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1 Introduction

In this session, we are going to practice on information theoretic model selection
for the degree distribution of global syntactic dependency networks. In these
networks vertices are words (word types) and two vertices are linked if they have
been linked at least once in a dependency treebank [Ferrer-i Cancho et al., 2004].

Through some procedure, three groups of students will be formed:

� The undirected group. Its member will have to work on the on undirected
degree distributions. Their dataset is degree sequences.tar.gz.

� The in-degree group. Its members will have to work on in-degree distri-
butions. Their dataset is in-degree sequences.tar.gz.

� The out-degree group. Its members will have to work on out-degree dis-
tributions. Their dataset is out-degree sequences.tar.gz.

Each pair in one group should work independently from others but is allowed
to compare results.

Each of the files contains the degree sequences from global syntactic dependency
networks (undirected degree sequences, in-degree sequences or out-degree se-
quences from various languages). A degree sequence is sequence k1, ..., ki, ..., kN ,
where ki is the degree of the i-th node.

Download your .tar.gz and uncompress it, e.g. using the command

tar -xzvf degree_sequences.tar.gz

You can load the degree sequence of the English network with

degree_sequence = read.table("./data/English_degree_sequence.txt",

header = FALSE)
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Table 1: Summary of the properties of the degree sequences. N is the number
of nodes, M/N is mean degree where M is the sum of degrees.

Language N Maximum degree M/N N/M
... ... ... ... ...
... ... ... ... ...
... ... ... ... ...

The number of nodes N , (i.e. the length of the degree sequence) can be com-
puted requesting the number of rows of the N × 1 matrix.

dim(degree_sequence)[1]

which is equivalent to

nrow(degree_sequence)

(the number of columns is obtained with ncol(degree_sequence)). The sum
of the degrees can be computed with

sum(degree_sequence)

Thus the mean degree can be computed as

sum(degree_sequence)/dim(degree_sequence)[1]

For simplicity, we assume that ki ≥ 1. This means that unlinked nodes, if any,
must be removed. One reason is that the family of zeta distributions we are
going to consider cannot produce degree 0. Another reason is that unlinked
nodes originate quite often from missing information and our goal here is not
that of modelling missing information.

In the file summary_table.R you have an example of an R script that shows
some elementary properties of the degree sequence for each language: N , the
maximum degree, the mean degree and its inverse. The script can be executed
with

source("summary_table.R")

With the output of that script, you have to produce a table with the format
of Table 1. This table will be needed in the coming sections. The script can
be adapted to produce the tables that you will have to produce in the coming
sections.
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2 Visualization

degree_sequence = read.table("./data/English_degree_sequence.txt", header = FALSE)

degree_spectrum = table(degree_sequence)

The command produces a bar plot in normal scale

barplot(degree_spectrum, main = "English",

xlab = "degree", ylab = "number of vertices")

while

barplot(degree_spectrum, main = "English",

xlab = "degree", ylab = "number of vertices", log = "xy")

does it in log-log scale.

3 A toy ensemble of distributions

Let p(k) be the probability that a vertex has degree k. p(k) is the probabil-
ity mass function of k and is one way of defining the degree distribution (the
cumulative degree distribution might be another way of defining the degree dis-
tribution). In this lab session, the probability mass function of degree p(k) and
the degree distribution are treated as equivalent.

We consider a toy ensemble of degree distributions on which performing model
selections (see [Stumpf et al., 2005, Li et al., 2010] for a richer and more power-
ful ensemble of degree distributions), where, in all cases p(0) = 0. The ensem-
ble contains two distributions from null models of networks and three nested
variants of the zeta distribution as possible models of power-laws. The dis-
tributions deriving from null models of networks are the Poisson distribution
and the geometric distribution. The Poisson distribution is chosen for being a
mathematically simple approximation to the binomial distribution characteriz-
ing Erdös-Rényi graphs [Newman, 2009]. There is a very important difference
between the Poisson and the geometric distribution: they exhibit an exponential
tail while the zeta distribution exhibits a so-called heavy tail.

The displaced geometric distribution (with p(0) = 0) is defined as

p(k) = (1− q)k−1q, (1)

where q is the only parameter of the distribution and k ≥ 0. We will not use a
perhaps more popular version of the distribution defined as

p(k) = (1− q)kq. (2)
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for k ≥ 0 because we do not allow for unlinked vertices.

