
1

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Program Analysis using SMT and MAX-SMT

Albert Rubio

joint work with

Daniel Larraz, Albert Oliveras, Enric Rodŕıguez-Carbonell

Universitat Politècnica de Catalunya

LOPSTR, September 2013

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

2

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Outline

1 Introduction

2 SMT/Max-SMT solving

3 Invariant generation

4 Termination analysis

5 Further work

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

3

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Outline

1 Introduction

2 SMT/Max-SMT solving

3 Invariant generation

4 Termination analysis

5 Further work

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

4

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Motivation

• Develop static analysis tools

• Fully automatic

• Efficient

• Scalable

• Take advantatge of the new powerful arithmetic constraint solvers.

SMT-solvers

Constraint Based Program Analyisis techniques

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

4

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Motivation

• Develop static analysis tools

• Fully automatic

• Efficient

• Scalable

• Take advantatge of the new powerful arithmetic constraint solvers.

SMT-solvers

Constraint Based Program Analyisis techniques

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

5

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Motivation

A particularly difficult verification problem:

• Prove termination of imperative programs automatically.

• Find ranking functions.

• Find supporting invariants.

• How to guide the search!.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

6

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Simple example

void simpleNT(int x, int y) {

while (y>0) {

while (x>0) {

x=x-y;

y=y-1;

}

y=y-1;

}

}

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

6

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Simple example

void simpleNT(int x, int y) {

while (y>0) {

while (x>0) {

x=x-y;

y=y-1;

}

y=y-1;

}

}

Does not terminate. For instance, with x=3 and y=1

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

6

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Simple example

void simpleT(int x, int y) {

while (y>0) {

while (x>0) {

x=x-y;

y=y+1;

}

y=y-1;

}

}

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

6

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Simple example

void simpleT(int x, int y) {

while (y>0) {

while (x>0) {

x=x-y;

y=y+1;

}

y=y-1;

}

}

Terminates.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

6

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Simple example

void simpleT(int x, int y) {

while (y>0) { Ranking function: y

// Inv: y>0

while (x>0) { Ranking function: x

x=x-y;

y=y+1;

}

y=y-1;

}

}

Terminates.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

7

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Goals

• Present the constraint-based invariant generation method introduced
by [Colón,Sankaranarayanan,Sipma 2003].

• Show how efficient SMT-solvers make it feasible in practice.

• Extend the method to generate Array invariants.

• Consider the termination problem within the constraint based method
as in [Bradley,Manna,Sipma 2005].

• Show how to make it feasible in practice using Max-SMT

optimization instead of satisfaction

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

8

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Outline

1 Introduction

2 SMT/Max-SMT solving

3 Invariant generation

4 Termination analysis

5 Further work

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

9

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = linear integer/real arithmetic.

(x < 0 ∨ x ≤ y ∨ y < z) ∧ (x ≥ 0) ∧ (x > y ∨ y < z)

{x = 1, y = 0, z = 2}

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

9

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = linear integer/real arithmetic.

(x < 0 ∨ x ≤ y ∨ y < z) ∧ (x ≥ 0) ∧ (x > y ∨ y < z)

{x = 1, y = 0, z = 2}

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

9

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = linear integer/real arithmetic.

(x < 0 ∨ x ≤ y ∨ y < z) ∧ (x ≥ 0) ∧ (x > y ∨ y < z)

{x = 1, y = 0, z = 2}

There exist very efficient solvers: yices, z3, Barcelogic, ...
Can handle large formulas with a complex boolean structure.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

9

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y 2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

9

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y 2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

9

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y 2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}

Non-linear arithmetic decidability:

• Integers: undecidable

• Reals: decidable but unpractical due to its complexity.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

9

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y 2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}

Non-linear arithmetic decidability:

• Integers: undecidable

• Reals: decidable but unpractical due to its complexity.

Incomplete solvers focused on either satisfiability or unsatisfiability.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

9

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y 2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}

Non-linear arithmetic decidability:

• Integers: undecidable

• Reals: decidable but unpractical due to its complexity.

Incomplete solvers focused on either satisfiability or unsatisfiability.

Need to handle again large formulas with complex boolean structure.

Barcelogic SMT-solver works very well finding solutions
Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

10

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Optimization problems

(Weighted) Max-SMT problem

Input: Given an SMT formula ϕ = C1 ∧ . . . ∧ Cm in CNF, where some of
the clauses are hard and the others soft with a weight.

Output: An assignment for the hard clauses that minimizes the sum of
the weights of the falsified soft clauses.

(x2 + y 2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z ∨ w(5)) ∧ . . .

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

11

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Outline

1 Introduction

2 SMT/Max-SMT solving

3 Invariant generation

4 Termination analysis

5 Further work

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

12

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Invariants

Definition

An invariant of a program at a location is an assertion over the program
variables that remains true whenever the location is reached.

Definition

An invariant is said to be inductive at a program location if:

• Initiation condition: It holds the first time the location is reached.

• Consecution condition: It is preserved under every cycle back to the
location.

We are focused on inductive invariants.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

12

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Invariants

Definition

An invariant of a program at a location is an assertion over the program
variables that remains true whenever the location is reached.

Definition

An invariant is said to be inductive at a program location if:

• Initiation condition: It holds the first time the location is reached.

• Consecution condition: It is preserved under every cycle back to the
location.

We are focused on inductive invariants.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

12

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Invariants

Definition

An invariant of a program at a location is an assertion over the program
variables that remains true whenever the location is reached.

Definition

An invariant is said to be inductive at a program location if:

• Initiation condition: It holds the first time the location is reached.

• Consecution condition: It is preserved under every cycle back to the
location.

We are focused on inductive invariants.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

13

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Constraint-based invariant generation

• Assume input programs consist of linear expressions

• Model the program as a transition system

Simple example:

int main()

{

int x;

int y=-x;

l1: while (x>=0) {

x--;

y--;

}

}

l1
Θ τ1

ρΘ : x ′ = x , y ′ = −x
ρτ1 : x ≥ 0, x ′ = x − 1, y ′ = y − 1

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

13

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Constraint-based invariant generation

• Assume input programs consist of linear expressions

• Model the program as a transition system

Simple example:

int main()

{

int x;

int y=-x;

l1: while (x>=0) {

x--;

y--;

}

}

l1
Θ τ1

ρΘ : x ′ = x , y ′ = −x
ρτ1 : x ≥ 0, x ′ = x − 1, y ′ = y − 1

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

14

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Constraint-based invariant generation

Assume we have a transition system with linear expressions.

