
IRRS: Information Retrieval and
Recommender Systems

FIB, Master in Data Science

Slides by Marta Arias, José Luis Balcázar,
Ramon Ferrer-i-Cancho, Ricard Gavaldá

Department of Computer Science, UPC

Fall 2022
http://www.cs.upc.edu/~ir-miri

1 / 21

http://www.cs.upc.edu/~ir-miri

2. Information Retrieval Models

Information Retrieval Models, I
Setting the stage to think about IR

What is an Information Retrieval Model?

We need to clarify:
I A proposal for a logical view of documents

(what info is stored/indexed about each document?),
I a query language

(what kinds of queries will be allowed?),
I and a notion of relevance

(how to handle each document, given a query?).

3 / 21

Information Retrieval Models, II
A couple of IR models

Focus for this course:
I Boolean model,

I Boolean queries, exact answers;
I extension: phrase queries.

I Vector model,
I weights on terms and documents;
I similarity queries, approximate answers, ranking.

4 / 21

Boolean Model of Information Retrieval
Relevance assumed binary

Documents:
A document is completely identified by the set of terms that it
contains.
I Order of occurrence considered irrelevant,
I number of occurrences considered irrelevant

(but a closely related model, called bag-of-words or BoW,
does consider relevant the number of occurrences).

Thus, for a set of terms T = {t1, . . . , tT }, a document is just a
subset of T .
Each document can be seen as a bit vector of length T ,
d = (d1, . . . , dT), where
I di = 1 if and only if ti appears in d, or, equivalently,
I di = 0 if and only if ti does not appear in d.

5 / 21

Queries in the Boolean Model, I
Boolean queries, exact answers

Atomic query:
a single term.

The answer is the set of documents that contain it.

Combining queries:
I OR, AND: operate as union or intersection of answers;
I Set difference, t1 BUTNOT t2 ≡ t1 AND NOT t2;
I motivation: avoid unmanageably large answer sets.

In Lucene: +/− signs on query terms, Boolean operators.

6 / 21

Queries in the Boolean Model, II
A close relative to propositional logic

Analogy:
I Terms act as propositional variables;
I documents act as propositional models;
I a document is relevant for a term if it contains the term,

that is, if, as a propositional model, satisfies the variable;
I queries are propositional formulas

(with a syntactic condition of avoiding global negation);
I a document is relevant for a query if, as a propositional

model, it satisfies the propositional formula.

7 / 21

Example, I
A very simple toy case

Consider 7 documents with a vocabulary of 6 terms:

d1 = one three
d2 = two two three
d3 = one three four five five five
d4 = one two two two two three six six
d5 = three four four four six
d6 = three three three six six
d7 = four five

8 / 21

Example, II
Our documents in the Boolean model

five four one six three two

d1 = [0 0 1 0 1 0]
d2 = [0 0 0 0 1 1]
d3 = [1 1 1 0 1 0]
d4 = [0 0 1 1 1 1]
d5 = [0 1 0 1 1 0]
d6 = [0 0 0 1 1 0]
d7 = [1 1 0 0 0 0]

(Invent some queries and compute their answers!)

9 / 21

Queries in the Boolean Model, III
No ranking of answers

Answers are not quantified:
A document either
I matches the query (is fully relevant),
I or does not match the query (is fully irrelevant).

Depending on user needs and application, this feature may be
good or may be bad.

10 / 21

Phrase Queries, I
Slightly beyond the Boolean model

Phrase queries: conjunction plus adjacency
Ability to answer with the set of documents that have the terms
of the query consecutively.
I A user querying “Keith Richards” may not wish a document

that mentions both Keith Emerson and Emil Richards.
I Requires extending the notion of “basic query” to include

adjacency.

11 / 21

Phrase Queries, II
Options to “hack them in”

Options:
I Run as conjunctive query, then doublecheck the whole

answer set to filter out nonadjacency cases.
This option may be very slow in cases of large amounts of
“false positives”.

