IR: Information Retrieval

FIB, Master in Innovation and Research in Informatics

Slides by Marta Arias, José Luis Balcázar, Ramon Ferrer-i-Cancho, Ricard Gavaldá

Department of Computer Science, UPC

Fall 2018

```
http://www.cs.upc.edu/~ir-miri
```

7. Introduction to Network Analysis

Network Analysis, Part I

Today's contents

1. Examples of real networks
2. What do real networks look like?

- real networks exhibit small diameter
- .. and so does the Erdös-Rényi or random model
- real networks have high clustering coefficient
- .. and so does the Watts-Strogatz model
- real networks' degree distribution follows a power-law
- .. and so does the Barabasi-Albert or preferential attachment model

Examples of real networks

- Social networks
- Information networks
- Technological networks
- Biological networks

Social networks

Links denote social "interactions"

- friendship, collaborations, e-mail, etc.

Information networks

Nodes store information, links associate information

- citation networks, the web, p2p networks, etc.

Technological networks

Man-built for the distribution of a commodity

- telephone networks, power grids, transportation networks, etc.

Biological networks

Represent biological systems

- protein-protein interaction networks, gene regulation networks, metabolic pathways, etc.

Representing networks

- Network \equiv Graph
- Networks are just collections of "points" joined by "lines"

points	lines	
vertices	edges, arcs	math
nodes	links	computer science
sites	bonds	physics
actors	ties, relations	sociology

Types of networks

From [Newman, 2003]

Small-world phenomenon

- A friend of a friend is also frequently a friend
- Only 6 hops separate any two people in the world

Measuring the small-world phenomenon, I

- Let $d_{i j}$ be the shortest-path distance between nodes i and j
- To check whether "any two nodes are within 6 hops", we use:
- The diameter (longest shortest-path distance) as

$$
d=\operatorname{máx}_{i, j} d_{i j}
$$

- The average shortest-path length as

$$
l=\frac{2}{n(n+1)} \sum_{i>j} d_{i j}
$$

- The harmonic mean shortest-path length as

$$
l^{-1}=\frac{2}{n(n+1)} \sum_{i>j} d_{i j}^{-1}
$$

From [Newman, 2003]

	network	type	n	m	z	ℓ	α	$C^{(1)}$	$C^{(2)}$	r	$\operatorname{Ref}(\mathrm{s})$.
	film actors company directors math coauthorship physics coauthorship biology coauthorship telephone call graph email messages email address books student relationships sexual contacts	undirected	449913	25516482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
		undirected	7673	55392	14.44	4.60	-	0.59	0.88	0.276	105, 323
		undirected	253339	496489	3.92	7.57	-	0.15	0.34	0.120	107, 182
		undirected	52909	245300	9.27	6.19	-	0.45	0.56	0.363	311, 313
		undirected	1520251	11803064	15.53	4.92	-	0.088	0.60	0.127	311, 313
		undirected	47000000	80000000	3.16		2.1				8, 9
		directed	59912	86300	1.44	4.95	1.5/2.0		0.16		136
		directed	16881	57029	3.38	5.22	-	0.17	0.13	0.092	321
		undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
		undirected	2810				3.2				265, 266
	WWW nd.edu	directed	269504	1497135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
	WWW Altavista	directed	203549046	2130000000	10.46	16.18	2.1/2.7				74
	citation network	directed	783339	6716198	8.57		3.0/-				351
	Roget's Thesaurus	directed	1022	5103	4.99	4.87	-	0.13	0.15	0.157	244
	word co-occurrence	undirected	460902	17000000	70.13		2.7		0.44		119, 157
	Internet	undirected	10697	31992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
	power grid	undirected	4941	6594	2.67	18.99	-	0.10	0.080	-0.003	416
	train routes	undirected	587	19603	66.79	2.16	-		0.69	-0.033	366
	software packages	directed	1439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
	software classes	directed	1377	2213	1.61	1.51	-	0.033	0.012	-0.119	395
	electronic circuits	undirected	24097	53248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1296	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
$\begin{aligned} & \text { B } \\ & \frac{0}{60} \\ & \frac{0}{0} \\ & \hline 0 \end{aligned}$	metabolic network	undirected	765	3686	9.64	2.56	2.2	0.090	0.67	-0.240	214
	protein interactions	undirected	2115	2240	2.12	6.80	2.4	0.072	0.071	-0.156	212
	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	307	2359	7.68	3.97	-	0.18	0.28	-0.226	416, 421

But..