Keys:

• Use a template for candidate invariants.

c1x1 + . . .+ cnxn + d ≤ 0

• Check initiation and consecution conditions obtaining an ∃∀ problem.

• Transform it using Farkas’ Lemma into an ∃ problem over non-linear
arithmetic.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

14

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Constraint-based invariant generation

Assume we have a transition system with linear expressions.

Keys:

• Use a template for candidate invariants.

c1x1 + . . .+ cnxn + d ≤ 0

• Check initiation and consecution conditions obtaining an ∃∀ problem.

• Transform it using Farkas’ Lemma into an ∃ problem over non-linear
arithmetic.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

14

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Constraint-based invariant generation

Assume we have a transition system with linear expressions.

Keys:

• Use a template for candidate invariants.

c1x1 + . . .+ cnxn + d ≤ 0

• Check initiation and consecution conditions obtaining an ∃∀ problem.

• Transform it using Farkas’ Lemma into an ∃ problem over non-linear
arithmetic.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

14

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Constraint-based invariant generation

Assume we have a transition system with linear expressions.

Keys:

• Use a template for candidate invariants.

c1x1 + . . .+ cnxn + d ≤ 0

• Check initiation and consecution conditions obtaining an ∃∀ problem.

• Transform it using Farkas’ Lemma into an ∃ problem over non-linear
arithmetic.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

14

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Constraint-based invariant generation

Assume we have a transition system with linear expressions.

Keys:

• Use a template for candidate invariants.

c1x1 + . . .+ cnxn + d ≤ 0

• Check initiation and consecution conditions obtaining an ∃∀ problem.

• Transform it using Farkas’ Lemma into an ∃ problem over non-linear
arithmetic.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

15

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Constraint-based invariant generation

Following the example

Template invariant I : c1x + c2y + d ≤ 0

Initiation: ρΘ |= I ′

Consecution: ρτ1 ∧ I |= I ′
l1

Θ τ1

ρΘ : x ′ = x , y ′ = −x
ρτ1 : x ≥ 0, x ′ = x − 1, y ′ = y − 1

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

15

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Constraint-based invariant generation

Following the example

Template invariant I : c1x + c2y + d ≤ 0

x ′ = x ∧ y ′ = −x |= c1x
′ + c2y

′ + d ≤ 0

Consecution: ρτ1 ∧ I |= I ′
l1

Θ τ1

ρΘ : x ′ = x , y ′ = −x
ρτ1 : x ≥ 0, x ′ = x − 1, y ′ = y − 1

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

16

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Constraint-based invariant generation

We need to solve: ∃c1, c2, d ∀x , y , x ′, y ′

Initiation:

x ′ = x ∧ y ′ = −x |= c1x ′ + c2y ′ + d ≤ 0

Consecution:

x ≥ 0∧x ′ = x − 1∧y ′ = y − 1∧c1x + c2y + d ≤ 0 |= c1x ′ + c2y ′ + d ≤ 0

Use Farkas’ Lemma to remove the universal quantifiers

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

17

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Farkas’ Lemma

Farkas’ Lemma:

(∀x)


a11x1 + · · ·+ a1nxn + b1 ≤ 0

...
...

... ≤ 0

am1x1 + · · ·+ amnxn + bm ≤ 0

⇒ ϕ : e1x1 + . . .+ enxn + e0 ≤ 0

⇔

∃λ0, λ1, . . . , λm ≥ 0,

e1 =
m∑
i=1

λiai1, . . . , en =
m∑
i=1

λiain, e0 = (
m∑
i=1

λibi)− λ0

or

0 =
m∑
i=1

λiai1, . . . , 0 =
m∑
i=1

λiain, 1 = (
m∑
i=1

λibi)− λ0

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

18

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Farkas’ Lemma

Farkas’ Lemma:

(∀x)


a11x1 + · · ·+ a1nxn + b1 ≤ 0

...
...

... ≤ 0

am1x1 + · · ·+ amnxn + bm ≤ 0

⇒ ϕ : e1x1 + . . .+ enxn + e0 ≤ 0

⇔ ∃λ0, λ1, . . . , λm ≥ 0,

λ0 ∗ −1 ≤ 0
λ1 ∗ a11 x1 + · · · + a1n xn + b1 ≤ 0

...
...

... ≤ 0
λm ∗ am1 x1 + · · · + amn xn + bm ≤ 0

e1 x1 + · · · + en xn + d ≤ 0
or

0 + · · · + 0 + 1 ≤ 0

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

18

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Farkas’ Lemma

Farkas’ Lemma:

(∀x)


a11x1 + · · ·+ a1nxn + b1 ≤ 0

...
...

... ≤ 0

am1x1 + · · ·+ amnxn + bm ≤ 0

⇒ ϕ : e1x1 + . . .+ enxn + e0 ≤ 0

⇔ ∃λ0, λ1, . . . , λm ≥ 0,

λ0 ∗ −1 ≤ 0
λ1 ∗ a11 x1 + · · · + a1n xn + b1 ≤ 0

...
...

... ≤ 0
λm ∗ am1 x1 + · · · + amn xn + bm ≤ 0

e1 x1 + · · · + en xn + d ≤ 0
or

0 + · · · + 0 + 1 ≤ 0

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

19

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Farkas’ Lemma

Farkas’ Lemma:

(∀x)


a11x1 + · · ·+ a1nxn + b1 ≤ 0

...
...

... ≤ 0

am1x1 + · · ·+ amnxn + bm ≤ 0

⇒ ϕ : e1x1 + . . .+ enxn + e0 ≤ 0

⇔ ∃λ0, λ1, . . . , λm ≥ 0,

x1 · · · xn
λ0 ∗ −1
λ1 ∗ a11 · · · a1n b1

...
...

...
λm ∗ am1 · · · amn bm

e1 · · · en d
or

0 · · · 0 1

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

19

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Farkas’ Lemma

Farkas’ Lemma:

(∀x)


a11x1 + · · ·+ a1nxn + b1 ≤ 0

...
...

