
Finding and assessing community structure

Argimiro Arratia & Ramon Ferrer-i-Cancho
(with collaboration by Mart́ı Renedo)

Complex and Social Networks (2023-2024)

Master in Innovation and Research in Informatics (MIRI)

1 Introduction to igraph’s community detection
algorithms

In this session you will run and compare different community finding algorithms.
The following R packages will be used: igraph, igraphdata, clustAnalytics.
The package igraphdata contains various graphs in igraph format. After load-
ing the package type in data(package="igraphdata") to get a list of data
sets included in this package. The package clustAnalytics contains various
methods to assess the quality of clusterings.

In the igraph package there are a few clustering algorithms already imple-
mented, including some we have seen in theory class:

• edge.betweenness.community [Newman and Girvan, 2004]

• fastgreedy.community [Clauset et al., 2004]: modularity greedy opti-
mization method.

• label.propagation.community [Raghavan et al., 2007]: This is a fast,
nearly linear time algorithm for detecting community structure in net-
works. It works by labeling the vertices with unique labels and then
updating the labels by majority voting in the neighborhood of the vertex.

• leading.eigenvector.community [Newman, 2006]

• multilevel.community [Blondel et al., 2008]: This is a multi-level mod-
ularity optimization algorithm (the Louvain method).

• optimal.community [Brandes et al., 2008]: Works by maximizing the mod-
ularity measure over all possible partitions.

• spinglass.community [Reichardt and Bornholdt, 2006]: tries to find com-
munities in graphs via a spin-glass model and simulated annealing.

1

• walktrap.community [Pons and Latapy, 2005]: tries to find densely con-
nected subgraphs (communities) in a graph via random walks. The idea
is that short random walks tend to stay in the same community.

• infomap.community [Rosvall and Bergstrom, 2008]: Find community struc-
ture that minimizes the expected description length of a random walker
trajectory.

All of these methods return a communities object, which you can then use to
explore, plot, and compute metrics on. As an example, consider the following
snippet of code:

> library(igraph)

> library(clustAnalytics)

> data(karate,package="igraphdata")

> wc <- walktrap.community(karate)

> modularity(wc)

[1] 0.3532216

> unname(membership(wc)) ## try membership(wc)

[1] 1 1 2 1 5 5 5 1 2 2 5 1 1 2 3 3 5 1 3 1 3 1 3 4 4 4 3 4 2 3 2 2 3 3

> plot(wc, karate)

An alternative way of plotting communities without the shaded regions is:

> plot(karate, vertex.color=membership(wc))

2

For those algorithms that output communities with hierarchical structure, this
information can be visualized using the dendPlot function, which displays the
corresponding dendogram:

> data(karate,package="igraphdata")

> fc <- fastgreedy.community(karate)

> dendPlot(fc)

3

Sometimes it is useful to work with the adjacency matrix associated to the
network:

> as_adjacency_matrix(as.undirected(karate,mode = "each"))

Note that for a multigraph G (a graph with possibly more than one edge between
pairs of nodes) its adjacency matrix corresponds to the weighted simple graph
with same vertex set V (G) and where weights on each edge corresponds to
number of edges in the multigraph. See this by running previous code with
multigraph UKfaculty in igraphdata.

In the package clustAnalytics we have the function evaluate significance

which takes a graph and a list of clustering algorithms as arguments, ap-
plies these algorithms to the graph and evaluates significance of the clusterings
through various scoring functions (all seen in class). It returns a table with the
scores for each algorithm. If the graph has a known ground truth community
structure (such as the factions in the karate club), we can set gt clustering

as the membership vector to evaluate it and compare it to the results of the
clustering algorithms. In our karate graph the ground truth is available with
V(karate)$Faction.

> evaluate_significance(karate,alg_list=list(Louvain=cluster_louvain,

+ "label prop"= cluster_label_prop,

+ walktrap=cluster_walktrap),

+ gt_clustering=V(karate)$Faction)

Finally, in the analysis of clustering algorithms it is useful to generate controlled
examples of networks with communities (synthetic ground truth models). The
following creates a graph of order 100 and size 400 with two communities, with
the added feature of having scale-free degree distribution, as it is constructed
following the Barabasi-Albert preferential attachment method:

> B <- matrix(c(1, 0.2, 0.2, 1), ncol=2)

> G <- barabasi_albert_blocks(m=4, p=c(0.5, 0.5), B=B, t_max=100,

type="Hajek", sample_with_replacement = FALSE)

> plot(G, vertex.color=(V(G)$label),vertex.label=NA,vertex.size=10)

More information on how to use the clustAnalytics functions can be found in
the Help and in [Arratia and Renedo-Mirambell, 2022].

2 Tasks

We shall design a criteria for evaluating clustering quality based on comparing
against a reference clustering, that is a clustering for which we have certain guar-
antees of its significance: either because it is the ground truth or the clustering

4

with best scores from a tandem of significance scoring functions. The criteria
will rely on the Jaccard index to quantify two clusterings similarity. Given two
sets A and B (in this task these will be parts of two different partitions), their
Jaccard index is:

J(A,B) =
|A ∩B|
|A ∪B|

By definition 0 ≤ J(A,B) ≤ 1 and the closer to 1 the more similar that A and
B are.

1. Write an R function that, given two different clusterings of the same net-
work, it outputs a table of the Jaccard index between each of their clusters
(i.e. a table that includes the Jaccard index between each cluster of label-
ing 1 and each cluster of labeling 2).

2. Write a function that for each cluster of labeling 1, identifies which is the
cluster of labeling 2 that is more similar according to the Jaccard index,
and returns all these indices indicating which clusters they correspond to.

