
Introduction to igraph (v. 1.3.4)

Argimiro Arratia & Ramón Ferrer

September 13, 2023

1 Introduction

This session will introduce the basic tools for the analysis of networks that we
will be using during this course. We will use the following software:

R is “a language and environment for statistical computing and graphics”1 with
a very active community of contributors. Available from http://www.

r-project.org/.

RStudio is “a free and open source integrated development environment for
R”2. It makes working with R more pleasant. Available from http://

www.rstudio.com/.

igraph is “a free software package for creating and manipulating undirected and
directed graphs”3. Available from https://cran.r-project.org/web/

packages/igraph/. Documentation (a manual of 475 pages!): https:

//cran.r-project.org/web/packages/igraph/igraph.pdf

igraphdata A package that provides various data sets (graphs) in igraph for-
mat. After loading the igraphdata package, the various data sets can be
loaded using the regular data command. Type in

data(package="igraphdata")

to get a list of data sets included in this package.

The computers in the PC Lab should have these three components installed.
If igraph is not installed, then you can do so through RStudio’s install man-
ager. Then, to load the library so that you can use its functionality you should
introduce the following command into the console:

1From http://www.r-project.org/about.html
2From http://www.rstudio.com/ide/
3From http://igraph.sourceforge.net/introduction.html

1

http://igraph.sourceforge.net/
http://www.r-project.org/
http://www.r-project.org/
http://www.rstudio.com/
http://www.rstudio.com/
https://cran.r-project.org/web/packages/igraph/
https://cran.r-project.org/web/packages/igraph/
https://cran.r-project.org/web/packages/igraph/igraph.pdf
https://cran.r-project.org/web/packages/igraph/igraph.pdf
http://www.r-project.org/about.html
http://www.rstudio.com/ide/
http://igraph.sourceforge.net/introduction.html

> library(igraph)

You are expected to be able to consult help online so that you can achieve the
tasks you are required to do, even if you have never used this software before.

2 Basics

This section will cover the basic commands for creating, manipulating and visu-
alizing graphs using igraph. It should also help as an introduction to the main
R commands. If you are unfamiliar with R, there are many online tutorials; you
can find many using Google, for example.

2.1 Creating graphs

The objects we study in this course are graphs (or networks). They consist of
a set of nodes and a set of edges. As an example, if you type into the RStudio

console the following command

g <- graph(c(1,2, 1,3, 2,3, 3,5), n=5)

In this command, we are assigning to the variable g a graph that has nodes
V = {1, 2, 3, 4, 5} and has edges E = {(1, 2), (1, 3), (2, 3), (3, 5)}

The commands V(g) and E(g) print the list of nodes and edges of the graph g:

> V(g)

Vertex sequence:

[1] 1 2 3 4 5

> E(g)

Edge sequence:

[1] 1 -> 2

[2] 1 -> 3

[3] 2 -> 3

[4] 3 -> 5

You can add nodes and edges to an already existing graph, e.g.:

> g <- graph.empty() + vertices(letters[1:10], color="red")

> g <- g + vertices(letters[11:20], color="blue")

> g <- g + edges(sample(V(g), 30, replace=TRUE), color="green")

> V(g)

Vertex sequence:

2

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t"

> E(g)

Edge sequence:

[1] q -> q

[2] n -> a

[3] j -> p

[4] s -> h

[5] f -> c

[6] h -> f

[7] g -> r

[8] t -> t

[9] j -> o

[10] c -> f

[11] i -> a

[12] o -> q

[13] c -> j

[14] r -> i

[15] a -> b

These lines create a graph g with 20 nodes and 15 random edges. Notice that
nodes and edges can also have attributes, e.g. in this example we are assigning
different colors to nodes. The command sample returns a vector containing a
sample of 30 random vertices from g.