... ≤ 0

am1x1 + · · ·+ amnxn + bm ≤ 0

⇒ ϕ : e1x1 + . . .+ enxn + e0 ≤ 0

⇔ ∃λ0, λ1, . . . , λm ≥ 0,

e1 =
m∑
i=1

λiai1, . . . , en =
m∑
i=1

λiain, e0 = (
m∑
i=1

λibi)− λ0

or

0 =
m∑
i=1

λiai1, . . . , 0 =
m∑
i=1

λiain, 1 = (
m∑
i=1

λibi)− λ0

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

20

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Farkas’ Lemma

Farkas’ Lemma: our example
Initiation condition: x ′ = x ∧ y ′ = −x |= c1x ′ + c2y ′ + d ≤ 0

(∀x , y , x ′, y ′)

− 1x + 0y + 1x ′ + 0y ′ + 0 ≤ 0

1x + 0y +−1x ′ + 0y ′ + 0 ≤ 0

⇒ 0x + 0y + c1x ′ + c2y ′ + d ≤ 0

⇔

∃λi0 ≥ 0, λi1 ≥ 0, λi2 ≥ 0, . . .

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

20

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Farkas’ Lemma

Farkas’ Lemma: our example
Initiation condition: x ′ − x = 0 ∧ y ′ + x = 0 |= c1x ′ + c2y ′ + d ≤ 0

(∀x , y , x ′, y ′)

[
− 1x + 0y + 1x ′ + 0y ′ + 0 = 0

]
⇒ 0x + 0y + c1x ′ + c2y ′ + d ≤ 0

⇔

∃λi0 ≥ 0, λi1, . . .

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

20

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Farkas’ Lemma

Farkas’ Lemma: our example
Initiation condition: x ′ − x = 0 ∧ y ′ + x = 0 |= c1x ′ + c2y ′ + d ≤ 0

(∀x , y , x ′, y ′)

[
− 1x + 0y + 1x ′ + 0y ′ + 0 = 0

1x + 0y + 0x ′ + 1y ′ + 0 = 0

]
⇒ 0x + 0y + c1x ′ + c2y ′ + d ≤ 0

⇔

∃λi0 ≥ 0, λi1, λ
i
2

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

20

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Farkas’ Lemma

Farkas’ Lemma: our example
Initiation condition: x ′ − x = 0 ∧ y ′ + x = 0 |= c1x ′ + c2y ′ + d ≤ 0

x y x ′ y ′

λi0 ∗ −1
λi1 ∗ −1 0 1 0 0
λi2 ∗ 1 0 0 1 0

0 0 c1 c2 d
or

0 0 0 0 1

⇔

∃λi0 ≥ 0, λi1, λ
i
2

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

20

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Farkas’ Lemma

Farkas’ Lemma: our example
Initiation condition: x ′ − x = 0 ∧ y ′ + x = 0 |= c1x ′ + c2y ′ + d ≤ 0

x y x ′ y ′

λi0 ∗ −1
λi1 ∗ −1 0 1 0 0
λi2 ∗ 1 0 0 1 0

0 0 c1 c2 d
or

0 0 0 0 1

⇔
∃λi0 ≥ 0, λi1, λ

i
2, c1, c2, d

0 = −λi1 + λi2, c1 = λi1, c2 = λi2, d = −λi0
or

0 = −λi1 + λi2, 0 = λi1, 0 = λi2, 1 = −λi0

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

21

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Farkas’ Lemma

Farkas’ Lemma: our example
Consecution condition:

x ≥ 0 ∧ x ′ = x − 1 ∧ y ′ = y − 1 ∧ c1x + c2y + d ≤ 0 |= c1x ′ + c2y ′ + d ≤ 0

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

21

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Farkas’ Lemma

Farkas’ Lemma: our example
Consecution condition:

−x ≤ 0∧x ′ − x + 1 = 0∧y ′ − y + 1 = 0∧c1x + c2y + d ≤ 0 |= c1x ′ + c2y ′ + d ≤ 0

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

21

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Farkas’ Lemma

Farkas’ Lemma: our example
Consecution condition:

−x ≤ 0∧x ′ − x + 1 = 0∧y ′ − y + 1 = 0∧c1x + c2y + d ≤ 0 |= c1x ′ + c2y ′ + d ≤ 0

x y x ′ y ′

λc0 ∗ −1
λc1 ∗ −1 0 0 0 0
λc2 ∗ −1 0 1 0 1
λc3 ∗ 0 −1 0 1 1
λc4 ∗ c1 c2 0 0 d

0 0 c1 c2 d
or

0 0 0 0 1

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

21

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Farkas’ Lemma

Farkas’ Lemma: our example
Consecution condition:

−x ≤ 0∧x ′ − x + 1 = 0∧y ′ − y + 1 = 0∧c1x + c2y + d ≤ 0 |= c1x ′ + c2y ′ + d ≤ 0

∃λc0 ≥ 0, λc1 ≥ 0, λc2, λ
c
3, λ

c
4 ≥ 0, c1, c2, d

0 = −λc1−λc2+λc4c1, 0 = −λc3+λc4c2, c1 = λc2, c2 = λc3, d = −λc0+λc2+λc3+λc4d

or

0 = −λc1−λc2 +λc4c1, 0 = −λc3 +λc4c2, 0 = λc2, 0 = λc3, 1 = −λc0 +λc2 +λc3 +λc4d

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

22

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Farkas’ Lemma

Farkas’ Lemma: our example

∃λi0 ≥ 0, λi1, λ
i
2, λ

c
0 ≥ 0, λc1 ≥ 0, λc2, λ

c
3, λ

c
4 ≥ 0, c1, c2, d

(0 = −λi1 + λi2, c1 = λi1, c2 = λi2, d = −λi0

or

0 = −λi1 + λi2, 0 = λi1, 0 = λi2, 1 = −λi0)

and

(0 = −λc1−λc2+λc4c1, 0 = −λc3+λc4c2, c1 = λc2, c2 = λc3, d = −λc0+λc2+λc3+λc4d

or

0 = −λc1−λc2+λc4c1, 0 = −λc3+λc4c2, 0 = λc2, 0 = λc3, 1 = −λc0+λc2+λc3+λc4d)

Solution: c1 = 1, c2 = 1, d = 0. Hence x + y ≤ 0 is invariant.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

23

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Invariant generation process

• Input: A C++ program

• Output: A set of independent invariants for some locations

Basic procedure:

• Template invariant: c1x + c2y + d ≤ 0

• Send the non-linear formula to Barcelogic

• Add the obtained invariant to the transition system

• Iterate or quit if no new invariant is obtained

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

24

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Invariant generation process

An Incremental algorithm producing non-redundant invariants:

• Let Inv be the set of already generated invariants.

