A2

+ = {}

We now compute the β-normalization of the full neutralization of both sides of the first
rule:

FN (diff (λx. sin(@(F, x))))↓
= diffnew (sin(@(F,⊥)))

FN (λx. cos(@(F, x)) × diff (λx.@(F, x)))↓
= cos(@(F,⊥)) ×new @(diffnew (@(F,⊥)) ,⊥)

and of both sides of the second rule:

FN (diff (λx.@(F, x) × λy.@(F, y)))↓
= diffnew (@(@(F,⊥) ×new @(F,⊥) ,⊥))

FN ((diff(λx.@(F, x))× λy.@(F, y))+(λx.@(F, x)× diff(λy.@(F, y))))↓=
@(@(diffnew(@(F,⊥)),⊥)×new@(F,⊥),⊥)+new@(@(F,⊥)×new@(diffnew(@(F,⊥)),⊥),⊥)

Definition 9. Given a neutralized signature, two typable terms s, t and a
higher-order ordering �, we define the neutralized ordering �n as:

s �n t if and only if FN (s)↓� FN (t)↓

Note that normalization applies after neutralization: we will actually see
that these two operations commute, therefore implying compatibility of
�n. Well-foundedness follows from well-foundedness of�. Stability and
normal-monotonicity depend upon the particular ordering � used in the
construction, which must satisfy two stronger properties:

Definition 10. An ordering � on higher-order terms satisfies
(i) schema-stability if for all βη-normal terms s, t and substitutions γ,

s � t implies tγ−→∗
βη t′γ for some term t′ such that sγ↓� t′γ.

(ii) schema-monotonicity if for all βη-normal terms λx.v : σ → ρ �
t : σ → ρ, and for all sequences of βη-normal terms 〈u1, . . . , un〉,
– if t = λx.w, then v{x 7→⊥σ(u1, . . . , un)}�w{x 7→⊥σ(u1, . . . , un)}
– otherwise, v{x 7→ ⊥σ(u1, . . . , un)} � @(t,⊥σ(u1, . . . , un)).

Theorem 2. Let � be a higher-order reduction ordering fulfiling the
schema-stability and schema-monotonicity properties. Then �n is a nor-
mal higher-order reduction ordering.

10

The proof of this theorem requires several preliminary technical lem-
mas stating properties of neutralization with respect to normalization,
before to start proving stability and normal-monotonicity of �n.

5 Normal Higher-Order Recursive Path Orderings

While the higher-order recursive path ordering satisfies schema-monoto-
nicity, it does not satisfy schema-stability. Fortunately, a simple natural
restriction suffices in case of an application on left (Cases 5 and 7 of the
coming definition). In order to ease the presentation, we present a simple
version of the (restricted) higher-order recursive path ordering, which
will be sufficient for all examples to come. We assume given:

1. a partition Mul]Lex of F and a quasi-ordering≥F on F , called the
precedence, such that >F is well-founded;

2. a quasi-ordering≥TS on types such that >TS is well-founded and pre-
serves the functional structure of functional types [12].

Because of type comparisons, the higher-order recursive path ordering
enjoys but a weak subterm property A used in its definition:

Definition 11. Given s : σ and t : τ, s �
rhorpo

t iff σ≥TSτ and

1. s = f(s) with f ∈ F , and u �
rhorpo

t for some u ∈ s

2. s = f(s) and t = g(t) with f >F g, and A
3. s = f(s) and t = g(t) with f =F g ∈Mul and s(�

rhorpo
)mult

4. s = f(s) and t = g(t) with f =F g ∈ Lex and s(�
rhorpo

)lext, and A

5. s = @(s1, s2), s1 is not of the form @(X, w) with X ∈ X and
u�rhorpot for some u ∈ {s1, s2}

6. s = f(s), @(t) is an arbitrary left-flattening of t, and A
7. s = @(s1, s2), s1 is not of the form @(X, w) with X ∈ X , @(t) is an

arbitrary left-flattening of t and {s1, s2} (�rhorpo)mul t
8. s = λx : α.u, t = λx : β.v, α=TSβ and u �

rhorpo
v

9. s = @(λx.u, v) and u{x 7→ v} �
rhorpo

t

where


s�rhorpo t iff s�rhorpo t or s =α t or

s = @(X, u), t = @(X, v) and u�rhorpo v
A = ∀v ∈ t s�rhorpo v or u�rhorpo v for some u ∈ s

11

Of course, making bound variables fit may need renaming in Case 8,
and as usual, �mul and �lex denote respectively the multiset and lexico-
graphic extensions of the relation �.