2.1.1 Loading graphs

We have seen how to create graphs from scratch, but most often we will be
loading them from a file containing the graph in some sort of format. igraph

handles many graph formats already. The simplest one is a file containing the
edge list. For example, suppose that we have a file graph.txt containing the
following three edges:

0 1

1 2

2 3

We can create a graph using the command

> g <- read.graph("graph.txt", format="edgelist")

> V(g)

Vertex sequence:

[1] 1 2 3 4

> E(g)

Edge sequence:

3

[1] 1 -> 2

[2] 2 -> 3

[3] 3 -> 4

Notice that the node ids within igraph start with 1, but the input file ex-
pects the first id to be 0. This is because igraph enforces consecutive nume-
rical ids for vertices (and edges) and always starting at 1. If some operation
changes the number of vertices in the graphs, e.g. a subgraph is created via
induced subgraph, then the vertices are renumbered to satisfy this criteria.
Keep this in mind!

For example, run and see the results of the following commands:

> IG <- induced.subgraph(g,2:4)

> V(IG)

If you really want the node id to be its label (or to work with specific labels for
the vertices), you can set this with set vertex attribute:

> g=set_vertex_attr(g,"name", value = 0:3)

Now, list again the vertices and edges and you will see the change.

We can access specific graphs (some used as benchmark) from igraphdata

library(igraphdata)

data(karate, package="igraphdata")

plot(karate)

We can also access online graphs with the command read.graph.

2.1.2 Graph generators

igraph implements also many useful graph generators. We have already seen a
few models in class, in particular: the Edös-Rényi model (ER), the Barabasi-
Albert model (BA), and the Watts-Strogratz model (WS). The following com-
mands generate graphs using these models:

er_gnm <- sample_gnm(n=100,m=80) # Erdos-Renyi G(n,m)

plot(er_gnm)

er_gnp <- sample_gnp(n=100,p= .02) # Erdos-Renyi G(n,p)

WS <- sample_smallworld(dim=1,size=100, nei=4,p=0.05) #Watts-Strogatz small-world model

BA <- sample_pa(n=100) # Barabasi-Albert preferential attachment model

plot(BA)

4

2.2 Manipulating attributes in graphs

We can add attributes to nodes and edges of the graphs. These are useful for
selecting certain types of nodes, and for visualization purposes.

> g <- sample_gnp(10, 0.5)

> V(g)$color <- sample(c("red", "black"), vcount(g), rep=TRUE)

> E(g)$color <- "grey"

> red <- V(g)[color == "red"]

> bl <- V(g)[color == "black"]

> E(g)[red %--% red]$color <- "red"

> E(g)[bl %--% bl]$color <- "black"

What these commands do is to generate a random graph with 10 nodes, assigns
random colors to the nodes, colors edges joining red nodes in red, and edges
joining black nodes in black. All remaining edges are colored grey.

The next example assigns random weights to a lattice graph and then colors the
ones having weight over 0.9 red, and the rest grey.

> g <- graph.lattice(c(10,10))

> E(g)$weight <- runif(ecount(g))

> E(g)$color <- "grey"

> E(g)[weight > 0.9]$color <- "red"

2.3 Visualizing graphs

A very important part in the analysis of networks is being able to visualize
them. As an example the following commands render the three graphs depicted
in the figure below.

> er_graph <- sample_gnp(100, 2/100)

> plot(er_graph, vertex.label=NA, vertex.size=3)

> ws_graph <- sample_smallworld(1, 100, 4, 0.05)

> plot(ws_graph, layout=layout.circle, vertex.label=NA, vertex.size=3)

> ba_graph <- sample_pa(100)

> plot(ba_graph, vertex.label=NA, vertex.size=3)

5

Erdös-Rényi Watts-Strogatz Barabási-Albert

The plot command is very flexible and has many parameters that control the
behavior of the visualization. You can already see a few in the example above.
For example, vertex.label controls the label written in the nodes, if set to
NA then no text label is written. You can access all the parameters and their
possible values through the help system by typing

> help(igraph.plotting)

As another example, consider adding attributes to edges for a nicer visualization:

> g <- graph.lattice(c(10,10))

> E(g)$weight <- runif(ecount(g))

> E(g)$color <- "grey"

> E(g)[weight > 0.9]$color <- "red"

> plot(g, vertex.size=2, vertex.label=NA, layout=layout.kamada.kawai,

edge.width=2+3*E(g)$weight)

2.4 Measuring graphs

There are many measures that help us understand and characterize networks.
We have seen three in class already: diameter (and average path length), clus-
tering coefficient (or transitivity), and degree distribution. igraph provides

6

functions that compute these measures for you. The functions are: diameter,
transitivity, average.path.length, degree, and degree.distribution. The
examples below illustrate the usage of these functions.