• To avoid generation of redundant invariants add

∃x∃y(Inv ∧ c1x + c2y + d > 0)

Note that
• it is also existentially quantified
• it is also nonlinear arithmetic

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

25

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Invariant generation process

• Input: A C++ program

• Output: A set of independent invariants for some locations

Basic procedure:

• Template invariant: c1x + c2y + d ≤ 0

• Send the non-linear formula to Barcelogic

• Add the obtained invariant to the transition system

• Iterate or quit if no new invariant is obtained

This is what we do!

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

26

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Invariant generation with arrays

Goal:

• Discovering invariant properties on values of array elements and other
program variables.

• Focused on universally quantified array invariants.

• Using an automatic generation process.

However, most of the existing techniques need some guidance.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

26

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Invariant generation with arrays

Goal:

• Discovering invariant properties on values of array elements and other
program variables.

• Focused on universally quantified array invariants.

• Using an automatic generation process.

However, most of the existing techniques need some guidance.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

26

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Invariant generation with arrays

Goal:

• Discovering invariant properties on values of array elements and other
program variables.

• Focused on universally quantified array invariants.

• Using an automatic generation process.

However, most of the existing techniques need some guidance.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

26

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Invariant generation with arrays

Goal:

• Discovering invariant properties on values of array elements and other
program variables.

• Focused on universally quantified array invariants.

• Using an automatic generation process.

However, most of the existing techniques need some guidance.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

26

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Invariant generation with arrays

Goal:

• Discovering invariant properties on values of array elements and other
program variables.

• Focused on universally quantified array invariants.

• Using an automatic generation process.

However, most of the existing techniques need some guidance.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

27

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Examples

Palindrome array:

int main() {

const int N;

assume(N >= 0);

int A[N];

int i = 0;

while (i < N/2) {

if (A[i] != A[N-i-1])

break;

++i;

}

}

∀α : 0 ≤ α ≤ i − 1 : A[α] = A[N − α− 1]

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

28

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Examples

Array initialization:

int main() {

const int N;

assume(N >= 0);

int A[N];

int i = 0;

while (i < N) {

A[i] = 2i+N-1;

i++;

}

}

∀α : 0 ≤ α ≤ i − 1 : A[α] = 2α + N − 1

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

29

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Array invariant language

Programs are assumed to consist of unnested loops and linear
assignments, conditions and array accesses.

To simplify assume we have a single occurrence of an array variable.

Our method generates invariants of the form:

∀α : 0 ≤ α ≤ C(v)− 1 : a · A[d · α + E(v)] + B(v) + bα · α ≤ 0

where C, E and B are linear expressions with integer coefficients over the
scalar variables of the program v = (v1, . . . , vn) and a, d , bα ∈ Z.

Easily extensible to m array variables and k occurrences:

∀α : 0 ≤ α ≤ C(v)− 1 : Σm
i=1Σk

j=1aijAi [dijα + Eij(v)] + B(v) + bαα ≤ 0

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

29

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Array invariant language

Programs are assumed to consist of unnested loops and linear
assignments, conditions and array accesses.

To simplify assume we have a single occurrence of an array variable.

Our method generates invariants of the form:

∀α : 0 ≤ α ≤ C(v)− 1 : a · A[d · α + E(v)] + B(v) + bα · α ≤ 0

where C, E and B are linear expressions with integer coefficients over the
scalar variables of the program v = (v1, . . . , vn) and a, d , bα ∈ Z.

Easily extensible to m array variables and k occurrences:

∀α : 0 ≤ α ≤ C(v)− 1 : Σm
i=1Σk

j=1aijAi [dijα + Eij(v)] + B(v) + bαα ≤ 0

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

29

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Array invariant language

Programs are assumed to consist of unnested loops and linear
assignments, conditions and array accesses.

To simplify assume we have a single occurrence of an array variable.

Our method generates invariants of the form:

∀α : 0 ≤ α ≤ C(v)− 1 : a · A[d · α + E(v)] + B(v) + bα · α ≤ 0

where C, E and B are linear expressions with integer coefficients over the
scalar variables of the program v = (v1, . . . , vn) and a, d , bα ∈ Z.

Easily extensible to m array variables and k occurrences:

∀α : 0 ≤ α ≤ C(v)− 1 : Σm
i=1Σk

j=1aijAi [dijα + Eij(v)] + B(v) + bαα ≤ 0

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

29

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Array invariant language

Programs are assumed to consist of unnested loops and linear
assignments, conditions and array accesses.

To simplify assume we have a single occurrence of an array variable.

Our method generates invariants of the form:

∀α : 0 ≤ α ≤ C(v)− 1 : a · A[d · α + E(v)] + B(v) + bα · α ≤ 0

where C, E and B are linear expressions with integer coefficients over the
scalar variables of the program v = (v1, . . . , vn) and a, d , bα ∈ Z.

Easily extensible to m array variables and k occurrences:

∀α : 0 ≤ α ≤ C(v)− 1 : Σm
i=1Σk

j=1aijAi [dijα + Eij(v)] + B(v) + bαα ≤ 0

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

30

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Examples

Palindrome array:

int main() {

const int N;

assume(N >= 0);

int A[N];

int i = 0;

while (i < N/2) {

if (A[i] != A[N-i-1])

break;

++i;

}

}

∀α : 0 ≤ α ≤ i − 1 : A[α] = A[N − α− 1]

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

30

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Examples

Palindrome array:

int main() {

const int N;

assume(N >= 0);

int A[N];

int i = 0;

while (i < N/2) {

if (A[i] != A[N-i-1])

break;

++i;

}

}

∀α : 0 ≤ α ≤ i − 1 : A[α]− A[N − α− 1] ≤ 0
∀α : 0 ≤ α ≤ i − 1 : A[N − α− 1]− A[α] ≤ 0

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

31

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Existing approaches for array invariant generation

Abstract interpretation [Gopan,Reps,Sagiv 2005; Halbwachs,Peron 2008]

Predicate abstraction [Flanagan,Qadeer 2002; Lahiri,Bryant 2004;
Jhala,McMillan 2007; Srivastava,Gulwani 2009]