- Can we mimic this phenomenon in simulated networks ("models")?
- The answer is YES!

The (basic) random graph model

a.k.a. ER model

Basic $G_{n, p}$ Erdös-Rényi random graph model:

- parameter n is the number of vertices
- parameter p is s.t. $0 \leq p \leq 1$
- Generate and edge (i, j) independently at random with probability p

Measuring the diameter in ER networks

Want to show that the diameter in ER networks is small

- Let the average degree be z
- At distance l, can reach z^{l} nodes
- At distance $\frac{\log n}{\log z}$, reach all n nodes
- So, diameter is (roughly) $O(\log n)$

ER networks have small diameter

As shown by the following simulation

Measuring the small-world phenomenon, II

- To check whether "the friend of a friend is also frequently a friend", we use:
- The transitivity or clustering coefficient, which basically measures the probability that two of my friends are also friends

Global clustering coefficient

$$
C=\frac{3 \times \text { number of triangles }}{\text { number of connected triples }}
$$

$$
C=\frac{3 \times 1}{8}=0.375
$$

Local clustering coefficient

- For each vertex i, let n_{i} be the number of neighbors of i
- Let C_{i} be the fraction of pairs of neighbors that are connected within each other

$$
C_{i}=\frac{\text { nr. of connections between } i \text { 's neighbors }}{\frac{1}{2} n_{i}\left(n_{i}-1\right)}
$$

- Finally, average C_{i} over all nodes i in the network

$$
C=\frac{1}{n} \sum_{i} C_{i}
$$

Local clustering coefficient example

- $C_{1}=C_{2}=1 / 1$
- $C_{3}=1 / 6$
- $C_{4}=C_{5}=0$
- $C=\frac{1}{5}(1+1+1 / 6)=13 / 30=0.433$

From [Newman, 2003]

	network	type	n	m	z	ℓ	α	$C^{(1)}$	$C^{(2)}$	r	$\operatorname{Ref}(\mathrm{s})$.
	film actors	undirected	449913	25516482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7673	55392	14.44	4.60	-	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253339	496489	3.92	7.57	-	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52909	245300	9.27	6.19	-	0.45	0.56	0.363	311, 313
	biology coauthorship	undirected	1520251	11803064	15.53	4.92	-	0.088	0.60	0.127	311, 313
	telephone call graph	undirected	47000000	80000000	3.16		2.1				8,9
	email messages	directed	59912	86300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16881	57029	3.38	5.22	-	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
	WWW nd.edu	directed	269504	1497135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
	WWW Altavista citation network Roget's Thesaurus word co-occurrence	directed	203549046	2130000000	10.46	16.18	2.1/2.7				74
		directed	783339	6716198	8.57		3.0/-				351
		directed	1022	5103	4.99	4.87	-	0.13	0.15	0.157	244
		undirected	460902	17000000	70.13		2.7		0.44		119, 157
	Internet power grid train routes software packages software classes electronic circuits peer-to-peer network	undirected	10697	31992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
		undirected	4941	6594	2.67	18.99	-	0.10	0.080	-0.003	416
		undirected	587	19603	66.79	2.16	-		0.69	-0.033	366
		directed	1439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
		directed	1377	2213	1.61	1.51	-	0.033	0.012	-0.119	395
		undirected	24097	53248	4.34	11.05	3.0	0.010	0.030	-0.154	155
		undirected	880	1296	1.47	4.28	2.1	0.012	0.011	-0.366	6,354
$\begin{aligned} & \text { 프 } \\ & \text { E0 } \\ & \frac{0}{0} \\ & 0 \end{aligned}$	metabolic network protein interactions marine food web freshwater food web neural network	undirected	765	3686	9.64	2.56	2.2	0.090	0.67	-0.240	214
		undirected	2115	2240	2.12	6.80	2.4	0.072	0.071	-0.156	212
		directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
		directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
		directed	307	2359	7.68	3.97	-	0.18	0.28	-0.226	416, 421

ER networks do not show transitivity

- $C=p$, since edges are added independently
- Given a graph with n nodes and e edges, we can "estimate" p as

$$
\hat{p}=\frac{e}{1 / 2 n(n-1)}
$$

- We say that clustering is high if $C \gg \hat{p}$
- Hence, ER networks do not have high clustering coefficient since for them $C \approx \hat{p}$

ER networks do not show transitivity

Table 1: Clustering coefficients, C, for a number of different networks; n is the number of node, z is the mean degree. Taken from [146].