For the same reason, we will not use the popular definition of the Poisson
distribution with parameter λ

p(k) =
λke−λ

k!
(3)

for k > 0. Imposing the condition k ≥ 1, the displaced Poisson distribution is
obtained (see Appendix)

p(k) =
λke−λ

k!(1− e−λ)
(4)

The three nested variants of the zeta distribution that we consider are:

1. p(k) = k−2

ζ(2) (zeta distribution with (-)2 exponent)

2. p(k) = k−γ

ζ(γ) (zeta distribution with exponent γ)

3. p(k) = k−γ

H(kmax,γ)
(right-truncated zeta distribution with exponent γ with

right-truncation beyond kmax)

4 Estimation of the parameters

Before applying standard model selection methods, the parameters giving the
best fit must be obtained. This is done may maximizing the L, the log-likelihood
function. If the degree sequence of a network of N vertices is k1, k2, ...kN , its
log-likelihood is

L = log

(
N∏
i=1

p(ki)

)
=

N∑
i=1

log p(ki). (5)

The parameters giving the best fit are those that maximize L. Table 2 shows
a summary of the log-likelihood function of each distribution. First, we will
explain how these log-likelihoods have been derived and then we will explain
how to use R to estimate the best parameters of a function.
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Table 2: The log-likelihood L for each of the probability mass functions. K
is the number of free parameters. M is the sum of degrees, i.e. M =

∑N
i=1 ki.

M ′ is the sum of degree logarithms, i.e. M ′ =
∑N
i=1 log ki and C is the sum of

logarithm of degree factorials, i.e. C =
∑N
i=1

∑ki
j=2 log j.

Model Function K L
1 Displaced Poisson 1 M log λ−N(λ+ log(1− e−λ))− C
2 Displaced geometric 1 (M −N) log(1− q) +N log q

3 Zeta with γ = 2 0 −2M ′ −N log π2

6
4 Zeta 1 −γM ′ −N log ζ(γ)
5 Right-trucanted zeta 2 −γM ′ −N logH(kmax, γ)

4.1 Derivation of the log-likelihood functions

� Speakers of Romance languages (Catalan, Spanish,...): do not confuse
derivation, e.g., the deduction of a formula (derivació, derivación,...) with
derivative (derivada,...), e.g., a formula deduced by differentiation (the
tangent of a curve in a graphical sense).

� Derive in English (as well as derivar in Catalan or Spanish) has at least
two meanings: obtain (applying some inferences) and a more restrictive
meaning of obtaining by differentiation. The latter is not intended for this
session!

For the displaced geometric distribution (Eq. 1),

L =

N∑
i=1

log
[
(1− q)ki−1q

]
,

=

N∑
i=1

[(ki − 1) log(1− q) + log q]

= (M −N) log(1− q) +N log q, (6)

where

M =

N∑
i=1

ki. (7)

Notice that the number of edges E, satisfies M = 2E (in the absence of loops).

For the displaced Poisson distribution (Eq. 4), the log-likelihood is

L =

N∑
i=1

log
λkie−λ

ki!(1− e−λ)
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=

N∑
i=1

[
ki log λ− λ log e− log(1− e−λ)

]
− C (8)

with

C =

N∑
i=1

log(ki!)

=

N∑
i=1

ki∑
j=1

log j

=

N∑
i=1

ki∑
j=2

log j (9)

Working further on Eq. 8, it is finally obtained

L = log λ

N∑
i=1

ki −
N∑
i=1

(λ+ log(1− e−λ))− C

= log λ

N∑
i=1

ki − (λ+ log(1− e−λ))

N∑
i=1

1− C

= M log λ−N(λ+ log(1− e−λ))− C, (10)

where M is defined as before.

For the zeta distributions, we will start from the log-likelihood for the right-
truncated zeta distribution and then obtain the log-likelihood for the particular
versions. The log-likelihood of the right-truncated zeta distribution is

L =

N∑
i=1

log
k−γi

H(kmax, γ)

= −γM ′ −
N∑
i=1

logH(kmax, γ), (11)

where

M ′ =

N∑
i=1

log ki. (12)

Working further on Eq. 11, it is finally obtained

L = −γM ′ −N logH(kmax, γ). (13)

The result is analogous to the derivation in the context of the rank spectrum
for word frequencies [Baixeries et al., 2013].
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The log-likelihood for the zeta distribution is obtained applying kmax → ∞ to
Eq. 13, which gives