First-order theorem proving [Kovács,Voronkov 2009; McMillan 2008]

Computational algebra [Henzinger,Hottelier,Kovács,Rybalchenko 2010]

Constraint-based invariant generation [Larraz,Rodŕıguez,Rubio 2013]

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

31

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Existing approaches for array invariant generation

Abstract interpretation [Gopan,Reps,Sagiv 2005; Halbwachs,Peron 2008]

Predicate abstraction [Flanagan,Qadeer 2002; Lahiri,Bryant 2004;
Jhala,McMillan 2007; Srivastava,Gulwani 2009]

First-order theorem proving [Kovács,Voronkov 2009; McMillan 2008]

Computational algebra [Henzinger,Hottelier,Kovács,Rybalchenko 2010]

Constraint-based invariant generation [Larraz,Rodŕıguez,Rubio 2013]

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

32

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ideas behind the method

Find conditions ensuring inductive invariance and represent them as
implications of templates.

∀α : 0 ≤ α ≤ C(v)− 1 : a · A[d · α + E(v)] + B(v) + bα · α ≤ 0

C(v) = c1v1 + . . .+ cnvn + cn+1

Initiation condition: the first time the location is reached it holds that
C(v ′) = 0, i.e., the domain is empty.

Consecution condition: after every cycle back to the location it holds that
either C(v ′) = C(v) or C(v ′) = C(v) + 1

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

32

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ideas behind the method: 3 phases

Find conditions ensuring inductive invariance and represent them as
implications of templates.

∀α : 0 ≤ α ≤ C(v)− 1 : a · A[d · α + E(v)] + B(v) + bα · α ≤ 0

C(v) = c1v1 + . . .+ cnvn + cn+1

Initiation condition: the first time the location is reached it holds that
C(v ′) = 0, i.e., the domain is empty.

Consecution condition: after every cycle back to the location it holds that
either C(v ′) = C(v) or C(v ′) = C(v) + 1

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

32

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ideas behind the method: 3 phases

Find conditions ensuring inductive invariance and represent them as
implications of templates.

∀α : 0 ≤ α ≤ C(v)− 1 : a · A[d · α + E(v)] + B(v) + bα · α ≤ 0

C(v) = c1v1 + . . .+ cnvn + cn+1

Initiation condition: the first time the location is reached it holds that
C(v ′) = 0, i.e., the domain is empty.

Consecution condition: after every cycle back to the location it holds that
either C(v ′) = C(v) or C(v ′) = C(v) + 1

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

32

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ideas behind the method: 3 phases

Find conditions ensuring inductive invariance and represent them as
implications of templates.

∀α : 0 ≤ α ≤ C(v)− 1 : a · A[d · α + E(v)] + B(v) + bα · α ≤ 0

C(v) = c1v1 + . . .+ cnvn + cn+1

Initiation condition: the first time the location is reached it holds that
C(v ′) = 0, i.e., the domain is empty.

Consecution condition: after every cycle back to the location it holds that
either C(v ′) = C(v) or C(v ′) = C(v) + 1

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

32

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ideas behind the method: 3 phases

Find conditions ensuring inductive invariance and represent them as
implications of templates.

∀α : 0 ≤ α ≤ C(v)− 1 : a · A[d · α + E(v)] + B(v) + bα · α ≤ 0

C(v) = c1v1 + . . .+ cnvn + cn+1

Initiation condition: the first time the location is reached it holds that
C(v ′) = 0, i.e., the domain is empty.

Consecution condition: after every cycle back to the location it holds that
either C(v ′) = C(v) or C(v ′) = C(v) + 1

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

32

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ideas behind the method: Phase 1

Find conditions ensuring inductive invariance and represent them as
implications of templates.

∀α : 0 ≤ α ≤ C(v)− 1 : a · A[d · α + E(v)] + B(v) + bα · α ≤ 0

C(v) = c1v1 + . . .+ cnvn + cn+1

Initiation condition: the first time the location is reached it holds that
C(v ′) = 0, i.e., the domain is empty.

Consecution condition: after every cycle back to the location it holds that
either C(v ′) = C(v) or C(v ′) = C(v) + 1

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

32

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ideas behind the method: Phase 1

Find conditions ensuring inductive invariance and represent them as
implications of templates.

∀α : 0 ≤ α ≤ C(v)− 1 : a · A[d · α + E(v)] + B(v) + bα · α ≤ 0

C(v) = c1v1 + . . .+ cnvn + cn+1

Initiation condition: the first time the location is reached it holds that
C(v ′) = 0, i.e., the domain is empty.

Consecution condition: after every cycle back to the location it holds that
either C(v ′) = C(v) or C(v ′) = C(v) + 1

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

32

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ideas behind the method: Phase 1

Find conditions ensuring inductive invariance and represent them as
implications of templates.

∀α : 0 ≤ α ≤ C(v)− 1 : a · A[d · α + E(v)] + B(v) + bα · α ≤ 0

C(v) = c1v1 + . . .+ cnvn + cn+1

Initiation condition: the first time the location is reached it holds that
C(v ′) = 0, i.e., the domain is empty.

Consecution condition: after every cycle back to the location it holds that
either C(v ′) = C(v) or C(v ′) = C(v) + 1

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

33

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ideas behind the method: Phase 2

Find conditions ensuring inductive invariance and represent them as
implications of templates.

∀α : 0 ≤ α ≤ C(v)− 1 : a · A[d · α + E(v)] + B(v) + bα · α ≤ 0

d , E(v) = e1v1 + . . .+ envn + en+1

Indexes are valid: 0 ≤ α ≤ C(v ′)− 1 =⇒ 0 ≤ dα + E(v ′) ≤ |A| − 1

No array update index is in {d · α + E(v) | 0 ≤ α ≤ C(v)− 1}, i.e., elements
for which invariant held in previous iterations are not modified.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

33

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ideas behind the method: Phase 2

Find conditions ensuring inductive invariance and represent them as
implications of templates.

∀α : 0 ≤ α ≤ C(v)− 1 : a · A[d · α + E(v)] + B(v) + bα · α ≤ 0

d , E(v) = e1v1 + . . .+ envn + en+1

Indexes are valid: 0 ≤ α ≤ C(v ′)− 1 =⇒ 0 ≤ dα + E(v ′) ≤ |A| − 1

No array update index is in {d · α + E(v) | 0 ≤ α ≤ C(v)− 1}, i.e., elements
for which invariant held in previous iterations are not modified.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

33

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ideas behind the method: Phase 2

Find conditions ensuring inductive invariance and represent them as
implications of templates.