Theorem 3. (�rhorpo)
+ is a higher-order reduction ordering satisfying

schema-stability and schema-monotonicity.

The relation�rhorpo being non-transitive in general because of case 9,
taking its transitive closure is needed to make it into an ordering.

The property of being a higher-order reduction ordering is inherited
from the non-restricted version of the ordering, for which Cases 5 and 7
do not restrict the form of s1 [12]. Without this restriction, we run into the
aforementioned problem that any ordering satisfying monotonicity, com-
patibility and well-foundedness must violate stability. Note that the pairs
which cause this violation do not become incomparable in the (quasi-)
ordering: they are used to enrich its equality part.

Schema-monotonicity is straightforward, while schema-stability is by
induction on the term structure. As a consequence of Theorems 2 and 3:

Theorem 4. (�rhorpo)
∗
n is a normal higher-order reduction ordering.

We will approximate (�rhorpo)
∗
n by (�rhorpo)n in all coming examples.

As can be guessed, we need to define the precedence on the extended
signature. In practice, we always make ⊥σ-function symbols small.

Example 1 (end). Let diffnew >F {×new,+new, cos,⊥} and diffnew ∈ Mul.
First rule: s = diffnew(sin(@(F,⊥)))�rhorpo cos(@(F,⊥))×new@(diffnew(@(F,⊥)),⊥)
Applying first case 2, we recursively obtain two subgoals:
(i) s�rhorpo cos(@(F,⊥)) and (ii) s�rhorpo @(diffnew(@(F,⊥)),⊥).

(i): applying Case 2 yields s�rhorpo@(F,⊥) shown by Case 1 twice.
(ii): applying Case 6 generates two new subgoals
(iii) s�rhorpo diffnew(@(F,⊥)) , which holds by case 3, then case 1.
(iv) diffnew(sin(@(F,⊥)))�rhorpo⊥ , which holds by case 2.

Second rule: s = diffnew(@(@(F,⊥)×new @(F,⊥),⊥))�rhorpo

@(@(diffnew(@(F,⊥)),⊥)×new@(F,⊥),⊥)+new@(@(F,⊥)×new@(diffnew(@(F,⊥)),⊥),⊥)
Case 2 generates two subgoals:
(i) s�rhorpo @(@(diffnew(@(F,⊥)),⊥)×new @(F,⊥),⊥)

(ii) s�rhorpo @(@(F,⊥)×new @(diffnew(@(F,⊥)),⊥),⊥).
By Case 6, (i) generates two new subgoals:
(iii) s�rhorpo @(diffnew(@(F,⊥)),⊥)×new @(F,⊥) and (iv) s�rhorpo⊥.
The latter holds by case 1 and then case 5. By Case 2, (iii) yields two subgoals:
(v) s�rhorpo @(diffnew(@(F,⊥)),⊥) and (vi) s�rhorpo @(F,⊥).
By Case 6, (v) generates (vii) s�rhorpo diffnew(@(F,⊥)) and (viii) s�rhorpo⊥
(vii) is solved by Case 3, 5, and 1 successively, and (viii) is solved by cases 1 and 5.

12

6 Examples

We present two complex examples proven terminating with (�rhorpo)
∗
n.

For all of them, we give the necessary ingredients for computing the
appropriate neutralizations and comparisons. The precise computations
can be found in the full version of the paper available from the web. An
implementation is available for the original version of the ordering which
will be extended to the present one in a near future.

As a convention, missing neutralization levels are equal to 0, in which
case the corresponding subset of argument positions will be empty. In
all examples, we use a simple type ordering ≥TS equating all data types,
which satisfies the requirements given in Section 5. Precedence on func-
tion symbols and statuses will be given in full.

In all examples we write F (X) instead of @(F, X) to ease the reading.
Example 2. The coming encoding of first-order prenex normal forms is
adapted from [20], where its local confluence is proved via the com-
putation of its (higher-order) critical pairs. Formulas are represented as
λ-terms with sort form. The idea is that quantifiers are higher-order con-
structors binding a variable via the use of a functional argument.
S = {form}, F = { ∧,∨ : form× form→ form;¬ : form→ form;

∀,∃ : (form→ form)→ form}.