Network	n	z	C measured	C for random graph
Internet [153]	6,374	3.8	0.24	0.00060
World Wide Web (sites) [2]	153,127	35.2	0.11	0.00023
power grid [192]	4,941	2.7	0.080	0.00054
biology collaborations [140]	$1,520,251$	15.5	0.081	0.000010
mathematics collaborations [141]	253,339	3.9	0.15	0.000015
film actor collaborations [149]	449,913	113.4	0.20	0.00025
company directors [149]	7,673	14.4	0.59	0.0019
word co-occurrence [90]	460,902	70.1	0.44	0.00015
neural network [192]	282	14.0	0.28	0.049
metabolic network [69]	315	28.3	0.59	0.090
food web [138]	134	8.7	0.22	0.065

So ER networks do not have high clustering, but..

- Can we mimic this phenomenon in simulated networks ("models"), while keeping the diameter small?
- The answer is YES!

The Watts-Strogatz model, I

From [Watts and Strogatz, 1998]

Reconciling two observations from real networks:

- High clustering: my friend's friends are also my friends
- small diameter

The Watts-Strogatz model, II

- Start with all n vertices arranged on a ring
- Each vertex has intially 4 connections to their closest nodes
- mimics local or geographical connectivity
- With probability p, rewire each local connection to a random vertex
- $p=0$ high clustering, high diameter
- $p=1$ low clustering, low diameter (ER model)
-What happens in between?
- As we increase p from 0 to 1
- Fast decrease of mean distance
- Slow decrease in clustering

The Watts-Strogatz model, III

For an appropriate value of $p \approx 0.01$ (1%), we observe that the model achieves high clustering and small diameter

Degree distribution

Histogram of nr of nodes having a particular degree

$f_{k}=$ fraction of nodes of degree k

Scale-free networks

The degree distribution of most real-world networks follows a power-law distribution

$$
f_{k}=c k^{-\alpha}
$$

- "heavy-tail" distribution, implies existence of hubs
- hubs are nodes with very high degree

Random networks are not scale-free!

For random networks, the degree distribution follows the binomial distribution (or Poisson if n is large)

$$
f_{k}=\binom{n}{k} p^{k}(1-p)^{(n-k)} \approx \frac{z^{k} e^{-z}}{k!}
$$

- Where $z=p(n-1)$ is the mean degree
- Probability of nodes with very large degree becomes exponentially small
- so no hubs

So ER networks are not scale-free, but..

- Can we obtained scale-free simulated networks?
- The answer is YES!

Preferential attachment

- "Rich get richer" dynamics
- The more someone has, the more she is likely to have
- Examples
- the more friends you have, the easier it is to make new ones
- the more business a firm has, the easier it is to win more
- the more people there are at a restaurant, the more who want to go

Barabási-Albert model

From [Barabási and Albert, 1999]

- "Growth" model
- The model controls how a network grows over time
- Uses preferential attachment as a guide to grow the network
- new nodes prefer to attach to well-connected nodes
- (Simplified) process:
- the process starts with some initial subgraph
- each new node comes in with m edges
- probability of connecting to existing node i is proportional to i 's degree
- results in a power-law degree distribution with exponent $\alpha=3$

ER vs. BA

Experiment with 1000 nodes, 999 edges ($m_{0}=1$ in BA model).

random

preferential attachment

In summary..

phenomenon	real networks	ER	WS	BA
small diameter	yes	yes	yes	yes
high clustering	yes	no	yes	yes ${ }^{1}$
scale-free	yes	no	no	yes

${ }^{1}$ clustering coefficient is higher than in random networks, but not as high as for example in WS networks

Network Analysis, Part II

Today's contents

1. Centrality

- Degree centrality
- Closeness centrality
- Betweenness centrality

2. Community finding algorithms

- Hierarchical clustering
- Agglomerative
- Girvan-Newman
- Modularity maximization: Louvain method

Centrality in Networks

Centrality is a node's measure w.r.t. others

- A central node is important and/or powerful
- A central node has an influential position in the network
- A central node has an advantageous position in the network

Degree centrality

Power through connections

$$
\text { degree_centrality }(i) \stackrel{\text { def }}{=} k(i)
$$

Degree centrality

Power through connections

$$
\text { in_degree_centrality }(i) \stackrel{\text { def }}{=} k_{i n}(i)
$$

Degree centrality

Power through connections

$$
\text { out_degree_centrality }(i) \stackrel{\text { def }}{=} k_{o u t}(i)
$$

Degree centrality

Power through connections
By the way, there is a normalized version which divides the centrality of each degree by the maximum centrality value possible, i.e. $n-1$ (so values are all between 0 and 1).