∀α : 0 ≤ α ≤ C(v)− 1 : a · A[d · α + E(v)] + B(v) + bα · α ≤ 0

d , E(v) = e1v1 + . . .+ envn + en+1

Indexes are valid: 0 ≤ α ≤ C(v ′)− 1 =⇒ 0 ≤ dα + E(v ′) ≤ |A| − 1

No array update index is in {d · α + E(v) | 0 ≤ α ≤ C(v)− 1}, i.e., elements
for which invariant held in previous iterations are not modified.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

34

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ideas behind the method: Phase 3

Find conditions ensuring inductive invariance and represent them as
implications of templates.

∀α : 0 ≤ α ≤ C(v)− 1 : a · A[d · α + E(v)] + B(v) + bα · α ≤ 0

a, bα, B(v) = b1v1 + . . .+ bnvn + bn+1

The property keeps holding for unchanged array elements:

0 ≤ α ≤ C(v)− 1 ∧ x + B(v) + bαα ≤ 0⇒ x + B(v ′) + bαα ≤ 0

The property holds for some new consecutive array element:

a · A[d · C(v) + E(v ′)] + B(v ′) + bα · C(v) ≤ 0

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

34

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ideas behind the method: Phase 3

Find conditions ensuring inductive invariance and represent them as
implications of templates.

∀α : 0 ≤ α ≤ C(v)− 1 : a · A[d · α + E(v)] + B(v) + bα · α ≤ 0

a, bα, B(v) = b1v1 + . . .+ bnvn + bn+1

The property keeps holding for unchanged array elements:

0 ≤ α ≤ C(v)− 1 ∧ x + B(v) + bαα ≤ 0⇒ x + B(v ′) + bαα ≤ 0

The property holds for some new consecutive array element:

a · A[d · C(v) + E(v ′)] + B(v ′) + bα · C(v) ≤ 0

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

35

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ideas behind the method: Result

As a result, every solution found after the three phases provides an array
invariant of the form:

∀α : 0 ≤ α ≤ C(v)− 1 : a · A[d · α + E(v)] + B(v) + bα · α ≤ 0

where C, E and B are linear polynomials with integer coefficients over the
scalar variables of the program v = (v1, . . . , vn) and a, d , bα ∈ Z.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

36

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Examples

Palindrome array:

int main() {

const int N;

assume(N >= 0);

int A[N];

int i = 0;

while (i < N/2) {

if (A[i] != A[N-i-1])

break;

++i;

}

}

∀α : 0 ≤ α ≤ i − 1 : A[α]− A[N − α− 1] ≤ 0
∀α : 0 ≤ α ≤ i − 1 : A[N − α− 1]− A[α] ≤ 0

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

37

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Examples

Array initialization:

int main() {

const int N;

assume(N >= 0);

int A[N];

int i = 0;

while (i < N) {

A[i] = 2i+N-1;

i++;

}

}

∀α : 0 ≤ α ≤ i − 1 : A[α]− 2α− N + 1 ≤ 0

∀α : 0 ≤ α ≤ i − 1 : −A[α] + 2α + N − 1 ≤ 0

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

38

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Other examples we can handle

int main() { // Heap property
const int N;

assume(N >= 0);

int A[2*N], i;

i=0;

while (2*i+2 < 2*N) {

if (A[i]>A[2*i+1] or A[i]>A[2*i+2])

break;

++i;

}

}

∀α : 0 ≤ α ≤ i − 1 : A[α] ≤ A[2α + 2] ∀α : 0 ≤ α ≤ i − 1 : A[α] ≤ A[2α + 1]

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

39

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Other examples we can handle

int main() { // Partial initialization [GopanRepsSavig05]
const int N;

assume(N >= 0);

int A[N], B[N], C[N];

int i=0, j=0;

while (i < N) {

if (A[i] == B[i])

C[j++] = i;

++i;

}

}

∀α : 0 ≤ α ≤ j − 1 : C [α] ≤ α + i − j

∀α : 0 ≤ α ≤ j − 1 : C [α] ≥ α

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

40

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Other examples we can handle

int main() { // Array insertion
const int N;

int A[N], i, j, x;

assume(0 <= i and i < N);

x = A[i];

j = i-1;

while (j >= 0 and A[j] > x) {

A[j+1] = A[j];

--j;

}

}

∀α : 0 ≤ α ≤ i − j − 2 : A[i − α] ≥ x + 1

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

41

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Extensions: Weakening the condition on the initial domain

We can try to extend the empty universally quantified domain of α.

int main() { // Array maximum
const int N;

assume(N > 0);

int A[N], i=1;

int max = A[0];

while (i<N) {

if (max<A[i]) max=A[i];

++i;

}

}

∀α : 0 ≤ α ≤ i − 2 : A[α + 1] ≤ max

∀α : −1 ≤ α ≤ l − 2 : A[α + 1] ≤ max (extended)

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

41

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Extensions: Weakening the condition on the initial domain

We can try to extend the empty universally quantified domain of α.

int main() { // Array maximum
const int N;

assume(N > 0);

int A[N], i=1;

int max = A[0];

while (i<N) {

if (max<A[i]) max=A[i];

++i;

}

}

∀α : 0 ≤ α ≤ i − 2 : A[α + 1] ≤ max

∀α : 1 ≤ α ≤ i − 1 : A[α] ≤ max

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

41

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Extensions: Weakening the condition on the initial domain

We can try to extend the empty universally quantified domain of α.

int main() { // Array maximum
const int N;

assume(N > 0);

int A[N], i=1;

int max = A[0];

while (i<N) {

if (max<A[i]) max=A[i];

++i;

}

}

∀α : 0 ≤ α ≤ i − 2 : A[α + 1] ≤ max

∀α : 0 ≤ α ≤ i − 1 : A[α] ≤ max (extended)

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

42

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Extensions: Relaxation of the increment step

We can allow C(v) to increase more than one by one.