P ∧ ∀(λx.Q(x))→ ∀(λx.(P ∧Q(x)))
∀(λx.Q(x)) ∧ P → ∀(λx.(Q(x) ∧ P))
P ∨ ∀(λx.Q(x))→ ∀(λx.(P ∨Q(x)))
∀(λx.Q(x)) ∨ P → ∀(λx.(Q(x) ∨ P))
¬(∀(λx.Q(x)))→ ∃(λx.¬(Q(x)))

P ∧ ∃(λx.Q(x))→ ∃(λx.(P ∧Q(x)))
∃(λx.Q(x)) ∧ P → ∃(λx.(Q(x) ∧ P))
P ∨ ∃(λx.Q(x))→ ∃(λx.(P ∨Q(x)))
∃(λx.Q(x)) ∨ P → ∃(λx.(Q(x) ∨ P))
¬(∃(λx.Q(x)))→ ∀(λx.¬(Q(x)))

Ingredients for neutralization: L1
∀ = 1, L1

∃ = 1, A1
∀ = {}, A1

∃ = {}.
Precedence: ∧ >F {∀new,∃new}, ∨>F {∀new,∃new}, ¬ >F {∀new,∃new}.
Statuses: ∀new,∃new ∈ Mul 2

Example 3. Encoding of natural deduction, taken from [6].
Let S = {o, c : ∗×∗ → ∗}. Because we did not consider polymorphism,
the following signature and rules is parameterized by all possible types
σ, τ, ρ ∈ TS .

F = { appσ,τ : (σ → τ)× σ → τ ; absσ,τ : (σ → τ)→ (σ → τ);
Πσ,τ : σ × τ → c(σ, τ); Π0

σ,τ : c(σ, τ)→ σ; Π1
σ,τ : c(σ, τ)→ τ ;

∃+σ : o× σ → c(o, σ); ∃−σ,τ : c(o, σ)× (o→ σ → τ)→ τ }.

X = { X : σ; Y : τ ; Z : o; T : c(o, ρ), F : σ → τ ; G : o→ σ → τ,
H : o→ ρ→ (σ → τ), I : o→ ρ→ c(σ, τ), J : o→ ρ→ c(o, σ)}.

13

appσ,τ (absσ,τ (F), X)→ F (X)
Π0

σ,τ (Πσ,τ (X, Y))→ X
Π1

σ,τ (Πσ,τ (X, Y))→ Y
∃−σ,τ (∃+σ (Z,X), G)→ G(Z,X)

appσ,τ (∃−ρ,σ→τ (T,H), X)→ ∃−ρ,τ (T, λx : o y : ρ.appσ,τ (H(x, y), X))
Π0

σ,τ (∃−ρ,c(σ,τ)(T, I))→ ∃−ρ,τ (T, λx : o y : ρ.Π0
σ,τ (I(x, y)))

Π1
σ,τ (∃−ρ,c(σ,τ)(T, I))→ ∃−ρ,τ (T, λx : o y : ρ.Π1

σ,τ (I(x, y)))
∃−σ,τ (∃−ρ,c(o,σ)(T, J), G)→ ∃−ρ,τ (T, λx : o y : ρ.∃−σ,τ (J(x, y), G))

Neutralization:L2
∃−σ,τ

=2 and A2
∃−σ,τ

={1}for all possible types σ and τ .
Precedence: {appσ,τ , Π

0
σ,τ , Π

1
σ,τ} >F ∃−new ρ,τ and ∃−new ρ,τ = ∃−new σ,τ for

all possible types ρ, σ and τ .
Statuses: ∃−new σ,τ ∈ Lex and appσ,τ , Π

0
σ,τ , Π

1
σ,τ ∈ Mul for all ρ σ and τ ; 2

7 Conclusion

Proving termination properties of Nipkow’s rewriting was considered
in [8] and [2]. The former yields a methodology needing important user-
interaction to prove that the constructed ordering has the required prop-
erties. Here, our method does provide with an ordering having automat-
ically all desired properties. The user has to provide with a precedence
and statuses as usual with the recursive path ordering. He or she must also
provide with neutralization levels together with filters selecting appropri-
ate arguments for each function symbols. This requires of course some
expertise, but can be implemented by searching non-deterministically for
appropriate neutralization levels and filters, as done in many implemen-
tations of the recursive path ordering for the precedence and statuses.