But look at these examples, does degree centrality look OK to you?

Closeness centrality

Power through proximity to others

$$
\text { closeness_centrality }(i) \stackrel{\text { def }}{=}\left(\frac{\sum_{j \neq i} d(i, j)}{n-1}\right)^{-1}=\frac{n-1}{\sum_{j \neq i} d(i, j)}
$$

Here, what matters is to be close to everybody else, i.e., to be easily reachable or have the power to quickly reach others.

Betweenness centrality

Power through brokerage
A node is important if it lies in many shortest-paths

- so it is essential in passing information through the network

Betweenness centrality

Power through brokerage

$$
\text { betweenness_centrality }(i) \stackrel{\text { def }}{=} \sum_{j<k} \frac{g_{j k}(i)}{g_{j k}}
$$

Where

- $g_{j k}$ is the number of shortest-paths between j and k, and
- $g_{j k}(i)$ is the number of shortest-paths through i

Oftentimes it is normalized:

$$
\text { norm_betweenness_centrality }(i) \stackrel{\text { def }}{=} \frac{\text { betweenness_centrality }(i)}{\binom{n-1}{2}}
$$

Betweenness centrality

Examples (non-normalized)

What is community structure?

Why is community structure important?

.. but don't trust visual perception
it is best to use objective algorithms

Main idea

A community is dense in the inside but sparse w.r.t. the outside

No universal definition! But some ideas are:

- A community should be densely connected
- A community should be well-separated from the rest of the network
- Members of a community should be more similar among themselves than with the rest

Most common..
nr . of intra-cluster edges $>\mathrm{nr}$. of inter-cluster edges

Some definitions

Let $G=(V, E)$ be a network with $|V|=n$ nodes and $|E|=m$ edges. Let C be a subset of nodes in the network (a "cluster" or "community") of size $|C|=n_{c}$. Then

- intra-cluster density:

$$
\delta_{\text {int }}(C)=\frac{\text { nr. internal edges of } C}{n_{c}\left(n_{c}-1\right) / 2}
$$

- inter-cluster density:

$$
\delta_{e x t}(C)=\frac{\text { nr. inter-cluster edges of } C}{n_{c}\left(n-n_{c}\right)}
$$

A community should have $\delta_{\text {int }}(C)>\delta(G)$, where $\delta(G)$ is the average edge density of the whole graph G, i.e.

$$
\delta(G)=\frac{\text { nr. edges in } G}{n(n-1) / 2}
$$

Most algorithms search for tradeoffs between large $\delta_{\text {int }}(C)$ and small $\delta_{\text {ext }}(C)$

- e.g. optimizing $\sum_{C} \delta_{\text {int }}(C)-\delta_{\text {ext }}(C)$ over all communities C

Define further:

- $m_{c}=\mathrm{nr}$. edges within cluster $C=|\{(u, v) \mid u, v \in C\}|$
- $f_{c}=\mathrm{nr}$. edges in the frontier of $C=|\{(u, v) \mid u \in C, v \notin C\}|$

- $n_{c_{1}}=4, m_{c_{1}}=5, f_{c_{1}}=2$
- $n_{c_{2}}=3, m_{c_{2}}=3, f_{c_{2}}=2$
- $n_{c 3}=5, m_{c_{3}}=8, f_{c_{3}}=2$

Community quality criteria

- conductance: fraction of edges leaving the cluster $\frac{f_{c}}{2 m_{c}+f_{c}}$
- expansion: nr of edges per node leaving the cluster $\frac{f_{c}}{n_{c}}$
- internal density: a.k.a. "intra-cluster density" $\frac{m_{c}}{n_{c}\left(n_{c}-1\right) / 2}$
- cut ratio: a.k.a. "inter-cluster density" $\frac{f_{c}}{n_{c}\left(n-n_{c}\right)}$
- modularity: difference between nr. of edges in C and the expected nr. of edges $E\left[m_{c}\right]$ of a random graph with the same degree distribution

$$
\frac{1}{4 m}\left(m_{c}-E\left[m_{c}\right]\right)
$$

Methods we will cover

- Hierarchical clustering
- Agglomerative
- Divisive (Girvan-Newman algorithm)
- Modularity maximization algorithms
- Louvain method