int main() { // Array minimum and maximum
int A[2*N], i;

int min = A[0];

int max = A[0];

for (i = 1; i+1 < N; i += 2) {

int tmpmin, tmpmax;

if (A[i] < A[i+1]) { tmpmin = A[i]; tmpmax = A[i+1]; }

else { tmpmin = A[i+1]; tmpmax = A[i]; }

if (max < tmpmax) max = tmpmax;

if (min > tmpmin) min = tmpmin;

}

}

∀α : 0 ≤ α ≤ i − 1 : A[α] ≥ min ∧ A[α] ≤ max

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

43

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Extensions: Addition of element order assumptions

We can take into account that an array is sorted.

int main() { // First occurrence
const int N;

assume(N >= 0);

int A[N], x = getX();

int l=0, u=N;

// Pre: A is sorted in ascending order

while (l < u) {

int m = (l+u)/2;

if (A[m]<x) l=m+1; else u=m;

}

}

∀α : 0 ≤ α ≤ l − 1 : A[α] < x

∀α : 0 ≤ α ≤ N − 1− u : A[N − 1− α] ≤ x

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

44

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Experiments with (real) code

Our techniques have been implemented in a tool called cppinv.

As a challenging set of benchmarks we have used code made by
undergraduate students for solving the first occurrence problem in a sorted
array (taken from a programming learning environment Jutge.org)

In contrast to the standard academic examples the code is:

• involved and ugly

• unnecessary conditional statements

• includes repeated code

All nice properties we need for testing our tool!

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

44

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Experiments with (real) code

Our techniques have been implemented in a tool called cppinv.

As a challenging set of benchmarks we have used code made by
undergraduate students for solving the first occurrence problem in a sorted
array (taken from a programming learning environment Jutge.org)

In contrast to the standard academic examples the code is:

• involved and ugly

• unnecessary conditional statements

• includes repeated code

All nice properties we need for testing our tool!

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

44

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Experiments with (real) code

Our techniques have been implemented in a tool called cppinv.

As a challenging set of benchmarks we have used code made by
undergraduate students for solving the first occurrence problem in a sorted
array (taken from a programming learning environment Jutge.org)

In contrast to the standard academic examples the code is:

• involved and ugly

• unnecessary conditional statements

• includes repeated code

All nice properties we need for testing our tool!

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

45

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Examples of students’ code

int first_occurrence(int x, int A[N]) {

assume(N > 0);

int e = 0, d = N - 1, m, pos;

bool found = false, exit = false;

while (e <= d and not exit) {

m = (e+d)/2;

if (x > A[m]) {

if (not found) e = m+1;

else exit = true;

} else if (x < A[m]) {

if (not found) d = m-1;

else exit = true;

} else {

found = true; pos = m; d = m-1;

}

}

if (found) {

while (x == A[pos-1]) --pos;

return pos; }

return -1;

}

int first_occurrence(int x, int A[N]) {

assume(N > 0);

int l=0, u=N;

while (l < u) {

int m = (l+u)/2;

if (A[m]<x) l=m+1;

else u=m;

}

if (l>=N || A[l]!=x) l=-1;

return l;

}

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

46

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Examples of students’ code

• We have checked the 38 accepted (as correct) iterative instances.

• Our tool was always able to find both standard inavariants.

• The time consumed was very different depending on how involved the
code was.

• The main efficiency problem of our tool is that it is exhaustive.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

46

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Examples of students’ code

• We have checked the 38 accepted (as correct) iterative instances.

• Our tool was always able to find both standard inavariants.

• The time consumed was very different depending on how involved the
code was.

• The main efficiency problem of our tool is that it is exhaustive.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

46

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Examples of students’ code

• We have checked the 38 accepted (as correct) iterative instances.

• Our tool was always able to find both standard inavariants.

• The time consumed was very different depending on how involved the
code was.

• The main efficiency problem of our tool is that it is exhaustive.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

47

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Outline

1 Introduction

2 SMT/Max-SMT solving

3 Invariant generation

4 Termination analysis

5 Further work

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

48

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Motivation:

• Prove termination of imperative programs automatically.

• Find ranking functions.

• Find supporting invariants.

• How to guide the search!.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

49

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants

Basic method: find a single ranking function f : States→ Z, with
f (S) ≥ 0 and f (S) > f (S ′) after every iteration.

It does not work in practice in many cases.
What is (at least) necessary?

• Find supporting Invariants

• Consider a (lexicographic) combination of ranking functions

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

49

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants

Basic method: find a single ranking function f : States→ Z, with
f (S) ≥ 0 and f (S) > f (S ′) after every iteration.
It does not work in practice in many cases.
What is (at least) necessary?

• Find supporting Invariants

• Consider a (lexicographic) combination of ranking functions

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

49

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants

Basic method: find a single ranking function f : States→ Z, with
f (S) ≥ 0 and f (S) > f (S ′) after every iteration.
It does not work in practice in many cases.
What is (at least) necessary?

• Find supporting Invariants

• Consider a (lexicographic) combination of ranking functions

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

50

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

int main()

{

int x=indet(),y=indet(),z=indet ();

l1: while (y>=1) {

x--;

l2: while (y<z) {

x++; z--;

}

y=x+y;

}

}

τ
2

l1
l2

τ
3

τ
1

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

51

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

52

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

f (x , y , z) = z is a ranking function for τ2

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

52

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

It is necessary a supporting invariant y ≥ 1 at `2.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

53

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

We can discard all executions that pass through τ2.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

53

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ ′3

τ1

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

We can discard all executions that pass through τ2.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

54

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants

In order to discard a transition τi we need to find a ranking function f over
the integers such that:

1 τi =⇒ f (x1, . . . , xn) ≥ 0 (bounded)

2 τi =⇒ f (x1, . . . , xn) > f (x ′
1, . . . , x

′
n) (strict-decreasing)

3 τj =⇒ f (x1, . . . , xn) ≥ f (x ′
1, . . . , x

′
n) for all j (non-increasing)

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

55

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Combined problem

In order to prove properties of the ranking function we may need to
generate invariants.

Generation of both invariants and ranking functions should be combined in
the same satisfaction problem.

Both are found at the same time [BMS2005].