The higher-order recursive path ordering generalizes the notion of
general schema as formulated in [3] where the notion of computabil-
ity closure was introduced. However, what can be done with the schema
can be done with the higher-order recursive path ordering when using the
computability closure of f(t) in the subterm case, instead of simply the
set of subterms t itself. The general definition of the higher-order recur-
sive path ordering with closure is given in [12]. It is however interesting
to notice that the neutralization mechanism is powerful enough so as to
dispense us with using the closure for all these complex examples taken
from the literature that we have considered here and in [13]. It remains to
be seen whether the closure plays in the context of normal higher-order
rewriting, a role as important as for proving termination of recursor rules

14

for inductive types for which plain pattern matching is used instead of
higher-order pattern matching.

References

1. F. Blanqui, J.-P. Jouannaud, and M. Okada. The Calculus of Algebraic Constructions. In
Narendran and Rusinowitch, Proc. RTA’99, 1999.

2. F. Blanqui. Termination and Confluence of Higher-Order Rewriting Systems. In Proc.
RTA’00, 2000.

3. F. Blanqui, J.-P. Jouannaud, and M. Okada. Inductive Data Type Systems. Theoretical
Computer Science, 272(1-2):41–68. 2002.

4. H. Barendregt. Functional Programming and Lambda Calculus. In [22], pages 321–364.
5. H. Barendregt. Handbook of Logic in Computer Science, chapter Typed lambda calculi.

Oxford Univ. Press, 1993. eds. Abramsky et al.
6. J. van de Pol. Termination of Higher-Order Rewrite Systems. PhD thesis, Department of

Philosophy, Utrecht University, 1996.
7. N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer Science,

17(3):279–301, March 1982.
8. J. van de Pol and H. Schwichtenberg. Strict functional for termination proofs. In Typed

Lambda Calculi and Applications, Edinburgh. Springer-Verlag, 1995.
9. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In [22], pages 321–364.

10. J.-P. Jouannaud. Higher-Order rewriting: Framework, Confluence and termination. In
A. Middeldorp, V. van Oostrom, F. van Raamsdonk and R. de Vrijer eds., Processes, Terms
and Cycles: Steps on the road to infinity. Essays Dedicated to Jan Willem Klop on the
occasion of his 60th Birthday. LNCS 3838. Springer Verlag, 2005.

11. J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In Giuseppe Longo,
editor, Fourteenth Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July
1999. IEEE Comp. Soc. Press.

12. J.-P. Jouannaud and A. Rubio. Polymorphic Higher-Order Recursive Path Orderings. 2005.
Submitted to JACM. http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud.

13. J.-P. Jouannaud and A. Rubio. Higher-Order Orderings for Normal Rewriting. 2005. Full
version. http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud.

14. J.-P. Jouannaud and A. Rubio. Higher-Order Recursive Path Orderings à la carte. 2001.
http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud.

15. J.-P. Jouannaud, F. van Raamsdonk and A. Rubio Higher-order rewriting with types and
arities. 2005. http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud.

16. J. W. Klop. Combinatory Reduction Relations. Mathematical Centre Tracts 127. Mathema-
tisch Centrum, Amsterdam, 1980.

17. J. W. Klop. Term Rewriting Systems. In S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum
eds., Handbook of Logic in Computer Science, vol. 2:2–116. Oxford University Press, 1992.

18. R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. Theoretical
Computer Science, 192(1):3–29, February 1998.

19. D. Miller. A Logic Programming Language with Lambda-Abstraction, Function Variables,
and Simple Unification. In Journal and Logic and Computation 1(4):497–536, 1991.

20. T. Nipkow. Higher-order critical pairs. In 6th IEEE Symp. on Logic in Computer Science,
pages 342–349. IEEE Computer Society Press, 1991.

21. L. C. Paulson. Isabelle: the next 700 theorem provers. In P. Odifreddi, editor, Logic and
Computer Science. Academic Press, 1990.

22. J. van Leeuwen, ed. Handbook of Theoretical Computer Science, vol. B. North-Holland,
1990.

15