3. Write a function that computes the weighted mean of the vector of values
output by previous function (weights given by fraction of number of nodes
in each cluster). This quantity we will consider as the (global) Jaccard
similarity of the two clusterings. Why is this a reasonable similarity among
clusterings (say, as opposed to the mean value)? Can you think of another
way of combining the vector of Jaccard indices obtained in 2. to quantify
clusterings similarity?

The following snippet of code illustrates what we expect. Assume we have a
network and two different clusterings: one is the ground truth (memb GT) with
4 clusters, and the other produced by Louvain algorithm (memb louvain) with
6 clusters:

> JS <- jaccard_sim(memb_GT, memb_louvain)

> JS

1 2 3 4 5 6

3 0.52941176 0.04054054 0.09722222 0.01098901 0.08641975 0.03030303

4 0.02666667 0.49019608 0.13043478 0.10975610 0.00000000 0.01515152

1 0.00000000 0.01123596 0.15000000 0.34615385 0.03061224 0.26562500

2 0.02631579 0.01315789 0.05333333 0.09523810 0.54385965 0.01492537

> MC <- match_clusters(JS, name1="GT", name2="Lv")

> MC

(GT.3,Lv.1) (GT.4,Lv.2) (GT.1,Lv.4) (GT.2,Lv.5)

0.5294118 0.4901961 0.3461538 0.5438596

> Wmean(MC)

0.4804535

5

4. Use your code to evaluate the significance of clusterings produced by dif-
ferent community detection methods applied to four different networks
(all these are specified below). The evaluation will be a combination of
the significance scoring functions (select a representative of each class, and
rank the clusterings according to best values –recall that for some scoring
functions high is best while for others low is best), plus the Jaccard simi-
larity (local and global) with respect to a good reference clustering. Take
as the reference clustering the ground truth, if it is known; or the best
ranked clustering (according to your selected group of scoring functions),
otherwise.

You will evaluate at least the following community detection algorithms:
Louvain, Label Propagation, Walktrap and Edge Betweenness. You may
add any other(s) you like to the study and found in igraph.

You will apply the community detection algorithms to the following net-
works (the first two with known ground truth communities):

• karate (igraphdata)

• a synthetic network with scale-free degree distribution, 200 nodes,
800 edges and 4 communities, which you have to build with
barabasi albert blocks (clusAnalytics)

• ENRON network (igraphdata). Note that this is a multigraph so
you must convert it to a (undirected) simple weighted graph, where
weights are number of edges among two nodes.

• A network of your choice with no known community structure. You
can use networks from network repositories available in the web or
from the igraphdata package.

3 Deliverables

You have to prepare a report describing your findings and results while solving
this lab, report and discuss summary tables of clustering significance evaluation
based on scoring functions and the Jaccard similarity criterion for each network,
and especially emphasizing any difficulties you encountered and the solution you
found to overcome them.

To deliver: You must deliver the report explained above in PDF format. You
also have to hand in the source code in R (or any other language) that you have
used, including some minimal comments that can help the reader. This work
can be done in pairs; in that case it is enough that one of you submits the work
as long as both names are clearly visible in the report.

Procedure: Submit your work through the raco platform as a single compressed
file.

6

http://www.fib.upc.edu/en/serveis/raco.html

Deadline: Work must be delivered within 2 weeks from the lab session you
attend. Late deliveries risk being penalized or not accepted at all. If you
anticipate problems with the deadline, please tell us as soon as possible.

References

[Arratia and Renedo-Mirambell, 2022] Arratia, A. and Renedo-Mirambell, M.
(2022). clustAnalytics: An R Package for Assessing Stability and Significance
of Communities in Networks. R Journal, xxx(0):1–11.

[Blondel et al., 2008] Blondel, V. D., Guillaume, J.-l., Lambiotte, R., and
Lefebvre, E. (2008). Fast unfolding of community hierarchies in large net-
works. Networks, pages 1–6.

[Brandes et al., 2008] Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer,
M., Nikoloski, Z., and Wagner, D. (2008). On Modularity Clustering. IEEE
Transactions on Knowledge and Data Engineering, 20.

[Clauset et al., 2004] Clauset, A., Newman, M. E. J., and Moore, C. (2004).
Finding community structure in very large networks. Physical Review E.

[Newman, 2006] Newman, M. E. J. (2006). Finding community structure in
networks using the eigenvectors of matrices. Physical review. E, Statistical,
nonlinear, and soft matter physics, 74:036104.

[Newman and Girvan, 2004] Newman, M. E. J. and Girvan, M. (2004). Find-
ing and evaluating community structure in networks. Physical review. E,
Statistical, nonlinear, and soft matter physics, 69(2 Pt 2):026113.

[Pons and Latapy, 2005] Pons, P. and Latapy, M. (2005). Computing commu-
nities in large networks using random walks. Journal of Graph Algorithms
and Applications, 10:191–218.

[Raghavan et al., 2007] Raghavan, U. N., Albert, R., and Kumara, S. (2007).
Near linear time algorithm to detect community structures in large-scale net-
works. Physical review. E, Statistical, nonlinear, and soft matter physics,
76:036106.

[Reichardt and Bornholdt, 2006] Reichardt, J. and Bornholdt, S. (2006). Sta-
tistical mechanics of community detection. Physical Review E, 74.

[Rosvall and Bergstrom, 2008] Rosvall, M. and Bergstrom, C. T. (2008). Maps
of random walks on complex networks reveal community structure. Proceed-
ings of the National Academy of Sciences of the United States of America,
105:1118–1123.

7

	Introduction to igraph's community detection algorithms
	Tasks
	Deliverables