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

56

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

56

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : I1, y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : I2, y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : I2, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

56

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ ′1 : 0 ≤ 0, y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z

ρτ2 : y ≥ 1, y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

and ranking function f (x , y , z) = z , fulfiling all properties for τ2

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

56

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : y ≥ 1, y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

and ranking function f (x , y , z) = z , fulfiling all properties for τ2

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

56

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : y ≥ 1, y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

and ranking function f (x , y , z) = z , fulfiling all properties for τ2

we can remove τ2

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

56

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ ′3

τ1

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

and ranking function f (x , y , z) = z , fulfiling all properties for τ2

we can remove τ2

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

57

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Combined problem

In order to prove properties of the ranking function we may need to
generate invariants.

Generation of both invariants and ranking functions should be combined in
the same satisfaction problem.

Both are found at the same time [BMS2005].

In order to be correct we need to have two transition systems:

• the original system (extended with all found invariants) for invariant
generation.

• the termination transition system which includes the transitions not
yet proved to be terminating.

Similar to the cooperation graph in [BCF2013].

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

57

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Combined problem

In order to prove properties of the ranking function we may need to
generate invariants.

Generation of both invariants and ranking functions should be combined in
the same satisfaction problem.

Both are found at the same time [BMS2005].

In order to be correct we need to have two transition systems:

• the original system (extended with all found invariants) for invariant
generation.

• the termination transition system which includes the transitions not
yet proved to be terminating.

Similar to the cooperation graph in [BCF2013].

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

58

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: Example

The approach in [BMS2005] is nice but in practice some problems arise:

• May need several invariants before finding a ranking function.

We should be able to generate invariants even if there is no ranking
function (how to guide the search?).

• Might be no ranking function fulfiling all properties

We have to generate quasi-ranking functions.

Similar concept as in e.g. Amir Ben-Amram’s work.

May not fulfil some of the properties.
For instance, boundedness or decreasingness or even both.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

59

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: optimization vs satisfaction

Our solution:

Consider that this is an optimization problem
rather than a satisfaction problem

We want to get a ranking function but if it is not possible
we want to get as much properties as possible.

Use different weights to express which properties we prefer

Encode the problem using Max-SMT,

We use again Barcelogic to solve it.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

60

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: Example

Transition system:

l1 l2

τ ′3

τ1

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

There is no ranking function that fulfils all conditions.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

61

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: Example

Transition system:

l1 l2

τ ′3

τ1

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

f (x , y , z) = x is non-increasing and strict decreasing for τ1.

However, it is not bounded (soft).

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

62

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: Example

Transition system:

l1 l2

τ ′3

τ1.2

τ1.1

ρτ1.1 : x ≥ 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ1.2 : x < 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

f (x , y , z) = x is non-increasing and strict decreasing for τ1.

However, it is not bounded (soft).

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

63

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: Example

Transition system:

l1 l2

τ ′3

τ1.2

τ1.1

ρτ1.1 : x ≥ 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ1.2 : x < 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

Now f (x , y , z) = x is a ranking function for τ1.1

We can remove it!

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

63

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: Example

Transition system:

l1 l2

τ ′3

τ1.2

ρτ1.2 : x < 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

Now f (x , y , z) = x is a ranking function for τ1.1

We can remove it!

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

64

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: Example

Transition system:

l1 l2

τ ′3

τ1.2

ρτ1.2 : x < 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

Finally, f (x , y , z) = y is used to discard τ ′3.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

64

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: Example

Transition system:

l1 l2

τ ′3

τ1.2

ρτ1.2 : x < 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

Finally, f (x , y , z) = y is used to discard τ ′3.
But we need x < 0 in l2, which is a Termination Implication

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

64

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: Example

Transition system:

l1 l2

τ1.2

ρτ1.2 : x < 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z

Finally, f (x , y , z) = y is used to discard τ ′3.
But we need x < 0 in l2, which is a Termination Implication

We are DONE!

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

65

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Contributions [Larraz,Oliveras,Rodŕıguez,Rubio 2013]

• A novel optimization-based method for proving termination.

• New inferred properties: Termnation Implications.

• No fixed number of supporting invariants a priori.

• Goal-oriented invariant generation.

• Progress in the absence of ranking functions (quasi-ranking
functions).

• All these techniques have been implemented in CppInv

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

66

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Experimental evaluation:

Two sources of benchmarks:

• coming from T2 (Microsoft Cambridge). Thanks!

• code made by undergraduate students taken from a programming
learning environment Jutge.org

In contrast to the standard academic
examples the code is:
• involved and ugly
• unnecessary conditional statements
• includes repeated code

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

66

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Experimental evaluation:

Two sources of benchmarks:

• coming from T2 (Microsoft Cambridge). Thanks!

• code made by undergraduate students taken from a programming
learning environment Jutge.org In contrast to the standard academic
examples the code is:
• involved and ugly
• unnecessary conditional statements
• includes repeated code

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

67

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Experimental evaluation:

#ins. CppInv T2

Set1 449 238 245

Set2 472 276 279

Table: Results with benchmarks from T2

#ins. CppInv T2
P11655 367 324 328
P12603 149 143 140
P12828 783 707 710
P16415 98 81 81
P24674 177 171 168
P33412 603 478 371

#ins. CppInv T2
P40685 362 324 329
P45965 854 780 793
P70756 280 243 235
P81966 3642 2663 926
P82660 196 174 177
P84219 413 325 243

Table: Results with benchmarks from Jutge.org.

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

68

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Outline

1 Introduction

2 SMT/Max-SMT solving

3 Invariant generation

4 Termination analysis

5 Further work

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

69

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Further work

Other problems where using the optimization (Max-SMT) approach can
help:

• Application to non-termination analysis:
Maximize the exit paths to be removed.

• Application to verification of program postconditions (after loops)
Maximize the properties that are ensured.

• Application to invariant generation in sequences of loops
Make the initiation condition soft and if it is not fulfiled, use it as
postcondition of the previous loop.

Might be important for scalability!

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

70

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Further work

• Apply our techniques to program synthesis

• Prove non-termination.

• Combine termination and non-termination proofs.

• Improve the non-linear arithmetic solver and the interaction with the
invariant generation and termination engine.

• Consider other program properties

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

71

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Conclusions

Two main conclusions:

• Using SMT and Max-SMT automatic invariant generation and
termination proving become feasible.

• In constraint-based program analysis it is often better to consider that
we have optimization problems rather than satisfaction problems!

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

72

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Thank you!

Albert Rubio, UPC LOPSTR, 2013 Program Analysis using SMT and MAX-SMT

	Introduction
	SMT/Max-SMT solving
	Invariant generation
	Termination analysis
	Further work

