
IRRS: Information Retrieval and
Recommender Systems

FIB, Master in Data Science

Slides by Marta Arias, José Luis Balcázar,
Ramon Ferrer-i-Cancho, Ricard Gavaldá

Department of Computer Science, UPC

Fall 2022
http://www.cs.upc.edu/~ir-miri

1 / 19

http://www.cs.upc.edu/~ir-miri

8. Locality Sensitive Hashing

Motivation, I
Find similar items in high dimensions, quickly

Could be useful, for example, in nearest neighbor algorithm..
but in a large, high dimensional dataset this may be difficult!

3 / 19

Motivation, II
Hashing is good for checking existence, not nearest neighbors

4 / 19

Motivation, III
Main idea: want hashing functions that map similar objects to nearby positions using
projections

5 / 19

Different types of hashing functions

Perfect hashing
I Provide 1-1 mapping of objects to bucket ids
I Any two different objects mapped to different buckets (no

collisions)

Universal hashing
I A family of functions F = {h : U → [n]} is called universal

if P [h(x) = h(y)] ≤ 1
n for all x 6= y

I i.e. probability of collision for different objects is at most 1/n

Locality sensitive hashing (lsh)
I Collision probability for similar objects is high enough
I Collision probability for dissimilar objects is low

6 / 19

Locality sensitive hashing functions
Definition

A family F is called (s, c · s, p1, p2)-sensitive if for any two
objects x and y we have:
I If s(x, y) ≥ s, then P [h(x) = h(y)] ≥ p1

I If s(x, y) ≤ c · s, then P [h(x) = h(y)] ≤ p2

where the probability is taken over chosing h from F , and c < 1,
p1 > p2

7 / 19

How to use LSH to find nearest neighbor
The main idea

Pick a hashing function h from appropriate family F

Preprocessing
I Compute h(x) for all objects x in our available dataset

On arrival of query q

I Compute h(q) for query object
I Sequentially check nearest neighbor in “bucket” h(q)

8 / 19

Locality sensitive hashing I
An example for bit vectors

I Objects are vectors in {0, 1}d

I Distances are measured using Hamming distance

d(x, y) =

d∑
i=1

|xi − yi|

I Similarity is measured as nr. of common bits divided by
length of vector

s(x, y) = 1− d(x, y)

d

I For example, if x = 10010 and y = 11011, then d(x, y) = 2
and s(x, y) = 1− 2/5 = 0.6

9 / 19

Locality sensitive hashing II
An example for bit vectors

I Consider the following “hashing family”: sample the i-th bit
of a vector, i.e. F = {fi|i ∈ [d]} where fi(x) = xi

I Then, the probability of collision

P [h(x) = h(y)] = s(x, y)

(the probability is taken over chosing a random h ∈ F)
I Hence F is (s, cs, s, cs)-sensitive (with c < 1 so that s > cs

as required)

10 / 19

Locality sensitive hashing III
An example for bit vectors

I If gap between s and cs is too small (between p1 and p2),
we can amplify it:
I By stacking together k hash functions

I h(x) = (h1(x), .., hk(x)) where hi ∈ F
I Probability of collision of similar objects decreases to sk

I Probability of collision of dissimilar objects decreases even
more to (cs)k

I By repeating the process m times
I Probability of collision of similar objects increases to

1− (1− s)m

I Choosing k and m appropriately, can achieve a family that
is (s, cs, 1− (1− sk)m, 1− (1− (cs)k)m)-sensitive

11 / 19

Locality sensitive hashing IV
An example for bit vectors

Here, k = 5,m = 3

12 / 19

Locality sensitive hashing V
An example for bit vectors

Collision probability is 1− (1− sk)m

13 / 19

Similarity search becomes..
Pseudocode

Preprocessing
I Input: set of objects X

I for i = 1..m
I for each x ∈ X

I stack k hash functions and form xi = (h1(x), .., hk(x))
I store x in bucket given by f(xi)

On query time
I Input: query object q
I Z = ∅
I for i = 1..m

I stack k hash functions and form qi = (h1(q), .., hk(q))
I Zi = { objects found in bucket f(qi)}
I Z = Z ∪ Zi

I Output all z ∈ Z such that s(q, z) ≥ s

14 / 19

For objects in [1..M]d

The idea is to represent each coordinate in unary form
I For example, if M = 10 and d = 2, then (5, 2) becomes

(1111100000, 1100000000)

I In this case, we have that the L1 distance of two points in
[1..M]d is

d(x, y) =

d∑
i=1

|xi − yi| =
d∑

i=1

dHamming(u(x), u(y))

so we can concatenate vectors in each coordinate into one
single dM bit-vector

I In fact, one does not need to store these vectors, they can
be computed on-the-fly

15 / 19

Generalizing the idea..

I If we have a family of hash functions such that for all pairs
of objects x, y

P [h(x) = h(y)] = s(x, y) (1)

I We can then amplify the gap of probabilities by stacking k
functions and repeating m times

I .. and so the core of the problem becomes to find a
similarity function s and hash family satisfying (1)

16 / 19

Another example: finding similar sets I
Using the Jaccard coefficient as similarity function

Jaccard coefficient
For pairs of sets x and y from a ground set U
(i.e. x ⊆ U, y ⊆ U) is

J(x, y) =
|x ∩ y|
|x ∪ y|

17 / 19

Another example: finding similar sets II
Using the Jaccard coefficient as similarity function

Main idea
I Suppose elements in U are ordered (randomly)
I Now, look at the smallest element in each of the sets
I The more similar x and y are, the more likely it is that their

smallest element coincides

18 / 19

Another example: finding similar sets III
Using the Jaccard coefficient as similarity function

So, define family of hash functions for Jaccard coefficient:
I Consider a random permutation r : U → [1..|U |] of

elements in U

I For a set x = {x1, .., xl}, define hr(x) = mini{r(xi)}
I Let F = {hr|r is a permutation}
I And so: P [h(x) = h(y)] = J(x, y) as desired!

Scheme known as min-wise independent permutation hashing,
in practice inefficient due to the cost of storing random
permutations.

19 / 19

	8. Locality Sensitive Hashing