L = −γM ′ −N log ζ(γ). (14)

The log-likelihood of the zeta distribution with γ = 2 is obtained applying
ζ(2) = π2/6, which gives

L = −2M ′ −N log
π2

6
. (15)

4.2 How to use R to estimate the parameters by maximum
likelihood

The procedure to obtain the best parameters by maximum likelihood needs an
initial value for the parameters. For displaced geometric distribution, an initial
value can be inferred from the fact that the expectation of k is µk = 1/q. µk can
be estimated by the mean degree, i.e. M/N . Thus, a suitable initial value of q
is q0 = 1/µk = N/M . For the displaced Poisson distribution (see Appendix),

µk =
λ

1− e−λ
(16)

and then µk ≈ λ for sufficiently large λ. Thus, a suitable initial value of λ is
λ0 = M/N .

For the two zeta distributions with γ as free parameter, a suitable initial value
is γ0 = 2 (alternatively, a better initial value can be inferred from the slope of
a linear regression in log-log scale). For the right-truncated zeta distribution a
suitable initial value for kmax is kmax,0 = N (alternatively, one could use the
largest degree for kmax,0).

From this section onwards, the packages stats4 and VGAM are needed. They
can be loaded with the commands

require("stats4") # for MLE

require("VGAM") # for the Riemann-zeta function

Before loading them you may need to install if not already installed using:

install.packages("stats4")

install.packages("VGAM")

Let us see a concrete example for the zeta distribution. The minus log-likelihood
function is defined through

x <- degree_sequence$V1

minus_log_likelihood_zeta <- function(gamma) {

length(x) * log(zeta(gamma)) + gamma * sum(log(x))

}
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where minus_log_likelihood is −L for the zeta distribution following Table
2.

To estimate the parameters, we call the command mle(...) indicating that the
minus log-likelihood function is log likelihood zeta, that the initial value of
the only parameter is 2, that the method to maximize the log-likelihood is “L-
BFGS-B” (a minimization/maximization method allowing one to define upper
and lower bounds on the parameters) and that the minimum value of γ is a very
small number above 1 (recall that the zeta distribution requires γ > 1).

mle_zeta <- mle(minus_log_likelihood_zeta,

start = list(gamma = 2),

method = "L-BFGS-B",

lower = c(1.0000001))

Notice that mle does not have L as parameter but −L instead. mle solves
the problem of maximum likelihood by minimizing −L. This has an important
practical consequence: the sign of the formulae in Table 2 must be inverted
before supplying them to mle.

The following command allows one to see a summary of the results of the max-
imum likelihood estimation

summary(mle_zeta)

The command attributes(...) allows one to see how to fish for the informa-
tion

attributes(summary(mle_zeta))

Then the exponent giving the best fit can be retrieved with

attributes(summary(mle_zeta))$coef[1]

Check that q ≈ q0, λ ≈ λ0, with the help of Table 1 and 3. In contrast, (γ and
γ0 might differ substantially especially if they were obtained by linear regression
in log-log scale).

5 Model selection

We are going to choose the best of the models according to AIC with a correction
for sample size, which is defined as

AICc = −2L+ 2K
N

N −K − 1
. (17)
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Table 3: Summary of the most likely parameters. γ1 and γ2 refer, respectively,
to the exponent of the zeta distribution and the right-truncated distribution.

Model

1 2 4 5
Language λ q γ1 γ2 kmax

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...

For the values of N and K that we are going to use (N � K in our case), the
correction is likely to not alter the conclusions of model selection with regard
to the original AIC.

5.1 Model selection with R

−2logL (= −2L) can be fished from the object returned by the mle with

attributes(summary(mle_zeta))$m2logL

for the example of the zeta distribution above.

It is convenient to define a function that computes the AIC from the relevant
information, e.g.,

get_AIC <- function(m2logL,K,N) {

m2logL + 2*K*N/(N-K-1) # AIC with a correction for sample size

}

Following the example of the zeta distribution, the AIC can be obtained with

get_AIC(attributes(summary(mle_zeta))$m2logL, 1, N)

To complete the work, you have to calculate AICbest, the smallest AIC of the
ensemble of distributions and, for every model, calculate ∆ = AIC − AICbest,
the so-called AIC difference. Then, you have to produce a summary table
with the format of Table 4. Calling mle(...) with the right-truncated zeta
distribution is tricky. You will have to define the lower bound for the kmax
parameter carefully.