Hierarchical clustering

From hairball to dendogram

Suitable if input network has hierarchical structure

Agglomerative hierarchical clustering [Newman, 2010]

Ingredients

- Similarity measure between nodes
- Similarity measure between sets of nodes

Pseudocode

1. Assign each node to its own cluster
2. Find the cluster pair with highest similarity and join them together into a cluster
3. Compute new similarities between new joined cluster and others
4. Go to step 2 until all nodes form a single cluster

Example

Data

Example

D. Blei

Clustering 02

Example

iteration 013

D. Blei

Clustering 02

Example

iteration 014

D. Blei

Clustering 02

Example

iteration 015

D. Blei

Example

iteration 016

D. Blei

Clustering 02

Example

iteration 017

D. Blei

Clustering 02

Example

iteration 018

D. Blei

Clustering 02

Example

iteration 019

D. Blei

Clustering 02

Example

iteration 020

D. Blei

Clustering 02

Example

iteration 021

D. Blei

Clustering 02

Example

iteration 022

D. Blei

Clustering 02

Example

D. Blei

Clustering 02

Example

iteration 024

D. Blei

Clustering 02

Similarity measures $w_{i j}$ for nodes I

Let \mathbf{A} be the adjacency matrix of the network, i.e. $A_{i j}=1$ if $(i, j) \in E$ and 0 otherwise.

- Jaccard index:

$$
w_{i j}=\frac{|\Gamma(i) \cap \Gamma(j)|}{|\Gamma(i) \cup \Gamma(j)|}
$$

where $\Gamma(i)$ is the set of neighbors of node i

- Cosine similarity: ${ }^{2}$

$$
w_{i j}=\frac{\sum_{k} A_{i k} A_{k j}}{\sqrt{\sum_{k} A_{i k}^{2}} \sqrt{\sum_{k} A_{j k}^{2}}}=\frac{n_{i j}}{\sqrt{k_{i} k_{j}}}
$$

where:

- $n_{i j}=|\Gamma(i) \cap \Gamma(j)|=\sum_{k} A_{i k} A_{k j}$, and
- $k_{i}=\sum_{k} A_{i k}$ is the degree of node i

Similarity measures $w_{i j}$ for nodes II

- Euclidean distance: (or rather Hamming distance since A is binary)

$$
d_{i j}=\sum_{k}\left(A_{i k}-A_{j k}\right)^{2}
$$

- Normalized Euclidean distance: ${ }^{3}$

$$
d_{i j}=\frac{\sum_{k}\left(A_{i k}-A_{j k}\right)^{2}}{k_{i}+k_{j}}=1-2 \frac{n_{i j}}{k_{i}+k_{j}}
$$

- Pearson correlation coefficient

$$
\begin{array}{r}
r_{i j}=\frac{\operatorname{cov}\left(A_{i}, A_{j}\right)}{\sigma_{i} \sigma_{j}}=\frac{\sum_{k}\left(A_{i k}-\mu_{i}\right)\left(A_{j k}-\mu_{j}\right)}{n \sigma_{i} \sigma_{j}} \\
\text { where } \mu_{i}=\frac{1}{n} \sum_{k} A_{i k} \text { and } \sigma_{i}=\sqrt{\frac{1}{n} \sum_{k}\left(A_{i k}-\mu_{i}\right)^{2}}
\end{array}
$$

[^0]
Similarity measures for sets of nodes

- Single linkage: $s_{X Y}=\operatorname{máx}_{x \in X, y \in Y} s_{x y}$
- Complete linkage: $s_{X Y}=\min _{x \in X, y \in Y} s_{x y}$
- Average linkage: $s_{X Y}=\frac{\sum_{x \in X, y \in Y} s_{x y}}{|X| \times|Y|}$

Agglomerative hierarchical clustering on Zachary's network
 Using average linkage

The Girvan-Newman algorithm

A divisive hierarchical algorithm [Girvan and Newman, 2002]

Edge betweenness

The betweenness of an edge is the nr. of shortest-paths in the network that pass through that edge

It uses the idea that "bridges" between communities must have high edge betweenness

The Girvan-Newman algorithm

Pseudocode

1. Compute betweenness for all edges in the network
2. Remove the edge with highest betweenness
3. Go to step 1 until no edges left