For diameter and average.path.length

> g <- graph.lattice(length=100, dim=1, nei=4)

> average.path.length(g)

[1] 8.79798

> diameter(g)

[1] 25

> g <- rewire(g, each_edge(prob=0.05))

> average.path.length(g)

[1] 3.132323

> diameter(g)

[1] 6

For transitivity

> ws <- sample_smallworld(1, 100, 4, 0.05)

> transitivity(ws)

[1] 0.5466147

> p_hat <- ecount(ws)/(vcount(ws)*(vcount(ws)-1)/2)

> p_hat

[1] 0.08

> er <- sample_gnp(100, p_hat)

> transitivity(er)

[1] 0.08411215

For degree and degree.distribution

> g <- graph.ring(10)

> plot(g)

> degree(g)

[1] 2 2 2 2 2 2 2 2 2 2

> ba <- sample_pa(10000, m=3)

> p_hat <- ecount(ba)/ ((vcount(ba)-1)*vcount(ba)/2)

> er <- sample_gnp(10000, p_hat)

> degree.distribution(er)

[1] 0.0025 0.0139 0.0468 0.0898 0.1358 0.1577 0.1555 0.1377 0.1034 0.0698 0.0417 0.0242

[13] 0.0127 0.0050 0.0027 0.0003 0.0003 0.0002

> hist(degree(er))

> hist(degree(ba))

7

> plot(degree.distribution(er))

> plot(degree.distribution(ba))

Barabási-Albert Erdös-Rényi

3 Your task

Your task is to reproduce these graphs introduced in our first lecture.

(a) (b)

That is, your task is to: (a) plot the clustering coefficient and the average
shortest-path as a function of the parameter p of the WS model, and (b) plot

8

the average shortest-path length as a function of the network size of the ER
model.

Notice that in order to include both values — average shortest path and clus-
tering coefficient — in the same figure in plot (a), the clustering coefficient and
the average shortest-path values are normalized to be within the range [0, 1].
This is achieved by dividing the values by the value obtained at the left-most
point, that is, when p = 0.

In case of plot (b), you will have to experiment with appropriate values of p
which may depend on the parameter n. You will notice that for large values of
n your code may take too long, compute values for n that are reasonable for you.
Also, make sure that you chose values for p that result (with high probability)
in connected graphs. To achieve this, you can use a result from [1] stating:

• If p < (1−ε) lnn
n then a graph in G(n, p) will almost surely contain isolated

vertices, and thus be disconnected

• If p > (1+ε) lnn
n then a graph in G(n, p) will almost surely be connected

4 Deliverables

Important rule: After setting up your team (of 2) for this lab, the work for
the report your team have to hand in is strictly private. Nevertheless, you
are encouraged to ask the teacher as soon as possible if you think you don’t
understand what you are supposed to do, and also if you feel you are spending
much more time than the rest of the group – sometimes a tiny error can be
tricky to find and doesn’t add much to your knowledge. Questions can be asked
either in person or by email, and you’ll never be penalized by asking questions,
no matter how stupid they look in retrospect.

To deliver: You must deliver a brief report (2 or 3 pages) describing your results.
The formats accepted for the report are, in principle, pdf, Word, OpenOffice,
and Postscript. You also have to hand in the source code of your implemen-
tations. Don’t forget to put full names of all members of your team in the
report.

Procedure: One member of your team will submit your work through the raco
platform as a single zipped file.

Deadline: Work must be delivered within 2 weeks from the lab session you
attend. Late deliveries risk being penalized or not accepted at all. If you
anticipate problems with the deadline, tell me as soon as possible.

9

http://raco.fib.upc.edu/

References

[1] Paul Erdős and A Rényi. On the evolution of random graphs. Publ. Math.
Inst. Hungar. Acad. Sci, 5:17–61, 1960.

10

	Introduction
	Basics
	Creating graphs
	Loading graphs
	Graph generators

	Manipulating attributes in graphs
	Visualizing graphs
	Measuring graphs

	Your task
	Deliverables