Finally, investigate the consequences of adding a new probability distribution
that is able to give a better fit than the best model so far. We suggest an
Altmann function such as

p(k) = ck−γe−δk (18)
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Table 4: The AIC difference (∆) of a model on a given source. Models are
numbered according to Table 2

Model

Language 1 2 3 4 5
... ... ... ... ... ...
... ... ... ... ... ...
... ... ... ... ... ...

if 1 ≤ k ≤ N and p(k) = 0 otherwise, with

c =
1∑N

k=1 k
−γe−δk

(19)

6 Checking your methods

One important limitation of the real datasets we are providing you is that the
true distribution is unknown. Furthermore, the true distribution may not belong
to the ensemble of probability functions suggested above. Thus, it is difficult
to be certain about the correctness of the results conditioned on that ensemble
of distributions. For this reason, we are also providing artificial datasets where
the true distribution is known a priori. The file

samples from discrete distributions.tar.gz

provides a collection of files produced with the geometric distribution and the
zeta distribution. You have two check that your methods:

� Select the right distribution.

� Obtain the right parameters of the distribution.

Bear in mind that the file for zeta with γ = 1.5 is a priori problematic (do not
worry if that is the only functions in Table 2 for which R crashes). Hypothesizing
a distribution that is totally different from the real one can be problematic, e.g.,
a geometric distribution for a zeta distribution with γ < 2.

7 Deliverables

You have to prepare a report including the following sections (in this order):
introduction, results, discussion and methods. Results includes all the tables
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and figures (the preliminary plots and the plots of the best model to the real
data) and some guiding text. Methods should include any relevant methods not
explained in this guide (for instance, decisions that you had to make and might
have an influence on the results). The discussion should include a summary of
the results and your interpretation. For instance, you should discuss

� If there is a significance difference between the fit of the distributions from
null models and those of the zeta family.

� Discuss if the distribution giving the best fit gives a reasonably good fit
(e.g., checking visually that the best function provides a sufficiently good
fit). Remember that the best function of an ensemble is not necessarily
the best in absolute terms.

� The extent to which languages resemble or differ.

The discussion section should also include some conclusions.

Important rule: Plagiarism will be prosecuted. Nevertheless, you are encouraged
to ask the teacher as soon as possible if you think you do not understand what
you are supposed to do, and also if you feel you are spending much more time
than the rest of the group – sometimes a tiny error can be tricky to find and
does not add much to your knowledge. Questions can be asked either in person
or by email, and you will never be penalized by asking questions, no matter how
stupid they look in retrospect.

To deliver: You must deliver the report explained above. The formats accepted
for the report are, in principle, pdf, Word, OpenOffice, and Postscript. You also
have to hand in the source code in R (or other languages) that you have used,
including some minimal comments that can help the reader.

Procedure: Submit your work through the raco platform as a single zipped file.

Deadline: Work must be delivered within 2 weeks from the lab session you
attend. Late deliveries risk being penalized or not accepted at all. If you
anticipate problems with the deadline, please tell us as soon as possible.
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Appendix

The standard Poisson distribution can be defined as

p(k|k ≥ 0) =
λke−λ

k!
. (20)

We want to derive a displaced Poisson distribution where k ≥ 1. Its probability
mass function is

p(k|k > 0) =
p(k|k ≥ 0)p(k ≥ 0|k ≥ 0)

p(k > 0|k ≥ 0)

=
p(k|k ≥ 0)

p(k > 0|k ≥ 0)

=
p(k|k ≥ 0)

1− p(k = 0|k ≥ 0)
(21)

as p(k ≥ 0|k ≥ 0) = 1. Thus, applying the definition of the standard Poisson
(Eq. 20) to Eq. 21, it is obtained

p(k|k > 0) =
λke−λ

k!(1− e−λ)
(22)

The expected k for the standard Poisson distribution is E[k|k ≥ 0] = λ. The
expected k for the displaced Poisson distribution above is

E[k|k > 0] =

∞∑
k=1

p(k|k > 0)k

=
1

1− p(k = 0|k ≥ 0)

∞∑
k=1

p(k|k ≥ 0)k

=
1

1− p(k = 0|k ≥ 0)

∞∑
k=0

p(k|k ≥ 0)k

=
E[k|k ≥ 0]

1− p(k = 0|k ≥ 0)

=
λ

1− e−λ
(23)
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