Result is a dendogram

Definition of modularity [Newman, 2010]
 Using a null model

Random graphs are not expected to have community structure, so we will use them as null models.
$Q=$ (nr. of intra-cluster communities) - (expected nr of edges)

In particular:

$$
Q=\frac{1}{2 m} \sum_{i j}\left(A_{i j}-P_{i j}\right) \delta\left(C_{i}, C_{j}\right)
$$

where $P_{i j}$ is the expected number of edges between nodes i and j under the null model, C_{i} is the community of vertex i, and $\delta\left(C_{i}, C_{j}\right)=1$ if $C_{i}=C_{j}$ and 0 otherwise.

How do we compute $P_{i j}$?

Using the "configuration" null model

The "configuration" random graph model choses a graph with the same degree distribution as the original graph uniformly at random.

- Let us compute $P_{i j}$
- There are $2 m$ stubs or half-edges available in the configuration model
- Let p_{i} be the probability of picking at random a stub incident with i

$$
p_{i}=\frac{k_{i}}{2 m}
$$

- The probability of connecting i to j is then $p_{i} p_{j}=\frac{k_{i} k_{j}}{4 m^{2}}$
- And so $P_{i j}=2 m p_{i} p_{j}=\frac{k_{i} k_{j}}{2 m}$

Properties of modularity

$$
Q=\frac{1}{2 m} \sum_{i j}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right) \delta\left(C_{i}, C_{j}\right)
$$

- Q depends on nodes in the same clusters only
- Larger modularity means better communities (better than random intra-cluster density)
- $Q \leq \frac{1}{2 m} \sum_{i j} A_{i j} \delta\left(C_{i}, C_{j}\right) \leq \frac{1}{2 m} \sum_{i j} A_{i j} \leq 1$
- Q may take negative values
- partitions with large negative Q implies existence of cluster with small internal edge density and large inter-community edges

The Louvain method [Blondel et al., 2008]

Considered state-of-the-art

Pseudocode

1. Repeat until local optimum reached
1.1 Phase 1: partition network greedily using modularity
1.2 Phase 2: agglomerate found clusters into new nodes

The Louvain method

Phase 1: optimizing modularity

Pseudocode for phase 1

1. Assign a different community to each node
2. For each node i

- For each neighbor j of i, consider removing i from its community and placing it to j 's community
- Greedily chose to place i into community of neighbor that leads to highest modularity gain

3. Repeat until no improvement can be done

The Louvain method

Phase 2: agglomerating clusters to form new network

Pseudocode for phase 2

1. Let each community C_{i} form a new node i
2. Let the edges between new nodes i and j be the sum of edges between nodes in C_{i} and C_{j} in the previous graph (notice there are self-loops)

The Louvain method

Observations

- The output is also a hierarchy
- Works for weighted graphs, and so modularity has to be generalized to

$$
Q^{w}=\frac{1}{2 W} \sum_{i j}\left(W_{i j}-\frac{s_{i} s_{j}}{2 W}\right) \delta\left(C_{i}, C_{j}\right)
$$

where $W_{i j}$ is the weight of undirected edge (i, j), $W=\sum_{i j} W_{i j}$ and $s_{i}=\sum_{k} W_{i k}$.

References I

R Barabási, A.-L. and Albert, R. (1999).
Emergence of scaling in random networks.
science, 286(5439):509-512.
R Blondel, V. D., Guillaume, J.-I., Lambiotte, R., and Lefebvre, E. (2008).

Fast unfolding of community hierarchies in large networks.
Networks, pages 1-6.
國 Girvan, M. and Newman, M. E. J. (2002).
Community structure in social and biological networks.
Proceedings of the National Academy of Sciences of the
United States of America, 99:7821-7826.
围 Newman, M. (2010).
Networks: An Introduction.
Oxford University Press, USA, 2010 edition.

References II

國
Newman, M. E. (2003).
The structure and function of complex networks.
SIAM review, 45(2):167-256.
E Watts, D. J. and Strogatz, S. H. (1998).
Collective dynamics of small-world networks.
nature, 393(6684):440-442.

[^0]: ${ }^{2}$ From the equation $\mathrm{xy}=|\mathbf{x}||\mathbf{y}| \cos \theta$
 ${ }^{3}$ Uses the idea that the maximum value of $d_{i j}$ is when there are no common neighbors and then $d_{i j}=k_{i}+k_{j}$