I Keep in the index dedicated information about adjacency
of any two terms in a document (e.g. positions).

I Keep in the index dedicated information about a choice of
“interesting pairs” of words.

12 / 21

Vector Space Model of Information Retrieval, I
Basis of all successful approaches

I Order of words still irrelevant.
I Frequence is relevant.
I Not all words are equally important.
I For a set of terms T = {t1, . . . , tT }, a document is a vector

d = (w1, . . . , wT) of floats instead of bits.
I wi is the weight of ti in d.

13 / 21

Vector Space Model of Information Retrieval, II
Moving to vector space

I A document is now a vector in IRT .
I The document collection conceptually becomes a matrix

terms × documents.

but we never compute the matrix explicitly.
I Queries may also be seen as vectors in IRT .

14 / 21

The tf-idf scheme
A way to assign weight vector to documents

Two principles:
I The more frequent t is in d, the higher weight it should

have.

I The more frequent t is in the whole collection, the less it
discriminates among documents, so the lower its weight
should be in all documents.

15 / 21

The tf-idf scheme, II
The formula

A document is a vector of weights

d = [wd,1, . . . , wd,i, . . . , wd,T].

Each weight is a product of two terms

wd,i = tfd,i · idfi.

The term frequency term tf is

tfd,i =
fd,i

máxj fd,j
, where fd,j is the frequency of tj in d.

And the inverse document frequency idf is

idfi = log2
D

dfi
, where D = number of documents

and dfi = number of documents that contain term ti.

16 / 21

Example, I

five four one six three two maxf

d1 = [0 0 1 0 1 0] 1
d2 = [0 0 0 0 1 2] 2
d3 = [3 1 1 0 1 0] 3
d4 = [0 0 1 2 1 4] 4
d5 = [0 3 0 1 1 0] 3
d6 = [0 0 0 2 3 0] 3
d7 = [1 1 0 0 0 0] 1

df = 2 3 3 3 6 2

17 / 21

Example, II

df = 2 3 3 3 6 2
d3 = [3 1 1 0 1 0]
→

d3 = [3
3
log2

7
2

1
3
log2

7
3

1
3
log2

7
3

0
3
log2

7
3

1
3
log2

7
6

0
3
log2

7
2

]

= [1.81 0.41 0.41 0 0.07 0]

d4 = [0 0 1 2 1 4]
→

d4 = [0
4
log2

7
2

0
4
log2

7
3

1
4
log2

7
3

2
4
log2

7
3

1
4
log2

7
6

4
4
log2

7
2

]

= [0 0 0.61 1.22 0.11 3.61]

18 / 21

Similarity of Documents in the Vector Space Model
The cosine similarity measure

I “Similar vectors” may happen to have very different sizes.
I We better compare only their directions.
I Equivalently, we normalize them before comparing them to

have the same Euclidean length.

sim(d1, d2) =
d1 · d2

|d1| |d2|
=

d1

|d1|
· d2

|d2|
where

v · w =
∑
i

vi · wi, and |v| =
√
v · v =

√∑
i

v2i .

I Our weights are all nonnegative.
I Therefore, all cosines / similarities are between 0 and 1.

19 / 21

Cosine similarity, Example

d3 = [1.81 0.41 0.41 0 0.07 0]
d4 = [0 0 0.61 1.22 0.11 3.61]

Then
|d3| = 1.898, |d4| = 3.866, d3 · d4 = 0.26

and sim(d3, d4) = 0.035 (i.e., small similarity).

20 / 21

Query Answering

I Queries can be transformed to vectors too.
I Sometimes, tf-idf weights; often, binary weights.
I sim(doc, query) ∈ [0, 1].
I Answer: List of documents sorted by decreasing similarity.

I We will find uses for comparing sim(d1, d2) too.

21 / 21

	2. Information Retrieval Models
	The Boolean Model of Information Retrieval
	About Phrase Queries
	The Vector Space Model of Information Retrieval

